1
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
3
|
Mohindra P, Zhong JX, Fang Q, Cuylear DL, Huynh C, Qiu H, Gao D, Kharbikar BN, Huang X, Springer ML, Lee RJ, Desai TA. Local decorin delivery via hyaluronic acid microrods improves cardiac performance, ventricular remodeling after myocardial infarction. NPJ Regen Med 2023; 8:60. [PMID: 37872196 PMCID: PMC10593781 DOI: 10.1038/s41536-023-00336-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Justin X Zhong
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Qizhi Fang
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Darnell L Cuylear
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Cindy Huynh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Division of Vascular and Endovascular Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Dongwei Gao
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Randall J Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
6
|
Zhou P, Liu H, Liu X, Ling X, Xiao Z, Zhu P, Zhu Y, Lu J, Zheng S. Donor heart preservation with hypoxic-conditioned medium-derived from bone marrow mesenchymal stem cells improves cardiac function in a heart transplantation model. Stem Cell Res Ther 2021; 12:56. [PMID: 33435991 PMCID: PMC7805188 DOI: 10.1186/s13287-020-02114-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background In heart transplantation, donor hearts inevitably suffer from ischemia/reperfusion (I/R) injury, which leads to primary graft dysfunction and affects patients’ survival rate. Bone marrow mesenchymal stem cells (BMSCs) have been reported to attenuate myocardial I/R injury via their paracrine effects, which can be enhanced by hypoxic preconditioning. We hypothesized that the donor heart preservation with hypoxic conditioned medium (CdM) derived from BMSCs would improve post-transplant graft function. Methods Normoxic or hypoxic CdM were isolated from rat BMSCs cultured under normoxic (20% O2) or hypoxic (1% O2) condition. Donor hearts were explanted; stored in cardioplegic solution supplemented with either a medium (vehicle), normoxic CdM (N-CdM), or hypoxic CdM (H-CdM); and then heterotopically transplanted. Antibody arrays were performed to compare the differences between hypoxic and normoxic CdM. Results After heart transplantation, the donor heart preservation with normoxic CdM was associated with a shorter time to return of spontaneous contraction and left ventricular systolic diameter, lower histopathological scores, higher ejection fraction, and fractional shortening of the transplanted hearts. The cardioprotective effects may be associated with the inhibition of apoptosis and inflammation, as reflected by less TUNEL-positive cells and lower levels of plasma proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α) and cardiac troponin I in the N-CdM group compared with the vehicle group. These therapeutic effects can be further enhanced by hypoxic preconditioning. Antibody arrays revealed that nine proteins were significantly increased in hypoxic CdM compared with normoxic CdM. Furthermore, compared with vehicle and N-CdM groups, the protein levels of PI3K and p-Akt/Akt ratio in the transplanted hearts significantly increased in the H-CdM group. However, no significant difference was found in the phosphorylation of Smad2 and Smad3 for the donor hearts among the three groups. Conclusions Our results indicate that the cardioplegic solution-enriched with hypoxic CdM can be a novel and promising preservation solution for donor hearts.
Collapse
Affiliation(s)
- Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Gáspár R, Gömöri K, Kiss B, Szántai Á, Pálóczi J, Varga ZV, Pipis J, Váradi B, Ágg B, Csont T, Ferdinandy P, Barteková M, Görbe A. Decorin Protects Cardiac Myocytes against Simulated Ischemia/Reperfusion Injury. Molecules 2020; 25:molecules25153426. [PMID: 32731559 PMCID: PMC7436189 DOI: 10.3390/molecules25153426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/13/2023] Open
Abstract
Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the market. In line with this need, several natural biomolecules have been extensively tested for their potential cardioprotective effects. Previously, we have shown that biglycan, a member of a diverse group of small leucine-rich proteoglycans, enhanced the expression of cardioprotective genes and decreased ischemia/reperfusion-induced cardiomyocyte death via a TLR-4 dependent mechanism. Therefore, in the present study we aimed to test whether decorin, a small leucine-rich proteoglycan closely related to biglycan, could exert cardiocytoprotection and to reveal possible downstream signaling pathways. Methods: Primary cardiomyocytes isolated from neonatal and adult rat hearts were treated with 0 (Vehicle), 1, 3, 10, 30 and 100 nM decorin as 20 h pretreatment and maintained throughout simulated ischemia and reperfusion (SI/R). In separate experiments, to test the mechanism of decorin-induced cardio protection, 3 nM decorin was applied in combination with inhibitors of known survival pathways, that is, the NOS inhibitor L-NAME, the PKG inhibitor KT-5823 and the TLR-4 inhibitor TAK-242, respectively. mRNA expression changes were measured after SI/R injury. Results: Cell viability of both neonatal and adult cardiomyocytes was significantly decreased due to SI/R injury. Decorin at 1, 3 and 10 nM concentrations significantly increased the survival of both neonatal and adult myocytes after SI/R. At 3nM (the most pronounced protective concentration), it had no effect on apoptotic rate of neonatal cardiac myocytes. No one of the inhibitors of survival pathways (L-NAME, KT-5823, TAK-242) influenced the cardiocytoprotective effect of decorin. MYND-type containing 19 (Zmynd19) and eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1) were significantly upregulated due to the decorin treatment. In conclusion, this is the first demonstration that decorin exerts a direct cardiocytoprotective effect possibly independent of NO-cGMP-PKG and TLR-4 dependent survival signaling.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom ter 9, H-6720 Szeged, Hungary; (R.G.); (T.C.)
