1
|
Nikolaienko R, Bovo E, Kahn D, Gracia R, Jamrozik T, Zima AV. Cysteines 1078 and 2991 cross-linking plays a critical role in redox regulation of cardiac ryanodine receptor (RyR). Nat Commun 2023; 14:4498. [PMID: 37495581 PMCID: PMC10372021 DOI: 10.1038/s41467-023-40268-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
The most common cardiac pathologies, such as myocardial infarction and heart failure, are associated with oxidative stress. Oxidation of the cardiac ryanodine receptor (RyR2) Ca2+ channel causes spontaneous oscillations of intracellular Ca2+, resulting in contractile dysfunction and arrhythmias. RyR2 oxidation promotes the formation of disulfide bonds between two cysteines on neighboring RyR2 subunits, known as intersubunit cross-linking. However, the large number of cysteines in RyR2 has been a major hurdle in identifying the specific cysteines involved in this pathology-linked post-translational modification of the channel. Through mutagenesis of human RyR2 and in-cell Ca2+ imaging, we identify that only two cysteines (out of 89) in each RyR2 subunit are responsible for half of the channel's functional response to oxidative stress. Our results identify cysteines 1078 and 2991 as a redox-sensitive pair that forms an intersubunit disulfide bond between neighboring RyR2 subunits during oxidative stress, resulting in a pathological "leaky" RyR2 Ca2+ channel.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ryan Gracia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Thomas Jamrozik
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
2
|
Filho CEB, Barbosa AHP, Nicolau LAD, Medeiros JVR, Pires-Oliveira M, dos Santos Póvoa RM, Govato TCP, Júnior HJF, de Carvalho RG, Luna-Filho B, Sabia Tallo F, de Araújo EA, Padrão Tavares JG, Arida RM, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation by Low Molecular Weight Heparin of Purinergic Signaling in Cardiac Cells Prevents Arrhythmia and Lethality Induced by Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10030103. [PMID: 36975867 PMCID: PMC10058697 DOI: 10.3390/jcdd10030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. Methods: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). Results: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. Conclusion: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.
Collapse
Affiliation(s)
- Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura–School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil
| | - Rui Manuel dos Santos Póvoa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Hézio Jadir Fernandes Júnior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Rafael Guzella de Carvalho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | | |
Collapse
|
3
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
4
|
Mariángelo JIE, Valverde CA, Vittone L, Said M, Mundiña-Weilenmann C. Pharmacological inhibition of translocon is sufficient to alleviate endoplasmic reticulum stress and improve Ca 2+ handling and contractile recovery of stunned myocardium. Eur J Pharmacol 2022; 914:174665. [PMID: 34861208 DOI: 10.1016/j.ejphar.2021.174665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The function of endoplasmic reticulum (ER), a Ca2+ storage compartment and site of protein folding, is altered by disruption of intracellular homeostasis. Misfolded proteins accumulated in the ER lead to ER stress (ERS), unfolded protein response (UPR) activation and ER Ca2+ loss. Myocardial stunning is a temporary contractile dysfunction, which occurs after brief ischemic periods with minimal or no cell death, being oxidative stress and Ca2+ overload potential underlying mechanisms. Myocardial stunning induces ERS response with negatively impact on the post-ischemic mechanical performance through an unknown mechanism. AIMS In this study, we explored whether ER Ca2+ efflux through the translocon, a major Ca2+ leak channel, contributes to Ca2+ mishandling and the consequent contractile abnormalities of the stunned myocardium. METHODS Mechanical performance, cytosolic Ca2+, UPR markers and oxidative state were evaluated in perfused rat/mouse hearts subjected to a brief ischemia followed by reperfusion (I/R) in absence or presence of the translocon inhibitor, emetine (1 μM), comparing its effects with those of the chaperones TUDCA (30 μM) and 4-PBA (3 mM). RESULTS Emetine treatment precluded the I/R-induced increase in UPR signaling markers and improved the contractile recovery together with a remarkable attenuation in myocardial stiffness when compared to I/R hearts with no drug. This alleviation of I/R-induced mechanical abnormalities was more effective than that obtained with the chemical chaperones, TUDCA and 4-PBA. Moreover, emetine treatment produced a striking improvement in diastolic Ca2+ handling with a partial recovery of the I/R-induced oxidative stress. CONCLUSION Blocking ER Ca2+ store depletion via translocon suppressed ER stress and improved mechanical performance and diastolic Ca2+ handling of stunned myocardium. Modulation of translocon permeability emerges as a therapeutic approach to face dysfunctional consequences of the I/R injury.
