1
|
Tamargo M, Martínez-Legazpi P, Espinosa MÁ, Lyon A, Méndez I, Gutiérrez-Ibañes E, Fernández AI, Prieto-Arévalo R, González-Mansilla A, Arts T, Delhaas T, Mombiela T, Sanz-Ruiz R, Elízaga J, Yotti R, Tschöpe C, Fernández-Avilés F, Lumens J, Bermejo J. Increased Chamber Resting Tone Is a Key Determinant of Left Ventricular Diastolic Dysfunction. Circ Heart Fail 2023; 16:e010673. [PMID: 38113298 PMCID: PMC10729900 DOI: 10.1161/circheartfailure.123.010673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/22/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Twitch-independent tension has been demonstrated in cardiomyocytes, but its role in heart failure (HF) is unclear. We aimed to address twitch-independent tension as a source of diastolic dysfunction by isolating the effects of chamber resting tone (RT) from impaired relaxation and stiffness. METHODS We invasively monitored pressure-volume data during cardiopulmonary exercise in 20 patients with hypertrophic cardiomyopathy, 17 control subjects, and 35 patients with HF with preserved ejection fraction. To measure RT, we developed a new method to fit continuous pressure-volume measurements, and first validated it in a computational model of loss of cMyBP-C (myosin binding protein-C). RESULTS In hypertrophic cardiomyopathy, RT (estimated marginal mean [95% CI]) was 3.4 (0.4-6.4) mm Hg, increasing to 18.5 (15.5-21.5) mm Hg with exercise (P<0.001). At peak exercise, RT was responsible for 64% (53%-76%) of end-diastolic pressure, whereas incomplete relaxation and stiffness accounted for the rest. RT correlated with the levels of NT-proBNP (N-terminal pro-B-type natriuretic peptide; R=0.57; P=0.02) and with pulmonary wedge pressure but following different slopes at rest and during exercise (R2=0.49; P<0.001). In controls, RT was 0.0 mm Hg and 1.2 (0.3-2.8) mm Hg in HF with preserved ejection fraction patients and was also exacerbated by exercise. In silico, RT increased in parallel to the loss of cMyBP-C function and correlated with twitch-independent myofilament tension (R=0.997). CONCLUSIONS Augmented RT is the major cause of LV diastolic chamber dysfunction in hypertrophic cardiomyopathy and HF with preserved ejection fraction. RT transients determine diastolic pressures, pulmonary pressures, and functional capacity to a greater extent than relaxation and stiffness abnormalities. These findings support antimyosin agents for treating HF.
Collapse
Affiliation(s)
- María Tamargo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Spain (P.M.-L.)
| | - M. Ángeles Espinosa
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Irene Méndez
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Enrique Gutiérrez-Ibañes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Raquel Prieto-Arévalo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Jaime Elízaga
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Carsten Tschöpe
- Berlin Institute of Health/Center for Regenerative Therapy (BCRT) at Charite, and Department of Cardiology, Campus Virchow (CVK), Charité Universitätsmedizin, and DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T.)
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| |
Collapse
|
2
|
Seemann F, Bruce CG, Khan JM, Ramasawmy R, Potersnak AG, Herzka DA, Kakareka JW, Jaimes AE, Schenke WH, O'Brien KJ, Lederman RJ, Campbell-Washburn AE. Dynamic pressure-volume loop analysis by simultaneous real-time cardiovascular magnetic resonance and left heart catheterization. J Cardiovasc Magn Reson 2023; 25:1. [PMID: 36642713 PMCID: PMC9841727 DOI: 10.1186/s12968-023-00913-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Left ventricular (LV) contractility and compliance are derived from pressure-volume (PV) loops during dynamic preload reduction, but reliable simultaneous measurements of pressure and volume are challenging with current technologies. We have developed a method to quantify contractility and compliance from PV loops during a dynamic preload reduction using simultaneous measurements of volume from real-time cardiovascular magnetic resonance (CMR) and invasive LV pressures with CMR-specific signal conditioning. METHODS Dynamic PV loops were derived in 16 swine (n = 7 naïve, n = 6 with aortic banding to increase afterload, n = 3 with ischemic cardiomyopathy) while occluding the inferior vena cava (IVC). Occlusion was performed simultaneously with the acquisition of dynamic LV volume from long-axis real-time CMR at 0.55 T, and recordings of invasive LV and aortic pressures, electrocardiogram, and CMR gradient waveforms. PV loops were derived by synchronizing pressure and volume measurements. Linear regression of end-systolic- and end-diastolic- pressure-volume relationships enabled calculation of contractility. PV loops measurements in the CMR environment were compared to conductance PV loop catheter measurements in 5 animals. Long-axis 2D LV volumes were validated with short-axis-stack images. RESULTS Simultaneous PV acquisition during IVC-occlusion was feasible. The cardiomyopathy model measured lower contractility (0.2 ± 0.1 mmHg/ml vs 0.6 ± 0.2 mmHg/ml) and increased compliance (12.0 ± 2.1 ml/mmHg vs 4.9 ± 1.1 ml/mmHg) compared to naïve animals. The pressure gradient across the aortic band was not clinically significant (10 ± 6 mmHg). Correspondingly, no differences were found between the naïve and banded pigs. Long-axis and short-axis LV volumes agreed well (difference 8.2 ± 14.5 ml at end-diastole, -2.8 ± 6.5 ml at end-systole). Agreement in contractility and compliance derived from conductance PV loop catheters and in the CMR environment was modest (intraclass correlation coefficient 0.56 and 0.44, respectively). CONCLUSIONS Dynamic PV loops during a real-time CMR-guided preload reduction can be used to derive quantitative metrics of contractility and compliance, and provided more reliable volumetric measurements than conductance PV loop catheters.