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
| | - Bernadett Kiss
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Ágnes Szántai
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
| | - János Pálóczi
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
| | - Zoltán V. Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
| | - Judit Pipis
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
| | - Barnabás Váradi
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
| | - Bence Ágg
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom ter 9, H-6720 Szeged, Hungary; (R.G.); (T.C.)
| | - Péter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak
- Institute of Physiology, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovak
- Correspondence: (M.B.); (A.G.)
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
- Correspondence: (M.B.); (A.G.)
| |
Collapse
|
8
|
Liu QH, Qiao X, Zhang LJ, Wang J, Zhang L, Zhai XW, Ren XZ, Li Y, Cao XN, Feng QL, Cao JM, Wu BW. I K1 Channel Agonist Zacopride Alleviates Cardiac Hypertrophy and Failure via Alterations in Calcium Dyshomeostasis and Electrical Remodeling in Rats. Front Pharmacol 2019; 10:929. [PMID: 31507422 PMCID: PMC6718093 DOI: 10.3389/fphar.2019.00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 μmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 μg/kg in vivo and 1 μmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li-Jun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Xu-Wen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiao-Ze Ren
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Li
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Xiao-Na Cao
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Qi-Long Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bo-Wei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Chen R, He J, Wang Y, Guo Y, Zhang J, Peng L, Wang D, Lin Q, Zhang J, Guo Z, Li L. Qualitative transcriptional signatures for evaluating the maturity degree of pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2019; 10:113. [PMID: 30925936 PMCID: PMC6440140 DOI: 10.1186/s13287-019-1205-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 12/29/2022] Open
Abstract
Background Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are widely used models for regenerative medicine and disease research. However, PSC-CMs are usually immature in morphology and functionality and the maturity of PSC-CMs could not be determined accurately. In order to reasonably interpret the experimental results obtained by PSC-CMs, it is necessary to evaluate the maturity of PSC-CMs and find the key genes related to maturation. Methods Using the gene expression profiles of normal adult cardiac tissue and embryonic stem cell (ESC) samples, we identified gene pairs with identically relative expression orderings (REOs) within adult cardiac tissue but reversely identical in ESCs. Then, for a PSC-CM model, we calculated the maturity score as the percentage of these gene pairs that exhibit the same REOs in adult cardiac tissue. Lastly, the CellComp method was used to identify the maturation-related genes. Results The maturity score increased gradually from 0.8401 for 18-week fetal cardiac tissue to 0.9997 for adult cardiac tissue. For four human PSC-CM models, the mature scores increased with prolonged culture time but were all below 0.8. The genes involved in energy metabolism, angiogenesis, immunity, and proliferation were dysregulated in the 1-year PSC-CMs compared with adult cardiac tissue. Conclusion We proposed a qualitative transcriptional signature to score the maturity degree of PSC-CMs. This score can reasonably track the maturity of PSC-CMs and be used to compare different PSC-CM culture methods. Electronic supplementary material The online version of this article (10.1186/s13287-019-1205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun He
- Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Juan Zhang
- Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng Guo
- Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Emerging roles of proteoglycans in cardiac remodeling. Int J Cardiol 2018; 278:192-198. [PMID: 30528626 DOI: 10.1016/j.ijcard.2018.11.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Cardiac remodeling is the response of the heart to a range of pathological stimuli. Cardiac remodeling is initially adaptive; however, if sustained, it ultimately causes adverse clinical outcomes. Cardiomyocyte loss or hypertrophy, inflammation and fibrosis are hallmarks of cardiac remodeling. Proteoglycans, which are composed of glycosaminoglycans and a core protein, are a non-structural component of the extracellular matrix. The lack of proteoglycans results in cardiovascular defects during development. Moreover, emerging evidence has indicated that proteoglycans act as significant modifiers in ischemia and pressure overload-related cardiac remodeling. Proteoglycans may also provide novel therapeutic strategies for further improvement in the prognosis of cardiovascular diseases.