Collapse
Affiliation(s)
- Juan Ignacio Elio Mariángelo
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos Alfredo Valverde
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
5
|
Wang Y, Liu H, Sun N, Li J, Peng X, Jia Y, Karch J, Yu B, Wehrens XHT, Tian J. Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
Affiliation(s)
- Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Huibin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jing Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine, Neuroscience, Pediatrics, And Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| |
Collapse
|
6
|
Kobayashi T, Kurebayashi N, Murayama T. The Ryanodine Receptor as a Sensor for Intracellular Environments in Muscles. Int J Mol Sci 2021; 22:ijms221910795. [PMID: 34639137 PMCID: PMC8509754 DOI: 10.3390/ijms221910795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
The ryanodine receptor (RyR) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal and cardiac muscles and plays a key role in excitation-contraction coupling. The activity of the RyR is regulated by the changes in the level of many intracellular factors, such as divalent cations (Ca2+ and Mg2+), nucleotides, associated proteins, and reactive oxygen species. Since these intracellular factors change depending on the condition of the muscle, e.g., exercise, fatigue, or disease states, the RyR channel activity will be altered accordingly. In this review, we describe how the RyR channel is regulated under various conditions and discuss the possibility that the RyR acts as a sensor for changes in the intracellular environments in muscles.
Collapse
|
7
|
Sánchez G, Chalmers S, Ahumada X, Montecinos L, Olmedo I, Eisner V, Riveros A, Kogan MJ, Lavandero S, Pedrozo Z, Donoso P. Inhibition of chymotrypsin-like activity of the proteasome by ixazomib prevents mitochondrial dysfunction during myocardial ischemia. PLoS One 2020; 15:e0233591. [PMID: 32453773 PMCID: PMC7250417 DOI: 10.1371/journal.pone.0233591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/10/2020] [Indexed: 01/02/2023] Open
Abstract
The heart is critically dependent on mitochondrial respiration for energy supply. Ischemia decreases oxygen availability, with catastrophic consequences for cellular energy systems. After a few minutes of ischemia, the mitochondrial respiratory chain halts, ATP levels drop and ion gradients across cell membranes collapse. Activation of cellular proteases and generation of reactive oxygen species by mitochondria during ischemia alter mitochondrial membrane permeability, causing mitochondrial swelling and fragmentation and eventually cell death. The mitochondria, therefore, are important targets of cardioprotection against ischemic injury. We have previously shown that ixazomib (IXA), a proteasome inhibitor used for treating multiple myeloma, effectively reduced the size of the infarct produced by global ischemia in isolated rat hearts and prevented degradation of the sarcoplasmic reticulum calcium release channel RyR2. The aim of this work was to further characterize the protective effect of IXA by determining its effect on mitochondrial morphology and function after ischemia. We also quantified the effect of IXA on levels of mitofusin-2, a protein involved in maintaining mitochondrial morphology and mitochondria-SR communication. We found that mitochondria were significantly preserved and functional parameters such as oxygen consumption, the ability to generate a membrane potential, and glutathione content were improved in mitochondria isolated from hearts perfused with IXA prior to ischemia. IXA also blocked the release of cytochrome c observed in ischemia and significantly preserved mitofusin-2 integrity. These beneficial effects resulted in a significant decrease in the left ventricular end diastolic pressure upon reperfusion and a smaller infarct in isolated hearts.