Collapse
Affiliation(s)
- Felicia Seemann
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA.
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Jaffar M Khan
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Amanda G Potersnak
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - John W Kakareka
- Instrumentation Development and Engineering Application Solutions, Division of Intramural Research, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea E Jaimes
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - William H Schenke
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Kendall J O'Brien
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood, Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D47, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Caporizzo MA, Prosser BL. Need for Speed: The Importance of Physiological Strain Rates in Determining Myocardial Stiffness. Front Physiol 2021; 12:696694. [PMID: 34393820 PMCID: PMC8361601 DOI: 10.3389/fphys.2021.696694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023] Open
Abstract
The heart is viscoelastic, meaning its compliance is inversely proportional to the speed at which it stretches. During diastolic filling, the left ventricle rapidly expands at rates where viscoelastic forces impact ventricular compliance. In heart disease, myocardial viscoelasticity is often increased and can directly impede diastolic filling to reduce cardiac output. Thus, treatments that reduce myocardial viscoelasticity may provide benefit in heart failure, particularly for patients with diastolic heart failure. Yet, many experimental techniques either cannot or do not characterize myocardial viscoelasticity, and our understanding of the molecular regulators of viscoelasticity and its impact on cardiac performance is lacking. Much of this may stem from a reliance on techniques that either do not interrogate viscoelasticity (i.e., use non-physiological rates of strain) or techniques that compromise elements that contribute to viscoelasticity (i.e., skinned or permeabilized muscle preparations that compromise cytoskeletal integrity). Clinically, cardiac viscoelastic characterization is challenging, requiring the addition of strain-rate modulation during invasive hemodynamics. Despite these challenges, data continues to emerge demonstrating a meaningful contribution of viscoelasticity to cardiac physiology and pathology, and thus innovative approaches to characterize viscoelasticity stand to illuminate fundamental properties of myocardial mechanics and facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin L Prosser
- Department of Physiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Ünlü S, Yamak BA, Sezenöz B, Şahinarslan A, Arınsoy ST. Left atrial contractile longitudinal strain determines intrinsic left atrial function regardless of load status and left ventricular deformation. Int J Cardiovasc Imaging 2021; 37:3245-3253. [PMID: 34176030 DOI: 10.1007/s10554-021-02324-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Left atrial (LA) longitudinal strain (S) has been proposed as a superior, non-invasive parameter over LA volumetric assessment. LAS has diagnostic and prognostic value in many cardiovascular pathologies. Nevertheless, the acute effect of hemodynamic changes on LAS indices is not well-established. We sought to identify volume independent physiomechanical changes in LA and interrelation between LA and left ventricular (LV) strain indices following a large amount of fluid loss provided by hemodialysis. METHODS Seventy-five patients between 18 and 85 years of age under hemodialysis therapy were included. The echocardiographic images were obtained before and after hemodialysis. Phasic LAS and LV global longitudinal strain (GLS) were calculated. The impact of volume depletion on echocardiographic measurements and their temporal correlation were calculated. RESULTS LV and LA dimensions,volumes and LV, LA reservoir, and conduit deformation showed a significant decrease after hemodialysis. No significant change was observed for LAScontraction (p = 0.203). The ultrafiltrated volume was significantly correlated with the changes in LVGLS (r = 0.75, p < 0.001), and LASreservoir (r = 0.81, p < 0.001) and LA total emptying volume (r = 0.80, p < 0.001). Absolute changes in LASreservoir and LVGLS were strongly correlated (r = 0.83, p < 0.001). There was no correlation between absolute changes in LAScontraction and LVGLS or ultrafiltrated volume (p = NS, both). CONCLUSION LA reservoir and conduit LS are highly volume dependent strain parameters and are strongly correlated with LV deformation along with ultrafiltrated volume. Acute excessive volume depletion or LV deformation have no influence on LAScontraction. It is important to identify independent easily accessible functional parameters for the LA which would improve clinical evaluation.