Collapse
|
11
|
Vu TT, Marquez J, Le LT, Nguyen ATT, Kim HK, Han J. The role of decorin in cardiovascular diseases: more than just a decoration. Free Radic Res 2018; 52:1210-1219. [PMID: 30468093 DOI: 10.1080/10715762.2018.1516285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decorin (DCN) is a proteoglycan constituent of the extracellular matrix (ECM) possessing powerful antifibrotic, anti-inflammation, antioxidant, and antiangiogenic properties. By attaching to receptors in the cell surface or to several ECM molecules, it regulates plenty of cellular functions, consequently influencing cell differentiation, proliferation, and apoptosis. These processes are dependent on cell types, biological contexts, and interfere with pathological processes such as cardiovascular diseases. In this review, we briefly discuss the potential of DCN targeting in addressing cardiovascular diseases (CVD). We dive into its interactome and discuss how its interaction with the proteins can affect disease progression, and how DCN can be a possible target for CVD therapeutics.
Collapse
Affiliation(s)
- Thu Thi Vu
- a Faculty of Biology, National Key Laboratory of Enzyme and Protein Technology , VNU University of Science , Hanoi , Vietnam
| | - Jubert Marquez
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Long Thanh Le
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Anh Thi Tuyet Nguyen
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Hyoung Kyu Kim
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,d Department of Integrated Biomedical Science , College of Medicine, Inje University , Busan , Korea
| | - Jin Han
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| |
Collapse
|
12
|
New methodologies to accurately assess circulating active transforming growth factor-β1 levels: implications for evaluating heart failure and the impact of left ventricular assist devices. Transl Res 2018; 192:15-29. [PMID: 29175264 PMCID: PMC5811316 DOI: 10.1016/j.trsl.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) has been used as a biomarker in disorders associated with pathologic fibrosis. However, plasma TGF-β1 assessment is confounded by the significant variation in reported normal values, likely reflecting variable release of the large pool of platelet TGF-β1 after blood drawing. Moreover, current assays measure only total TGF-β1, which is dominated by the latent form of TGF-β1 rather than the biologically active form. To address these challenges, we developed methodologies to prevent ex vivo release of TGF-β1 and to quantify active TGF-β1. We then used these techniques to measure TGF-β1 in healthy controls and patients with heart failure (HF) before and after insertion of left ventricular assist devices (LVAD). Total plasma TGF-β1 was 1.0 ± 0.60 ng/mL in controls and 3.76 ± 1.55 ng/mL in subjects with HF (P < 0.001), rising to 5.2 ± 2.3 ng/mL following LVAD placement (P = 0.006). These results were paralleled by the active TGF-β1 values; controls had 3-16 pg/mL active TGF-β1, whereas levels were 2.7-fold higher in patients with HF before, and 4.2-fold higher after, LVAD implantation. Total TGF-β1 correlated with levels of the platelet-derived protein thrombospondin-1 (r = 0.87; P < 0.001), suggesting that plasma TGF-β1 may serve as a surrogate indicator of in vivo platelet activation. von Willebrand factor high molecular weight multimers correlated inversely with TGF-β1 levels (r = -0.63; P = 0.023), suggesting a role for shear forces in loss of these multimers and platelet activation. In conclusion, accurate assessment of circulating TGF-β1 may provide a valuable biomarker for in vivo platelet activation and thrombotic disorders.
Collapse
|
13
|
Grgurevic L, Erjavec I, Grgurevic I, Dumic-Cule I, Brkljacic J, Verbanac D, Matijasic M, Paljetak HC, Novak R, Plecko M, Bubic-Spoljar J, Rogic D, Kufner V, Pauk M, Bordukalo-Niksic T, Vukicevic S. Systemic inhibition of BMP1-3 decreases progression of CCl 4-induced liver fibrosis in rats. Growth Factors 2017; 35:201-215. [PMID: 29482391 DOI: 10.1080/08977194.2018.1428966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a progressive pathological process resulting in an accumulation of excess extracellular matrix proteins. We discovered that bone morphogenetic protein 1-3 (BMP1-3), an isoform of the metalloproteinase Bmp1 gene, circulates in the plasma of healthy volunteers and its neutralization decreases the progression of chronic kidney disease in 5/6 nephrectomized rats. Here, we investigated the potential role of BMP1-3 in a chronic liver disease. Rats with carbon tetrachloride (CCl4)-induced liver fibrosis were treated with monoclonal anti-BMP1-3 antibodies. Treatment with anti-BMP1-3 antibodies dose-dependently lowered the amount of collagen type I, downregulated the expression of Tgfb1, Itgb6, Col1a1, and Acta2 and upregulated the expression of Ctgf, Itgb1, and Dcn. Mehanistically, BMP1-3 inhibition decreased the plasma levels of transforming growth factor beta 1(TGFβ1) by prevention of its activation and lowered the prodecorin production further suppressing the TGFβ1 profibrotic effect. Our results suggest that BMP1-3 inhibitors have significant potential for decreasing the progression of fibrosis in liver cirrhosis.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Igor Erjavec
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Ivica Grgurevic
- c Department of Gastroenterology , University Hospital Dubrava, Center for Scientific Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Ivo Dumic-Cule
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Jelena Brkljacic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Donatella Verbanac
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Mario Matijasic
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Hana Cipcic Paljetak