Collapse
Affiliation(s)
- Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GS); (PD)
| | - Stefanie Chalmers
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Xavier Ahumada
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Veronica Eisner
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Riveros
- Departamento de Química Farmacológica y Toxicológica, Facultad Ciencias Químicas y Farmacéuticas Universidad de Chile, Santiago, Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad Ciencias Químicas y Farmacéuticas Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Zully Pedrozo
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GS); (PD)
| |
Collapse
|
8
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
10
|
Poluektov YM, Petrushanko IY, Undrovinas NA, Lakunina VA, Khapchaev AY, Kapelko VI, Abramov AA, Lakomkin VL, Novikov MS, Shirinsky VP, Mitkevich VA, Makarov AA. Glutathione-related substances maintain cardiomyocyte contractile function in hypoxic conditions. Sci Rep 2019; 9:4872. [PMID: 30890744 PMCID: PMC6425009 DOI: 10.1038/s41598-019-41266-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Severe hypoxia leads to decline in cardiac contractility and induces arrhythmic events in part due to oxidative damage to cardiomyocyte proteins including ion transporters. This results in compromised handling of Ca2+ ions that trigger heart contractile machinery. Here, we demonstrate that thiol-containing compounds such as N-acetylcysteine (NAC), glutathione ethyl ester (et-GSH), oxidized tetraethylglutathione (tet-GSSG), oxidized glutathione (GSSG) and S-nitrosoglutathione (GSNO) are capable of reducing negative effects of hypoxia on isolated rat cardiomyocytes. Preincubation of cardiomyocytes with 0.1 mM GSNO, 0.5 mM et-GSH, GSSG, tet-GSSG or with 10 mM NAC allows cells 5-times longer tolerate the hypoxic conditions and elicit regular Ca2+ transients in response to electric pacing. The shape of Ca2+ transients generated in the presence of GSNO, et-GSH and NAC was similar to that observed in normoxic control cardiomyocytes. The leader compound, GSNO, accelerated by 34% the recovery of normal contractile function of isolated rat heart subjected to ischemia-reperfusion. GSNO increased glutathionylation of Na,K-ATPase alpha-2 subunit, the principal ion-transporter of cardiac myocyte sarcolemma, which prevents irreversible oxidation of Na,K-ATPase and regulates its function to support normal Ca2+ ion handling in hypoxic cardiomyocytes. Altogether, GSNO appears effective cardioprotector in hypoxic conditions worth further studies toward its cardiovascular application.
Collapse
Affiliation(s)
- Yuri M Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Healthcare of the Russian Federation, Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991, Moscow, Russia
| | - Nidas A Undrovinas
- National Medical Research Center for Cardiology, Ministry of Healthcare of the Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow, 121552, Russia
| | - Valentina A Lakunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991, Moscow, Russia
| | - Asker Y Khapchaev
- National Medical Research Center for Cardiology, Ministry of Healthcare of the Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow, 121552, Russia
| | - Valery I Kapelko
- National Medical Research Center for Cardiology, Ministry of Healthcare of the Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow, 121552, Russia
| | - Alexander A Abramov
- National Medical Research Center for Cardiology, Ministry of Healthcare of the Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow, 121552, Russia
| | - Vladimir L Lakomkin
- National Medical Research Center for Cardiology, Ministry of Healthcare of the Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow, 121552, Russia
| | - Mikhail S Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq. 1, Volgograd, 400131, Russia
| | - Vladimir P Shirinsky
- National Medical Research Center for Cardiology, Ministry of Healthcare of the Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow, 121552, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991, Moscow, Russia.