Collapse
Affiliation(s)
- Serkan Ünlü
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Betül Ayça Yamak
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Burak Sezenöz
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Asife Şahinarslan
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
5
|
Bakkestrøm R, Banke A, Pecini R, Irmukhamedov A, Nielsen SK, Andersen MJ, Borlaug BA, Moller JE. Cardiac remodelling and haemodynamic characteristics in primary mitral valve regurgitation. Open Heart 2018; 5:e000919. [PMID: 30613416 PMCID: PMC6307562 DOI: 10.1136/openhrt-2018-000919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
Objective To assess the association between cardiac morphology and function assessed with cardiac MRI (CMRI) and haemodynamics at rest and during exercise in patients with primary mitral regurgitation (MR). Methods In an observational study, subjects with significant primary MR (N = 46) with effective regurgitant orifice ≥ 0.30 cm2 and left ventricular (LV) ejection fraction > 60% were examined with right heart catheterisation during rest and exercise and CMRI at rest. End-diastolic pressure volume relationship (EDPVR) was assessed using a single beat method using pulmonary capillary wedge pressure (PCWP) and end-diastolic volume. Patients were divided according to normal PCWP at rest (> 12 mm Hg) and with exercise (> 28 mm Hg). Results: Resting regurgitant volume correlated positively with resting PCWP, (r = 0.42, p = 0.002). However, with exercise no association between PCWP and regurgitant volume was seen (r = 0.09, p = 0.55). At rest left atrial (LA) maximal, minimal and volume index at atrial contraction correlated positively with PCWP (r = 0.60; r = 0.55; r = 0.58, all p < 0.001); in contrast none of these correlated with exercise PCWP (all p > 0.2). EDPVR in patients with high PCWP at rest was shifted towards higher volumes for the same pressures. The opposite was seen for patients with high PCWP during exercise where estimated volumes were smaller for the same pressure than patients with normal exercise PCWP. Conclusion In patients with significant MR the degree of regurgitation and LA dilatation is associated with resting PCWP. However, with exercise this association disappears. Estimation of EDPVR suggests lower LV compliance in patients where PCWP is increased with exercise. Clinical trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02961647?term=HEMI&rank=1. ID: NCT02961647
Collapse
Affiliation(s)
- Rine Bakkestrøm
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark
| | - Ann Banke
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark
| | - Redi Pecini
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark
| | - Søren Kristian Nielsen
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark
| | - Mads J Andersen
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Barry A Borlaug
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob Eifer Moller
- Department of Cardiology, Odense University Hospital, Odense Denmark and Odense Patient data Explorative Network OPEN, Odense, Denmark
| |
Collapse
|
6
|
Kerkhof PLM, Yoo BW, Merillon JP, Peace RA, Handly N. Monte Carlo method applied to the evaluation of the relationship between ejection fraction and its constituent components. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1295-1298. [PMID: 29060113 DOI: 10.1109/embc.2017.8037069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ventricular function is routinely assessed by applying the clinically accepted metric ejection fraction (EF). The numerical value of EF depends on the interplay between end-systolic volume (ESV) and end-diastolic volume (EDV). The relative impact of the two constitutive components has received little attention. Pediatric cardiologists are interested in EF vs ESV when evaluating various congenital abnormalities. Following successful surgical intervention of Fallot tetralogy, many of these patients receive follow-up, not only during childhood, but also when being adults. Cardiologists diagnosing and treating elderly patients often analyze EF vs EDV, notably for phenotyping heart failure patients. Therefore, we study EF vs ESV as well as EF vs EDV in more detail. We explore the fundamentals of EF while analyzing a Fallot patient group. Three routes were followed, namely nonlinear regression, by implementing a Monte Carlo approach to generate EDV on the basis of known ESV values, and by using a theoretical graphical derivation. Our MRI-based post Fallot repair study includes left (LV) and right ventricular (RV) data (N=124). Using a robust approach we employed nonlinear regression with ESV as an independent variable. EDV was also assessed by Monte Carlo generated values for stroke volume within a physiological range. In all cases ESV emerges as the dominant component of EF, with less (P<;0.0001) impact of EDV. Using three independent routes we demonstrate that values for EF primarily depend on the corresponding ESV. This relationship is nonlinear, and correlation is always better with ESV compared to EDV in these patients, and confirmed in random number modeling studies.