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Rudjer Novak
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Mihovil Plecko
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Jadranka Bubic-Spoljar
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Dunja Rogic
- d Department of Laboratory Diagnosis , University Hospital Centre , Zagreb , Croatia
| | - Vera Kufner
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Martina Pauk
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Tatjana Bordukalo-Niksic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Slobodan Vukicevic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
- c Department of Gastroenterology , University Hospital Dubrava, Center for Scientific Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| |
Collapse
|
14
|
Lai J, Chen F, Chen J, Ruan G, He M, Chen C, Tang J, Wang DW. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling. Sci Rep 2017; 7:44473. [PMID: 28290552 PMCID: PMC5349602 DOI: 10.1038/srep44473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/09/2017] [Indexed: 11/17/2022] Open
Abstract
Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fuqiong Chen
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guoran Ruan
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiarong Tang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
15
|
Colak D, Alaiya AA, Kaya N, Muiya NP, AlHarazi O, Shinwari Z, Andres E, Dzimiri N. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy. PLoS One 2016; 11:e0162669. [PMID: 27711126 PMCID: PMC5053516 DOI: 10.1371/journal.pone.0162669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/28/2016] [Indexed: 01/30/2023] Open
Abstract
Aims The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. Methods We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. Results We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer’s disease, chemokine-mediated inflammation and cytokine signalling pathways. Conclusion The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease.
Collapse
Affiliation(s)
- Dilek Colak
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ayodele A. Alaiya
- Proteomics Unit, Stem Cell Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Namik Kaya
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Nzioka P. Muiya
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Olfat AlHarazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Editha Andres
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- * E-mail:
| |
Collapse
|
16
|
Thu VT, Kim HK, Long LT, Thuy TT, Huy NQ, Kim SH, Kim N, Ko KS, Rhee BD, Han J. NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:305-14. [PMID: 27162485 PMCID: PMC4860373 DOI: 10.4196/kjpp.2016.20.3.305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating infl ammation and fi brosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 (10 µmol/L) treatment as experimental models. Addition of NecroX-5 signifi cantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 (TGFβ1) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, signifi cantly increased production of tumor necrosis factor alpha (TNFα), TGFβ1, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of TNFα, TGFβ1, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway.
Collapse
Affiliation(s)
- Vu Thi Thu
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; VNU University of Science, Hanoi 120036, Vietnam
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
| | - Le Thanh Long
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | | | | | - Soon Ha Kim
- Product Strategy and Development, LG Life Sciences Ltd., Seoul 03184, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
17
|
Glutamine protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions through inhibition of the transforming growth factor-β1-Smad3 pathway. Arch Biochem Biophys 2016; 596:43-50. [DOI: 10.1016/j.abb.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
|
18
|
Li L, Zhao D, Jin Z, Zhang J, Paul C, Wang Y. Phosphodiesterase 5a Inhibition with Adenoviral Short Hairpin RNA Benefits Infarcted Heart Partially through Activation of Akt Signaling Pathway and Reduction of Inflammatory Cytokines. PLoS One 2015; 10:e0145766. [PMID: 26709517 PMCID: PMC4692549 DOI: 10.1371/journal.pone.0145766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/08/2015] [Indexed: 01/28/2023] Open
Abstract
Introduction Treatment with short hairpin RNA (shRNA) interference therapy targeting phosphodiesterase 5a after myocardial infarction (MI) has been shown to mitigate post-MI heart failure. We investigated the mechanisms that underpin the beneficial effects of PDE5a inhibition through shRNA on post-MI heart failure. Methods An adenoviral vector with an shRNA sequence inserted was adopted for the inhibition of phosphodiesterase 5a (Ad-shPDE5a) in vivo and in vitro. Myocardial infarction (MI) was induced in male C57BL/6J mice by left coronary artery ligation, and immediately after that, the Ad-shPDE5a was injected intramyocardially around the MI region and border areas. Results Four weeks post-MI, the Ad-shPDE5a-treated mice showed significant mitigation of the left ventricular (LV) dilatation and dysfunction compared to control mice. Infarction size and fibrosis were also significantly reduced in Ad-shPDE5a-treated mice. Additionally, Ad-shPDE5a treatment decreased the MI-induced inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β1, which was confirmed in vitro in Ad-shPDE5a transfected myofibroblasts cultured under oxygen glucose deprivation. Finally, Ad-shPDE5a treatment was found to activate the myocardial Akt signaling pathway in both in vivo and in vitro experiments. Conclusion These findings indicate that PDE5a inhibition by Ad-shPDE5a via the Akt signal pathway could be of significant value in the design of future therapeutics for post-MI heart failure.