| |
Collapse
|
11
|
Nikolaienko R, Bovo E, Zima AV. Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases. Front Physiol 2018; 9:1775. [PMID: 30574097 PMCID: PMC6291498 DOI: 10.3389/fphys.2018.01775] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Heart contraction vitally depends on tightly controlled intracellular Ca regulation. Because contraction is mainly driven by Ca released from the sarcoplasmic reticulum (SR), this organelle plays a particularly important role in Ca regulation. The type two ryanodine receptor (RyR2) is the major SR Ca release channel in ventricular myocytes. Several cardiac pathologies, including myocardial infarction and heart failure, are associated with increased RyR2 activity and diastolic SR Ca leak. It has been suggested that the increased RyR2 activity plays an important role in arrhythmias and contractile dysfunction. Several studies have linked increased SR Ca leak during myocardial infarction and heart failure to the activation of RyR2 in response to oxidative stress. This activation might include direct oxidation of RyR2 as well as indirect activation via phosphorylation or altered interactions with regulatory proteins. Out of ninety cysteine residues per RyR2 subunit, twenty one were reported to be in reduced state that could be potential targets for redox modifications that include S-nitrosylation, S-glutathionylation, and disulfide cross-linking. Despite its clinical significance, molecular mechanisms of RyR dysfunction during oxidative stress are not fully understood. Herein we review the most recent insights into redox-dependent modulation of RyR2 during oxidative stress and heart diseases.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
12
|
Lin HP, Zheng YQ, Zhou ZP, Wang GX, Guo PF. Ryanodine receptor antagonism alleviates skeletal muscle ischemia reperfusion injury by modulating TNF-α and IL-10. Clin Hemorheol Microcirc 2018; 70:51-58. [PMID: 29660904 DOI: 10.3233/ch-170276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intracellular calcium overload has been implicated in various pathological conditions including ischemia reperfusion injury. This study aims to explore the effect and probable mechanism of dantrolene, a ryanodine receptor and intracellular calcium antagonist, on the skeletal muscle ischemia reperfusion injury. MATERIALS AND METHODS SD rats were randomly divided into three groups: sham group which underwent anaesthesia and exposure of femoral vein, reperfusion group that received 2 h ischemia and the amount of diluent via femoral vein before 4 h reperfusion, dantrolene group that underwent 2 h ischemia and was given 2 mg/kg dantrolene via femoral vein before 4 h reperfusion. The parameters measured at the end of reperfusion included serum maleic dialdehyde (MDA), tissue myeloperoxidase (MPO) and muscle histology, as well as serum TNF-α and IL-10. RESULTS Levels of MDA, MPO and TNF-α increased in the reperfusion group, whereas the relevant expressions in the dantrolene group decreased significantly. Histological examination demonstrated significant improvements between the same both groups. IL-10 reflected the protection observed above with a significant up-regulation of expression after dantrolene administration. CONCLUSION Ryanodine receptor antagonist dantrolene exerted a significant protective effect against the inflammatory injury of skeletal muscle ischemia reperfusion. The underlying molecular mechanism is probably related to the suppression of TNF-α levels and the increment of IL-10 expression.