Collapse
|
7
|
Chung CS, Shmuylovich L, Kovács SJ. What global diastolic function is, what it is not, and how to measure it. Am J Physiol Heart Circ Physiol 2015; 309:H1392-406. [DOI: 10.1152/ajpheart.00436.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Despite Leonardo da Vinci's observation (circa 1511) that “the atria or filling chambers contract together while the pumping chambers or ventricles are relaxing and vice versa,” the dynamics of four-chamber heart function, and of diastolic function (DF) in particular, are not generally appreciated. We view DF from a global perspective, while characterizing it in terms of causality and clinical relevance. Our models derive from the insight that global DF is ultimately a result of forces generated by elastic recoil, modulated by cross-bridge relaxation, and load. The interaction between recoil and relaxation results in physical wall motion that generates pressure gradients that drive fluid flow, while epicardial wall motion is constrained by the pericardial sac. Traditional DF indexes (τ, E/E′, etc.) are not derived from causal mechanisms and are interpreted as approximating either stiffness or relaxation, but not both, thereby limiting the accuracy of DF quantification. Our derived kinematic models of isovolumic relaxation and suction-initiated filling are extensively validated, quantify the balance between stiffness and relaxation, and provide novel mechanistic physiological insight. For example, causality-based modeling provides load-independent indexes of DF and reveals that both stiffness and relaxation modify traditional DF indexes. The method has revealed that the in vivo left ventricular equilibrium volume occurs at diastasis, predicted novel relationships between filling and wall motion, and quantified causal relationships between ventricular and atrial function. In summary, by using governing physiological principles as a guide, we define what global DF is, what it is not, and how to measure it.
Collapse
Affiliation(s)
- Charles S. Chung
- Department of Physiology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, and Department of Physiology, Wayne State University, Detroit, Michigan; and
| | - Leonid Shmuylovich
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sándor J. Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Vejdani-Jahromi M, Nagle M, Trahey GE, Wolf PD. Ultrasound shear wave elasticity imaging quantifies coronary perfusion pressure effect on cardiac compliance. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:465-73. [PMID: 25291788 PMCID: PMC4765376 DOI: 10.1109/tmi.2014.2360835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diastolic heart failure (DHF) is a major source of cardiac related morbidity and mortality in the world today. A major contributor to, or indicator of DHF is a change in cardiac compliance. Currently, there is no accepted clinical method to evaluate the compliance of cardiac tissue in diastolic dysfunction. Shear wave elasticity imaging (SWEI) is a novel ultrasound-based elastography technique that provides a measure of tissue stiffness. Coronary perfusion pressure affects cardiac stiffness during diastole; we sought to characterize the relationship between these two parameters using the SWEI technique. In this work, we demonstrate how changes in coronary perfusion pressure are reflected in a local SWEI measurement of stiffness during diastole. Eight Langendorff perfused isolated rabbit hearts were used in this study. Coronary perfusion pressure was changed in a randomized order (0-90 mmHg range) and SWEI measurements were recorded during diastole with each change. Coronary perfusion pressure and the SWEI measurement of stiffness had a positive linear correlation with the 95% confidence interval (CI) for the slope of 0.009-0.011 m/s/mmHg ( R(2) = 0.88 ). Furthermore, shear modulus was linearly correlated to the coronary perfusion pressure with the 95% CI of this slope of 0.035-0.042 kPa/mmHg ( R(2) = 0.83). In conclusion, diastolic SWEI measurements of stiffness can be used to characterize factors affecting cardiac compliance specifically the mechanical interaction (cross-talk) between perfusion pressure in the coronary vasculature and cardiac muscle. This relationship was found to be linear over the range of pressures tested.
Collapse
Affiliation(s)
| | - Matt Nagle
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| | - Gregg E. Trahey
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| | - Patrick D. Wolf
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| |
Collapse
|
9
|
Mossahebi S, Kovács SJ. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components. J Atr Fibrillation 2014; 6:1018. [PMID: 27957057 DOI: 10.4022/jafib.1018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (xo), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DTs to stiffness and DTr to relaxation such that DT=DTs+DTr is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, Epeak, Edur, E-VTI, E/E') and E-wave derived PDF parameters (c, k, DTs, DTr) were compared. Total DT and DTs, DTr in AF were shorter than in NSR (p<0.005), chamber stiffness, (k) in AF was higher than in NSR (p<0.001). For NSR, 75% of DT was due to stiffness and 25% was due to relaxation whereas for AF 81% of DT was due to stiffness and 19% was due to relaxation (p<0.005). We conclude that compared to NSR, increased chamber stiffness is one measurable consequence of chamber remodeling in chronic, rate controlled AF. A larger fraction of E-wave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.