Collapse
Affiliation(s)
- Longhu Li
- Department of Cardiology, the First Hospital of Qiqihaer City, Qiqihaer, China
- Department of Cardiology, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Dong Zhao
- Collaborative Innovation Center of Judicial Civilization, China, Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Zhe Jin
- Department of Cardiology, the First Hospital of Qiqihaer City, Qiqihaer, China
| | - Jian Zhang
- Department of EICU, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Christian Paul
- Department of Pathology and Lab Medicine, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, Ohio, 45267, United States of America
| | - Yigang Wang
- Department of Pathology and Lab Medicine, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, Ohio, 45267, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ogino A, Takemura G, Hashimoto A, Kanamori H, Okada H, Nakagawa M, Tsujimoto A, Goto K, Kawasaki M, Nagashima K, Miyakoda G, Fujiwara T, Yabuuchi Y, Fujiwara H, Minatoguchi S. OPC-28326, a selective peripheral vasodilator with angiogenic activity, mitigates postinfarction cardiac remodeling. Am J Physiol Heart Circ Physiol 2015; 309:H213-21. [PMID: 25910803 DOI: 10.1152/ajpheart.00062.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Although OPC-28326, 4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl) piperidine hydrochloride monohydrate, was developed as a selective peripheral vasodilator with α2-adrenergic antagonist properties, it also reportedly exhibits angiogenic activity in an ischemic leg model. The purpose of this study was to examine the effect of OPC-28326 on the architectural dynamics and function of the infarcted left ventricle during the chronic stage of myocardial infarction. Myocardial infarction was induced in male C3H/He mice, after which the mice were randomly assigned into two groups: a control group receiving a normal diet and an OPC group whose diet contained 0.05% OPC-28326. The survival rate among the mice (n = 18 in each group) 4 wk postinfarction was significantly greater in the OPC than control group (83 vs. 44%; P < 0.05), and left ventricular remodeling and dysfunction were significantly mitigated. Histologically, infarct wall thickness was significantly greater in the OPC group, due in part to an abundance of nonmyocyte components, including blood vessels and myofibroblasts. Five days postinfarction, Ki-67-positive proliferating cells were more abundant in the granulation tissue in the OPC group, and there were fewer apoptotic cells. These effects were accompanied by activation of myocardial Akt and endothelial nitric oxide synthase. Hypoxia within the infarct issue, assessed using pimonidazole staining, was markedly attenuated in the OPC group. In summary, OPC-28326 increased the nonmyocyte population in infarct tissue by increasing proliferation and reducing apoptosis, thereby altering the tissue dynamics such that wall stress was reduced, which might have contributed to a mitigation of postinfarction cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Atsushi Ogino
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Genzou Takemura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan;
| | - Ayako Hashimoto
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Company Limited, Tokushima, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Munehiro Nakagawa
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akiko Tsujimoto
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuko Goto
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenshi Nagashima
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Goro Miyakoda
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Company Limited, Tokushima, Japan
| | - Takako Fujiwara
- Department of Food and Nutrition, Sonoda Women's University, Amagasaki, Japan; and
| | - Youichi Yabuuchi
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Company Limited, Tokushima, Japan
| | - Hisayoshi Fujiwara
- Department of Cardiovascular Medicine, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
20
|
MicroRNA 181b regulates decorin production by dermal fibroblasts and may be a potential therapy for hypertrophic scar. PLoS One 2015; 10:e0123054. [PMID: 25837671 PMCID: PMC4383602 DOI: 10.1371/journal.pone.0123054] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/24/2015] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic scarring is a frequent fibroproliferative complication following deep dermal burns leading to impaired function and lifelong disfigurement. Decorin reduces fibrosis and induces regeneration in many tissues, and is significantly downregulated in hypertrophic scar and normal deep dermal fibroblasts. It was hypothesized that microRNAs in these fibroblasts downregulate decorin and blocking them would increase decorin and may prevent hypertrophic scarring. Lower decorin levels were found in hypertrophic scar as compared to normal skin, and in deep as compared to superficial dermis. A decorin 3' un-translated region reporter assay demonstrated microRNA decreased decorin in deep dermal fibroblasts, and microRNA screening predicted miR- 24, 181b, 421, 526b, or 543 as candidates. After finding increased levels of mir-181b in deep dermal fibroblasts, it was demonstrated that TGF-β1 stimulation decreased miR-24 but increased miR-181b and that hypertrophic scar and deep dermis contained increased levels of miR-181b. By blocking miR-181b with an antagomiR, it was possible to increase decorin protein expression in dermal fibroblasts. This suggests miR-181b is involved in the differential expression of decorin in skin and wound healing. Furthermore, blocking miR-181b reversed TGF-β1 induced decorin downregulation and myofibroblast differentiation in hypertrophic scar fibroblasts, suggesting a potential therapy for hypertrophic scar.