Collapse
Affiliation(s)
- Hai-Peng Lin
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Qing Zheng
- Department of E.N.T, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhi-Ping Zhou
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Gao-Xiong Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping-Fan Guo
- Department of Vascular Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Woulfe KC, Wilson CE, Nau S, Chau S, Phillips EK, Zang S, Tompkins C, Sucharov CC, Miyamoto SD, Stauffer BL. Acute isoproterenol leads to age-dependent arrhythmogenesis in guinea pigs. Am J Physiol Heart Circ Physiol 2018; 315:H1051-H1062. [PMID: 30028197 DOI: 10.1152/ajpheart.00061.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sudden cardiac death from ventricular arrhythmias is more common in adult patients with with heart failure compared with pediatric patients with heart failure. We identified age-specific differences in arrhythmogenesis using a guinea pig model of acute β-adrenergic stimulation. Young and adult guinea pigs were exposed to the β-adrenergic agonist isoproterenol (ISO; 0.7 mg/kg) for 30 min in the absence or presence of flecainide (20 mg/kg), an antiarrhythmic that blocks Na+ and ryanodine channels. Implanted cardiac monitors (Reveal LINQ, Medtronic) were used to monitor heart rhythm. Alterations in phosphorylation and oxidation of ryanodine receptor 2 (RyR2) were measured in left ventricular tissue. There were age-specific differences in arrhythmogenesis and sudden death associated with acute β-adrenergic stimulation in guinea pigs. Young and adult guinea pigs developed arrhythmias in response to ISO; however, adult animals developed significantly more premature ventricular contractions and experienced higher arrhythmia-related mortality than young guinea pigs treated with ISO. Although there were no significant differences in the phosphorylation of left ventricular RyR2 between young and adult guinea pigs, adult guinea pigs exposed to acute ISO had significantly more oxidation of RyR2. Flecainide treatment significantly improved survival and decreased the number of premature ventricular contractions in young and adult animals in association with lower RyR2 oxidation. Adult guinea pigs had a greater propensity to develop arrhythmias and suffer sudden death than young guinea pigs when acutely exposed to ISO. This was associated with higher oxidation of RyR2. The incidence of sudden death can be rescued with flecainide treatment, which decreases RyR2 oxidation. NEW & NOTEWORTHY Clinically, adult patients with heart failure are more likely to develop arrhythmias and sudden death than pediatric patients with heart failure. In the present study, older guinea pigs also showed a greater propensity to arrhythmias and sudden death than young guinea pigs when acutely exposed to isoproterenol. Although there are well-described age-related cardiac structural changes that predispose patients to arrhythmogenesis, the present data suggest contributions from dynamic changes in cellular signaling also play an important role in arrhythmogenesis.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Cortney E Wilson
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Shane Nau
- University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Sarah Chau
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Elisabeth K Phillips
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Shulun Zang
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Christine Tompkins
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver School of Medicine and Children's Hospital Colorado , Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine , Aurora, Colorado.,Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority , Denver, Colorado
| |
Collapse
|
14
|
Wang Q, Quick AP, Cao S, Reynolds J, Chiang DY, Beavers D, Li N, Wang G, Rodney GG, Anderson ME, Wehrens XHT. Oxidized CaMKII (Ca 2+/Calmodulin-Dependent Protein Kinase II) Is Essential for Ventricular Arrhythmia in a Mouse Model of Duchenne Muscular Dystrophy. Circ Arrhythm Electrophysiol 2018; 11:e005682. [PMID: 29654126 PMCID: PMC5903581 DOI: 10.1161/circep.117.005682] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy patients are prone to ventricular arrhythmias, which may be caused by abnormal calcium (Ca2+) homeostasis and elevated reactive oxygen species. CaMKII (Ca2+/calmodulin-dependent protein kinase II) is vital for normal Ca2+ homeostasis, but excessive CaMKII activity contributes to abnormal Ca2+ homeostasis and arrhythmias in cardiomyocytes. Reactive oxygen species induce CaMKII to become autonomously active. We hypothesized that genetic inhibition of CaMKII oxidation (ox-CaMKII) in a mouse model of Duchenne muscular dystrophy can alleviate abnormal Ca2+ homeostasis, thus, preventing ventricular arrhythmia. The objective of this study was to test if selective loss of ox-CaMKII affects ventricular arrhythmias in the mdx mouse model of Duchenne muscular dystrophy. METHODS AND RESULTS 5-(6)-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate staining revealed increased reactive oxygen species production in ventricular myocytes isolated from mdx mice, which coincides with elevated ventricular ox-CaMKII demonstrated by Western blotting. Genetic inhibition of ox-CaMKII by knockin replacement of the regulatory domain methionines with valines (MM-VV [CaMKII M281/282V]) prevented ventricular tachycardia in mdx mice. Confocal calcium imaging of ventricular myocytes isolated from mdx:MM-VV mice revealed normalization of intracellular Ca2+ release events compared with cardiomyocytes from mdx mice. Abnormal action potentials assessed by optical mapping in mdx mice were also alleviated by genetic inhibition of ox-CaMKII. Knockout of the NADPH oxidase regulatory subunit p47 phox normalized elevated ox-CaMKII, repaired intracellular Ca2+ homeostasis, and rescued inducible ventricular arrhythmias in mdx mice. CONCLUSIONS Inhibition of reactive oxygen species or ox-CaMKII protects against proarrhythmic intracellular Ca2+ handling and prevents ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy.