Collapse
Affiliation(s)
- Sina Mossahebi
- Cardiovascular Biophysics Laboratory Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sándor J Kovács
- Cardiovascular Biophysics Laboratory Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Mossahebi S, Kovács SJ. Kinematic Modeling Based Decomposition of Transmitral Flow (Doppler E-Wave) Deceleration Time into Stiffness and Relaxation Components. Cardiovasc Eng Technol 2014. [DOI: 10.1007/s13239-014-0176-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mossahebi S, Shmuylovich L, Kovács SJ. The Challenge of Chamber Stiffness Determination in Chronic Atrial Fibrillation vs. Normal Sinus Rhythm: Echocardiographic Prediction with Simultaneous Hemodynamic Validation. J Atr Fibrillation 2013; 6:878. [PMID: 28496889 DOI: 10.4022/jafib.878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 01/19/2023]
Abstract
Echocardiographic diastolic function (DF) assessment remains a challenge in atrial fibrillation (AF), because indexes such as E/A cannot be used and because chronic, rate controlled AF causes chamber remodeling. To determine if echocardiography can accurately characterize diastolic chamber properties we compared 15 chronic AF subjects to 15, age matched normal sinus rhythm (NSR) subjects using simultaneous echocardiography-cardiac catheterization (391 beats analyzed). Conventional DF parameters (DT, Epeak, AT, Edur, E-VTI, E/E') and validated, E-wave derived, kinematic modeling based chamber stiffness parameter (k), were compared. For validation, chamber stiffness (dP/dV) was independently determined from simultaneous, multi-beat P-V loop data. Results show that neither AT, Epeak nor E-VTI differentiated between groups. Although DT, Edur and E/E' did differentiate between groups (DTNSR vs. DTAF p < 0.001, EdurNSR vs. EdurAF p < 0.001, E/E'NSR vs. E/E'AF p < 0.05), the model derived chamber stiffness parameter k was the only parameter specific for chamber stiffness, (kNSR vs. kAF p <0.005). The invasive gold standard determined end-diastolic stiffness in NSR was indistinguishable from end-diastolic (i.e. diastatic) stiffness in AF (p = 0.84). Importantly, the analysis provided mechanistic insight by showing that diastatic stiffness in AF was significantly greater than diastatic stiffness in NSR (p < 0.05). We conclude that passive (diastatic) chamber stiffness is increased in normal LVEF chronic, rate controlled AF hearts relative to normal LVEF NSR controls and that in addition to DT, the E-wave derived, chamber stiffness specific index k, differentiates between AF vs. NSR groups, even when invasively determined end-diastolic chamber stiffness fails to do so.
Collapse
Affiliation(s)
- Sina Mossahebi
- Cardiovascular Biophysics Laboratory, Cardiovascular DivisionWashington University School of Medicine, St. Louis, MO, USA
| | - Leonid Shmuylovich
- Cardiovascular Biophysics Laboratory, Cardiovascular DivisionWashington University School of Medicine, St. Louis, MO, USA
| | - Sándor J Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular DivisionWashington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Bermejo J, Yotti R, Pérez del Villar C, del Álamo JC, Rodríguez-Pérez D, Martínez-Legazpi P, Benito Y, Antoranz JC, Desco MM, González-Mansilla A, Barrio A, Elízaga J, Fernández-Avilés F. Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function. J Appl Physiol (1985) 2013; 115:556-68. [PMID: 23743396 DOI: 10.1152/japplphysiol.00363.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In cardiovascular research, relaxation and stiffness are calculated from pressure-volume (PV) curves by separately fitting the data during the isovolumic and end-diastolic phases (end-diastolic PV relationship), respectively. This method is limited because it assumes uncoupled active and passive properties during these phases, it penalizes statistical power, and it cannot account for elastic restoring forces. We aimed to improve this analysis by implementing a method based on global optimization of all PV diastolic data. In 1,000 Monte Carlo experiments, the optimization algorithm recovered entered parameters of diastolic properties below and above the equilibrium volume (intraclass correlation coefficients = 0.99). Inotropic modulation experiments in 26 pigs modified passive pressure generated by restoring forces due to changes in the operative and/or equilibrium volumes. Volume overload and coronary microembolization caused incomplete relaxation at end diastole (active pressure > 0.5 mmHg), rendering the end-diastolic PV relationship method ill-posed. In 28 patients undergoing PV cardiac catheterization, the new algorithm reduced the confidence intervals of stiffness parameters by one-fifth. The Jacobian matrix allowed visualizing the contribution of each property to instantaneous diastolic pressure on a per-patient basis. The algorithm allowed estimating stiffness from single-beat PV data (derivative of left ventricular pressure with respect to volume at end-diastolic volume intraclass correlation coefficient = 0.65, error = 0.07 ± 0.24 mmHg/ml). Thus, in clinical and preclinical research, global optimization algorithms provide the most complete, accurate, and reproducible assessment of global left ventricular diastolic chamber properties from PV data. Using global optimization, we were able to fully uncouple relaxation and passive PV curves for the first time in the intact heart.