Collapse
|
21
|
Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol 2015; 110:20. [PMID: 25725809 PMCID: PMC4344953 DOI: 10.1007/s00395-015-0476-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an insulin-releasing hormone clinically exploited for glycaemic control in diabetes, which also confers acute cardioprotection and benefits in experimental/clinical heart failure. We specifically investigated the role of the GLP-1 mimetic, exendin-4, in post-myocardial infarction (MI) remodelling, which is a key contributor to heart failure. Adult female normoglycaemic mice underwent coronary artery ligation/sham surgery prior to infusion with exendin-4/vehicle for 4 weeks. Metabolic parameters and infarct sizes were comparable between groups. Exendin-4 protected against cardiac dysfunction and chamber dilatation post-MI and improved survival. Furthermore, exendin-4 modestly decreased cardiomyocyte hypertrophy/apoptosis but markedly attenuated interstitial fibrosis and myocardial inflammation post-MI. This was associated with altered extracellular matrix (procollagen IαI/IIIαI, connective tissue growth factor, fibronectin, TGF-β3) and inflammatory (IL-10, IL-1β, IL-6) gene expression in exendin-4-treated mice, together with modulation of both Akt/GSK-3β and Smad2/3 signalling. Exendin-4 also altered macrophage response gene expression in the absence of direct actions on cardiac fibroblast differentiation, suggesting cardioprotective effects occurring secondary to modulation of inflammation. Our findings indicate that exendin-4 protects against post-MI remodelling via preferential actions on inflammation and the extracellular matrix independently of its established actions on glycaemic control, thereby suggesting that selective targeting of GLP-1 signalling may be required to realise its clear therapeutic potential for post-MI heart failure.
Collapse
|
22
|
Hypoxia preconditioned mesenchymal stem cells prevent cardiac fibroblast activation and collagen production via leptin. PLoS One 2014; 9:e103587. [PMID: 25116394 PMCID: PMC4130526 DOI: 10.1371/journal.pone.0103587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI), due to interstitial fibrosis. Mesenchymal stem cells (MSCs) have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC). Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis. METHODS Cardiac fibroblast (CF) activation was induced by hypoxia (0.5% O2). The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery. RESULTS Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs. CONCLUSION Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.
Collapse
|
23
|
Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart — A critical review from definition and classification of cell death. Int J Cardiol 2013; 167:2373-86. [DOI: 10.1016/j.ijcard.2013.01.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/13/2012] [Accepted: 01/13/2013] [Indexed: 12/19/2022]
|
24
|
Donnelly KS, Giuliano EA, Sharma A, Tandon A, Rodier JT, Mohan RR. Decorin-PEI nanoconstruct attenuates equine corneal fibroblast differentiation. Vet Ophthalmol 2013; 17:162-9. [PMID: 23718145 DOI: 10.1111/vop.12060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To explore (i) the potential of polyethylenimine (PEI) nanoparticles as a vector for delivering genes into equine corneal fibroblasts (ECFs) using green fluorescent protein (GFP) marker gene, (ii) whether PEI nanoparticle-mediated decorin (DCN) gene therapy could be used to inhibit fibrosis in the equine cornea using an in vitro model. PROCEDURE Polyethylenimine-DNA nanoparticles were prepared at nitrogen-to-phosphate (N-P) ratio of 15 by mixing 22 kDa linear PEI and a plasmid encoding either GFP or DCN. ECFs were generated from donor corneas as previously described. Initially, GFP was introduced into ECFs using PEI nanoparticles to confirm gene delivery, then DCN was introduced to evaluate for antifibrotic effects. GFP gene delivery was confirmed with real-time qPCR and ELISA. Changes in fibrosis after DCN therapy were quantified by measuring α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Cytotoxicity was determined by evaluating cell morphology, cellular viability, and TUNEL assay. RESULTS Polyethylenimine-green fluorescent protein-treated cultures showed 2.2 × 10(4) GFP plasmid copies/μg of cellular DNA and 2.1 pg of GFP/100 μL of lysate. PEI-DCN delivery significantly attenuated TGFβ-induced transdifferentiation of fibroblasts to myofibroblasts (2-fold decrease of αSMA mRNA; P = 0.05) and significant inhibition of αSMA (49 ± 14.2%; P < 0.001) in immunocytochemical staining and immunoblotting were found. Furthermore, PEI-DNA nanoparticle delivery did not alter cellular phenotype at 24 h and cellular viability was maintained. CONCLUSIONS Twenty-two kilo dalton Polyethylenimine nanoparticles are safe and effective for equine corneal gene therapy in vitro. PEI-mediated DCN gene delivery is effective at inhibiting TGFβ-mediated fibrosis in this model.