Collapse
MESH Headings
- Action Potentials
- Animals
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Calcium/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Disease Models, Animal
- Heart Rate
- Heart Ventricles/enzymology
- Heart Ventricles/physiopathology
- Mice, Inbred mdx
- Mice, Transgenic
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/enzymology
- Muscular Dystrophy, Duchenne/physiopathology
- NADPH Oxidase 2/metabolism
- Oxidation-Reduction
- Oxidative Stress
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Qiongling Wang
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Ann P Quick
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Shuyi Cao
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Julia Reynolds
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - David Y Chiang
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - David Beavers
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Na Li
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Guoliang Wang
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - George G Rodney
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Mark E Anderson
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.)
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics (Q.W., A.P.Q., S.C., J.R., D.Y.C., D.B., N.L., G.W., G.G.R., X.H.T.W.), Department of Medicine (Cardiology) (N.L., X.H.T.W.), Department of Pediatrics (Cardiology) (X.H.T.W.), and Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX. Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.). Duke University School of Medicine, Durham, NC (D.B.). Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (M.E.A.).
| |
Collapse
|
15
|
Galano JM, Roy J, Durand T, Lee JCY, Le Guennec JY, Oger C, Demion M. Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA: New anti-arrhythmic compounds? Mol Aspects Med 2018; 64:161-168. [PMID: 29572110 DOI: 10.1016/j.mam.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Abstract
ω3 Polyunsaturated fatty acids (ω3 PUFAs) have several biological properties including anti-arrhythmic effects. However, there are some evidences that it is not solely ω3 PUFAs per se that are biologically active but the non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) like isoprostanes and neuroprostanes. Recent question arises how these molecules take part in physiological homeostasis, show biological bioactivities and anti-inflammatory properties. Furthermore, they are involved in the circulations of childbirth, by inducing the closure of the ductus arteriosus. In addition, oxidative stress which can be beneficial for the heart in given environmental conditions such as the presence of ω3 PUFAs on the site of the stress and the signaling pathways involved are also explained in this review.
Collapse
Affiliation(s)
| | - Jérôme Roy
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| | - Thierry Durand
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | | | | | - Camille Oger
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | - Marie Demion
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| |
Collapse
|
16
|
Venturi E, Lindsay C, Lotteau S, Yang Z, Steer E, Witschas K, Wilson AD, Wickens JR, Russell AJ, Steele D, Calaghan S, Sitsapesan R. Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform. Br J Pharmacol 2018; 175:938-952. [PMID: 29278865 PMCID: PMC5825303 DOI: 10.1111/bph.14136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/23/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Statins are amongst the most widely prescribed drugs for those at risk of cardiovascular disease, lowering cholesterol levels by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Although effective at preventing cardiovascular disease, statin use is associated with muscle weakness, myopathies and, occasionally, fatal rhabdomyolysis. As simvastatin, a commonly prescribed statin, promotes Ca2+ release from sarcoplasmic reticulum (SR) vesicles, we investigated if simvastatin directly activates skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. EXPERIMENTAL APPROACH RyR1 and RyR2 single-channel behaviour was investigated after incorporation of sheep cardiac or mouse skeletal SR into planar phospholipid bilayers under voltage-clamp conditions. LC-MS was used to monitor the kinetics of interconversion of simvastatin between hydroxy-acid and lactone forms during these experiments. Cardiac and skeletal myocytes were permeabilised to examine simvastatin modulation of SR Ca2+ release. KEY RESULTS Hydroxy acid simvastatin (active at HMG-CoA reductase) significantly and reversibly increased RyR1 open probability (Po) and shifted the distribution of Ca2+ spark frequency towards higher values in skeletal fibres. In contrast, simvastatin reduced RyR2 Po and shifted the distribution of spark frequency towards lower values in ventricular cardiomyocytes. The lactone pro-drug form of simvastatin (inactive at HMG-CoA reductase) also activated RyR1, suggesting that the HMG-CoA inhibitor pharmacophore was not responsible for RyR1 activation. CONCLUSION AND IMPLICATIONS Simvastatin interacts with RyR1 to increase SR Ca2+ release and thus may contribute to its reported adverse effects on skeletal muscle. The ability of low concentrations of simvastatin to reduce RyR2 Po may also protect against Ca2+ -dependent arrhythmias and sudden cardiac death.