Collapse
Affiliation(s)
- Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, and the Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Uemura K, Kawada T, Zheng C, Li M, Shishido T, Sugimachi M. Myocardial performance index is sensitive to changes in cardiac contractility, but is also affected by vascular load condition. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:695-698. [PMID: 24109782 DOI: 10.1109/embc.2013.6609595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Myocardial performance index (MPI), or Tei index, is measured by Doppler echocardiography in clinical practice. MPI has been shown to be useful in evaluating left ventricular (LV) performance and predicting prognosis in cardiac patients. However, the effects of LV load and contractile states on MPI remain to be thoroughly investigated. In 14 anesthetized dogs, we obtained LV pressure-volume relationship with use of sonomicrometry and catheter-tip manometry. MPI was determined from the time derivative of LV volume and pressure. LV end-systolic pressure-volume ratio (Ees'), effective arterial elastance (Ea) and LV end-diastolic volume (Ved) were used as indices of LV contractility, afterload and preload, respectively. Hemodynamic conditions were varied over wide ranges [heart rate (HR), 66-192 bpm; mean arterial pressure, 71-177 mmHg] by infusing cardiovascular agents, by inducing ischemic heart failure and by electrical atrial pacing. Multiple linear regression analysis of pooled data (66 data sets) indicated that MPI (0.6-1.8) significantly correlated with Ees' [1.5-17.5 mmHg · ml(-1), p<0.0001, standard partial regression coefficient (β) =-0.66], Ea (3.6-21.9 mmHg · ml(-1), p<0.001, β = 0.4) and Ved (11-100 ml, p<0.0001, β = -0.69). MPI directly correlated with the time constant of isovolumic relaxation (19-66 ms, p<0.05), but not with HR or LV diastolic-stiffness (all p>0.1). Theoretical analysis also indicated that MPI decreases following the increases in LV contractility and in preload, while it increases in response to an increase in LV afterload. We conclude that MPI sensitively detects changes in LV contractility. However, MPI is also affected by changes in LV afterload and preload.
Collapse
|
14
|
Pasipoularides A. Right and left ventricular diastolic pressure-volume relations: a comprehensive review. J Cardiovasc Transl Res 2012. [PMID: 23179133 DOI: 10.1007/s12265-012-9424-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ventricular compliance alterations can affect cardiac performance and adaptations. Moreover, diastolic mechanics are important in assessing both diastolic and systolic function, since any filling impairment can compromise systolic function. A sigmoidal passive filling pressure-volume relationship, developed using chronically instrumented, awake-animal disease models, is clinically adaptable to evaluating diastolic dynamics using subject-specific micromanometric and volumetric data from the entire filling period of any heartbeat(s). This innovative relationship is the global, integrated expression of chamber geometry, wall thickness, and passive myocardial wall properties. Chamber and myocardial compliance curves of both ventricles can be computed by the sigmoidal methodology over the entire filling period and plotted over appropriate filling pressure ranges. Important characteristics of the compliance curves can be examined and compared between the right and the left ventricle and for different physiological and pathological conditions. The sigmoidal paradigm is more accurate and, therefore, a better alternative to the conventional exponential pressure-volume approximation.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, HAFS, 7th floor, DUMC 3704, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Weimar T, Watanabe Y, Kazui T, Lee US, Moon MR, Schuessler RB, Damiano RJ. Differential impact of short periods of rapid atrial pacing on left and right atrial mechanical function. Am J Physiol Heart Circ Physiol 2012; 302:H2583-91. [PMID: 22505644 DOI: 10.1152/ajpheart.01170.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current techniques to describe atrial function are limited by their load dependency and hence do not accurately reflect intrinsic mechanical properties. To assess the impact of atrial fibrillation on atrial function, combined pressure-volume relationships (PVR) measured by conductance catheters were used to evaluate the right (RA) and left (LA) atrium in 12 isoflurane-anesthetized pigs. Biatrial PVR were recorded over a wide range of volumes during transient caval occlusion at baseline sinus rhythm (SR), after onset of rapid atrial pacing (RAP), after 1 h of RAP, after conversion to SR, and after 1 h of recovery. Cardiac output decreased by 16% (P = 0.008) with onset of RAP. Mean LA and RA pressures increased by 21 and 40% (P < 0.001), respectively, and remained elevated during the entire recovery period. RA reservoir function increased from 51 to 58% and significantly dropped to 43% after resumption of SR (P = 0.017). Immediately after RAP, a right shift of LA end-systolic PVR-intercept for end-systolic volume required to generate an atrial end-systolic pressure of 10 mmHg (24.4 ± 4.9 to 28.1 ± 5.2 ml, P = 0.005) indicated impaired contractility compared with baseline. Active LA emptying fraction dropped from 17.6 ± 7.5 to 11.7 ± 3.7% (P < 0.001), LA stroke volume and ΔP/Δt(max)/P declined by 22% (P = 0.038 and 0.026, respectively), while there was only a trend to impaired RA systolic function. Stiffness quantified by the ratio of pressure to volume at end-diastole was increased immediately after RAP only in the RA (P = 0.020), but end-diastolic PVR shifted rightward in both atria (P = 0.011 LA, P = 0.045 RA). These data suggest that even short periods of RAP have a differential impact on RA and LA function, which was sustained for 1 h after conversion to SR.