Collapse
Affiliation(s)
- Kevin S Donnelly
- Harry S. Truman Veterans Memorial Hospital, 800 Hospital Drive, Columbia, MO, 652012, USA; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Drive, Columbia, MO, 65211, USA
| | | | | | | | | | | |
Collapse
|
25
|
Adrenal gland infection by serotype 5 adenovirus requires coagulation factors. PLoS One 2013; 8:e62191. [PMID: 23638001 PMCID: PMC3636216 DOI: 10.1371/journal.pone.0062191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR) or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin) as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT) imaging of gene expression to determine whether local virus administration (direct injection in the kidney) could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.
Collapse
|
26
|
Kim JY, Kim DH, Kim JH, Yang YS, Oh W, Lee EH, Chang JW. Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity via paracrine. World J Stem Cells 2012; 4:110-116. [PMID: 23293711 PMCID: PMC3536832 DOI: 10.4252/wjsc.v4.i11.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/04/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) against amyloid-β42 (Aβ42) exposed rat primary neurons.
METHODS: To evaluate the neuroprotective effect of hUCB-MSCs, the cells were co-cultured with Aβ42-exposed rat primary neuronal cells in a Transwell apparatus. To assess the involvement of soluble factors released from hUCB-MSCs in neuroprotection, an antibody-based array using co-cultured media was conducted. The neuroprotective roles of the identified hUCB-MSC proteins was assessed by treating recombinant proteins or specific small interfering RNAs (siRNAs) for each candidate protein in a co-culture system.
RESULTS: The hUCB-MSCs secreted elevated levels of decorin and progranulin when co-cultured with rat primary neuronal cells exposed to Aβ42. Treatment with recombinant decorin and progranulin protected from Aβ42-neurotoxicity in vitro. In addition, siRNA-mediated knock-down of decorin and progranulin production in hUCB-MSCs reduced the anti-apoptotic effects of hUCB-MSC in the co-culture system.
CONCLUSION: Decorin and progranulin may be involved in anti-apoptotic activity of hUCB-MSCs exposed to Aβ42.
Collapse
|
27
|
Li L, Haider HK, Wang L, Lu G, Ashraf M. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 2012; 302:H2112-21. [PMID: 22447941 DOI: 10.1152/ajpheart.00339.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction.
Collapse
Affiliation(s)
- Longhu Li
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The focus of this review is on translational studies utilizing large-animal models and clinical studies that provide fundamental insight into cellular and extracellular pathways contributing to post-myocardial infarction (MI) left ventricle (LV) remodeling. Specifically, both large-animal and clinical studies have examined the potential role of endogenous and exogenous stem cells to alter the course of LV remodeling. Interestingly, there have been alterations in LV remodeling with stem cell treatment despite a lack of long-term cell engraftment. The translation of the full potential of stem cell treatments to clinical studies has yet to be realized. The modulation of proteolytic pathways that contribute to the post-MI remodeling process has also been examined. On the basis of recent large-animal studies, there appears to be a relationship between stem cell treatment post-MI and the modification of proteolytic pathways, generating the hypothesis that stem cells leave an echo effect that moderates LV remodeling.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
29
|
Contrast Ultrasound and Targeted Microbubbles: Diagnostic and Therapeutic Applications for Angiogenesis. J Cardiovasc Transl Res 2011; 4:404-15. [DOI: 10.1007/s12265-011-9282-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/19/2011] [Indexed: 12/26/2022]
|
30
|
Forte E, Chimenti I, Barile L, Gaetani R, Angelini F, Ionta V, Messina E, Giacomello A. Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Rev Rep 2011; 7:1018-30. [DOI: 10.1007/s12015-011-9252-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Kanamori H, Takemura G, Goto K, Maruyama R, Ono K, Nagao K, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Kawasaki M, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 2011; 300:H2261-71. [PMID: 21421825 DOI: 10.1152/ajpheart.01056.2010] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ischemia is known to potently stimulate autophagy in the heart, which may contribute to cardiomyocyte survival. In vitro, transfection with small interfering RNAs targeting Atg5 or Lamp-2 (an autophagy-related gene necessary, respectively, for the initiation and digestion step of autophagy), which specifically inhibited autophagy, diminished survival among cultured cardiomyocytes subjected to anoxia and significantly reduced their ATP content, confirming an autophagy-mediated protective effect against anoxia. We next examined the dynamics of cardiomyocyte autophagy and the effects of manipulating autophagy during acute myocardial infarction in vivo. Myocardial infarction was induced by permanent ligation of the left coronary artery in green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) transgenic mice in which GFP-LC3 aggregates to be visible in the cytoplasm when autophagy is activated. Autophagy was rapidly (within 30 min after coronary ligation) activated in cardiomyocytes, and autophagic activity was particularly strong in salvaged cardiomyocytes bordering the infarcted area. Treatment with bafilomycin A1, an autophagy inhibitor, significantly increased infarct size (31% expansion) 24 h postinfarction. Interestingly, acute infarct size was significantly reduced (23% reduction) in starved mice showing prominent autophagy before infarction. Treatment with bafilomycin A1 reduced postinfarction myocardial ATP content, whereas starvation increased myocardial levels of amino acids and ATP, and the combined effects of bafilomycin A1 and starvation on acute infarct size offset one another. The present findings suggest that autophagy is an innate and potent process that protects cardiomyocytes from ischemic death during acute myocardial infarction.