Collapse
Affiliation(s)
- Elisa Venturi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Chris Lindsay
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemistry, Chemistry Research LaboratoryUniversity of OxfordOxfordUK
| | | | - Zhaokang Yang
- School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Emma Steer
- School of Biomedical SciencesUniversity of LeedsLeedsUK
| | | | | | - James R Wickens
- Department of Chemistry, Chemistry Research LaboratoryUniversity of OxfordOxfordUK
| | - Angela J Russell
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemistry, Chemistry Research LaboratoryUniversity of OxfordOxfordUK
| | - Derek Steele
- School of Biomedical SciencesUniversity of LeedsLeedsUK
| | | | | |
Collapse
|
17
|
Sánchez G, Araneda F, Peña JP, Finkelstein JP, Riquelme JA, Montecinos L, Barrientos G, Llanos P, Pedrozo Z, Said M, Bull R, Donoso P. High-Fat-Diet-Induced Obesity Produces Spontaneous Ventricular Arrhythmias and Increases the Activity of Ryanodine Receptors in Mice. Int J Mol Sci 2018; 19:ijms19020533. [PMID: 29439404 PMCID: PMC5855755 DOI: 10.3390/ijms19020533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
Ventricular arrhythmias are a common cause of sudden cardiac death, and their occurrence is higher in obese subjects. Abnormal gating of ryanodine receptors (RyR2), the calcium release channels of the sarcoplasmic reticulum, can produce ventricular arrhythmias. Since obesity promotes oxidative stress and RyR2 are redox-sensitive channels, we investigated whether the RyR2 activity was altered in obese mice. Mice fed a high fat diet (HFD) became obese after eight weeks and exhibited a significant increase in the occurrence of ventricular arrhythmias. Single RyR2 channels isolated from the hearts of obese mice were more active in planar bilayers than those isolated from the hearts of the control mice. At the molecular level, RyR2 channels from HFD-fed mice had substantially fewer free thiol residues, suggesting that redox modifications were responsible for the higher activity. Apocynin, provided in the drinking water, completely prevented the appearance of ventricular arrhythmias in HFD-fed mice, and normalized the activity and content of the free thiol residues of the protein. HFD increased the expression of NOX4, an isoform of NADPH oxidase, in the heart. Our results suggest that HFD increases the activity of RyR2 channels via a redox-dependent mechanism, favoring the appearance of ventricular arrhythmias.
Collapse
Affiliation(s)
- Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Felipe Araneda
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Juan Pedro Peña
- Escuela de Ciencias Veterinarias, Universidad de Viña del Mar, 2572007 Viña del Mar, Valparaíso, Chile.
| | - José Pablo Finkelstein
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile.
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Genaro Barrientos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, 8380492 Santiago, Chile.
| | - Zully Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile.
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
| | - Ricardo Bull
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| |
Collapse
|
18
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|