Collapse
Affiliation(s)
- Timo Weimar
- Division of Cardiothoracic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Kinematic modeling-based left ventricular diastatic (passive) chamber stiffness determination with in-vivo validation. Ann Biomed Eng 2011; 40:987-95. [PMID: 22065203 DOI: 10.1007/s10439-011-0458-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/21/2011] [Indexed: 12/28/2022]
Abstract
The slope of the diastatic pressure-volume relationship (D-PVR) defines passive left ventricular (LV) stiffness κ. Although κ is a relative measure, cardiac catheterization, which is an absolute measurement method, is used to obtain the former. Echocardiography, including transmitral flow velocity (Doppler E-wave) analysis, is the preferred quantitative diastolic function (DF) assessment method. However, E-wave analysis can provide only relative, rather than absolute pressure information. We hypothesized that physiologic mechanism-based modeling of E-waves allows derivation of the D-PVR(E-wave) whose slope, κ(E-wave), provides E-wave-derived diastatic, passive chamber stiffness. Our kinematic model of filling and Bernoulli's equation were used to derive expressions for diastatic pressure and volume on a beat-by-beat basis, thereby generating D-PVR(E-wave), and κ(E-wave). For validation, simultaneous (conductance catheter) P-V and echocardiographic E-wave data from 30 subjects (444 total cardiac cycles) having normal LV ejection fraction (LVEF) were analyzed. For each subject (15 beats average) model-predicted κ(E-wave) was compared to experimentally measured κ(CATH) via linear regression yielding as follows: κ(E-wave) = ακ(CATH) + b (R(2) = 0.92), where, α = 0.995 and b = 0.02. We conclude that echocardiographically determined diastatic passive chamber stiffness, κ(E-wave), provides an excellent estimate of simultaneous, gold standard (P-V)-defined diastatic stiffness, κ(CATH). Hence, in chambers at diastasis, passive LV stiffness can be accurately determined by means of suitable analysis of Doppler E-waves (transmitral flow).
Collapse
|
17
|
Pasipoularides A. LV twisting and untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. Am Heart J 2011; 162:798-810. [PMID: 22093194 DOI: 10.1016/j.ahj.2011.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/21/2011] [Indexed: 12/31/2022]
Abstract
Conventional and emerging concepts on mechanisms by which hypertrophic cardiomyopathy (HCM) engenders diastolic dysfunction are surveyed. A shift from familiar left ventricular (LV) diastolic function approaches to large-scale (twist-untwist) and small-scale (titin unfolding-refolding, etc.) wall rebound models, incorporating interaction and dynamic distortions and rearrangements of myofiber sheets and ultrastructural constituents, is suggested. Such an emerging new paradigm of diastolic dynamics, emphasizing the relationship of myofiber sheet and ultraconstituent distortion to LV mechanics and end-systolic shape, might clarify intricate patterns of early diastolic rebound and suction, needed for LV filling in many of the polymorphic phenotypes of HCM.
Collapse
|
18
|
Mossahebi S, Shmuylovich L, Kovács SJ. The thermodynamics of diastole: kinematic modeling-based derivation of the P-V loop to transmitral flow energy relation with in vivo validation. Am J Physiol Heart Circ Physiol 2011; 300:H514-21. [DOI: 10.1152/ajpheart.00814.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pressure-volume (P-V) loop-based analysis facilitates thermodynamic assessment of left ventricular function in terms of work and energy. Typically these quantities are calculated for a cardiac cycle using the entire P-V loop, although thermodynamic analysis may be applied to a selected phase of the cardiac cycle, specifically, diastole. Diastolic function is routinely quantified by analysis of transmitral Doppler E-wave contours. The first law of thermodynamics requires that energy (ε) computed from the Doppler E-wave (εE-wave) and the same portion of the P-V loop (εP-V E-wave) be equivalent. These energies have not been previously derived nor have their predicted equivalence been experimentally validated. To test the hypothesis that εP-V E-wave and εE-wave are equivalent, we used a validated kinematic model of filling to derive εE-wave in terms of chamber stiffness, relaxation/viscoelasticity, and load. For validation, simultaneous (conductance catheter) P-V and echocadiographic data from 12 subjects (205 total cardiac cycles) having a range of diastolic function were analyzed. For each E-wave, εE-wave was compared with εP-V E-wave calculated from simultaneous P-V data. Linear regression yielded the following: εP-V E-wave = αεE-wave + b ( R2 = 0.67), where α = 0.95 and b = 6 e−5. We conclude that E-wave-derived energy for suction-initiated early rapid filling εE-wave, quantitated via kinematic modeling, is equivalent to invasive P-V-defined filling energy. Hence, the thermodynamics of diastole via εE-wave generate a novel mechanism-based index of diastolic function suitable for in vivo phenotypic characterization.