Collapse
Affiliation(s)
- Hiromitsu Kanamori
- Dept. of Cardiology, Gifu Univ. Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nepomuceno-Chamorro I, Azuaje F, Devaux Y, Nazarov PV, Muller A, Aguilar-Ruiz JS, Wagner DR. Prognostic transcriptional association networks: a new supervised approach based on regression trees. ACTA ACUST UNITED AC 2010; 27:252-8. [PMID: 21098433 PMCID: PMC3018815 DOI: 10.1093/bioinformatics/btq645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Motivation: The application of information encoded in molecular networks for prognostic purposes is a crucial objective of systems biomedicine. This approach has not been widely investigated in the cardiovascular research area. Within this area, the prediction of clinical outcomes after suffering a heart attack would represent a significant step forward. We developed a new quantitative prediction-based method for this prognostic problem based on the discovery of clinically relevant transcriptional association networks. This method integrates regression trees and clinical class-specific networks, and can be applied to other clinical domains. Results: Before analyzing our cardiovascular disease dataset, we tested the usefulness of our approach on a benchmark dataset with control and disease patients. We also compared it to several algorithms to infer transcriptional association networks and classification models. Comparative results provided evidence of the prediction power of our approach. Next, we discovered new models for predicting good and bad outcomes after myocardial infarction. Using blood-derived gene expression data, our models reported areas under the receiver operating characteristic curve above 0.70. Our model could also outperform different techniques based on co-expressed gene modules. We also predicted processes that may represent novel therapeutic targets for heart disease, such as the synthesis of leucine and isoleucine. Availability: The SATuRNo software is freely available at http://www.lsi.us.es/isanepo/toolsSaturno/. Contact:inepomuceno@us.es Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
|
33
|
von Marschall Z, Fisher LW. Decorin is processed by three isoforms of bone morphogenetic protein-1 (BMP1). Biochem Biophys Res Commun 2009; 391:1374-8. [PMID: 20026052 DOI: 10.1016/j.bbrc.2009.12.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/11/2009] [Indexed: 12/01/2022]
Abstract
The secreted small proteoglycan, decorin, modulates collagen fibril formation as well as the bioactivity of various members of the transforming growth factor-beta (TGFbeta) superfamily. Indeed, recombinant prodecorin has been used in several gene therapy experiments to inhibit unwanted fibrosis in model diseases of the kidney, heart, and other tissues although the status of the propeptide within the target tissues is unknown. Currently the protease that removes the highly conserved propeptide from decorin is unproven. Using a variety of approaches, we show that three isoforms of the Tolloid-related bone morphogenetic protein-1 (BMP1) can effectively remove the propeptide from human prodecorin resulting in the well-established mature proteoglycan. Classic BMP1, the full-length gene transcript mTLD (BMP1-3), and BMP1-5 (isoform lacking the CUB3 domain thought to be important for efficient type I collagen C-propeptidase activity) all removed the analogous propeptides from both recombinant human prodecorin and murine probiglycan. Furthermore, the timed removal of the propeptide was found to not be necessary for the addition of decorin's single glycosaminoglycan chain. Decorin therefore joins the growing list of matrix and bioactive molecules processed/activated by the BMP1/Tolloid family. Since the third member of the Class I small leucine-rich proteooglycan (SLRP) superfamily, asporin, also contains a similar cleavage motif at the appropriate location, we propose that the removal of these propeptides by members of the BMP1 family is an additional characteristic of Class I SLRP.
Collapse
Affiliation(s)
- Zofia von Marschall
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD, USA
| | | |
Collapse
|