Collapse
Affiliation(s)
- Sina Mossahebi
- Department of Physics, College of Arts and Sciences, Washington University, St. Louis, Missouri
| | | | - Sándor J. Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular Division,
- Division of Biology and Biomedical Sciences, School of Medicine, and
- Department of Physics, College of Arts and Sciences, Washington University, St. Louis, Missouri
| |
Collapse
|
19
|
Popovic D, Ostojic MC, Petrovic M, Vujisic-Tesic B, Popovic B, Nedeljkovic I, Arandjelovic A, Jakovljevic B, Stojanov V, Damjanovic S. Assessment of the Left Ventricular Chamber Stiffness in Athletes. Echocardiography 2010; 28:276-87. [DOI: 10.1111/j.1540-8175.2010.01311.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Rebuttal from Shmuylovich, Chung, and Kovacs. J Appl Physiol (1985) 2010; 109:610. [DOI: 10.1152/japplphysiol.01399.2009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Kovács SJ. Solution of the 'inverse problem of diastole' via kinematic modeling allows determination of ventricular properties and provides mechanistic insights into diastolic heart failure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:2354-7. [PMID: 19965185 DOI: 10.1109/iembs.2009.5335021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Because 50% of heart failure hospital admissions have diastolic heart failure (DHF) quantifying diastolic function (DF) has reached new prominence. Conventionally DF indices have been computed from shape-based features (height, duration, area) of Doppler waveforms such as the E-wave, (transmitral flow velocity), or E'-wave (mitral annular velocity) without regard to causal mechanisms. Solution of the 'inverse problem' has been achieved via the parametrized diastolic filling (PDF) formalism, a linear, kinematic model which treats the elastic, recoil-driven suction-pump attribute of the left ventricle as a damped simple harmonic oscillator (SHO). PDF uses the E-wave as input and generates stiffness (k), relaxation/ damping (c) and load (x(o)) as output. Scientific successes include the prediction that filling must be driven by a linear, bi-directional spring, later validated as a property of the giant cardiac protein titin, which generates a recoiling force at the cellular level in early diastole. Selected recent kinematic modeling achievements include: explanation why E-wave deceleration time must be determined jointly by stiffness (k) and relaxation (c), rather than by stiffness alone; LV equilibrium volume is the volume at diastasis; solution of the load-independent index of diastolic function (LIIDF) problem; solution of the isovolumic pressure decay (IVPD) problem. Clinical application reveals that contrary to dogma, chamber relaxation/viscoelasticity (PDF parameter c) rather than chamber stiffness (PDF parameter k) most often differentiates between controls vs. diastolic dysfunction subjects, thereby providing mechanistic insights into DHF.
Collapse
Affiliation(s)
- Sándor J Kovács
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Shmuylovich L, Chung CS, Kovács SJ. Point: Left ventricular volume during diastasis is the physiological in vivo equilibrium volume and is related to diastolic suction. J Appl Physiol (1985) 2009; 109:606-8. [PMID: 20035061 DOI: 10.1152/japplphysiol.01399.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Granzier HL, Radke MH, Peng J, Westermann D, Nelson OL, Rost K, King NMP, Yu Q, Tschöpe C, McNabb M, Larson DF, Labeit S, Gotthardt M. Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res 2009; 105:557-64. [PMID: 19679835 DOI: 10.1161/circresaha.109.200964] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The giant protein titin plays key roles in myofilament assembly and determines the passive mechanical properties of the sarcomere. The cardiac titin molecule has 2 mayor elastic elements, the N2B and the PEVK region. Both have been suggested to determine the elastic properties of the heart with loss of function data only available for the N2B region. OBJECTIVE The purpose of this study was to investigate the contribution of titin's proline-glutamate-valine-lysine (PEVK) region to biomechanics and growth of the heart. METHODS AND RESULTS We removed a portion of the PEVK segment (exons 219 to 225; 282 aa) that corresponds to the PEVK element of N2B titin, the main cardiac titin isoform. Adult homozygous PEVK knockout (KO) mice developed diastolic dysfunction, as determined by pressure-volume loops, echocardiography, isolated heart experiments, and muscle mechanics. Immunoelectron microscopy revealed increased strain of the N2B element, a spring region retained in the PEVK-KO. Interestingly, the PEVK-KO mice had hypertrophied hearts with an induction of the hypertrophy and fetal gene response that includes upregulation of FHL proteins. This contrasts the cardiac atrophy phenotype with decreased FHL2 levels that result from the deletion of the N2B element. CONCLUSIONS Titin's PEVK region contributes to the elastic properties of the cardiac ventricle. Our findings are consistent with a model in which strain of the N2B spring element and expression of FHL proteins trigger cardiac hypertrophy. These novel findings provide a molecular basis for the future differential therapy of isolated diastolic dysfunction versus more complex cardiomyopathies.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tuscon, AZ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|