1
|
Somers T, Siddiqi S, Janssen MCM, Morshuis WJ, Maas RGC, Buikema JW, van den Broek PHH, Schirris TJJ, Russel FGM. Effect of statins on mitochondrial function and contractile force in human skeletal and cardiac muscle. Biomed Pharmacother 2024; 180:117492. [PMID: 39326098 DOI: 10.1016/j.biopha.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES AND BACKGROUND The success of statin therapy in reducing cardiovascular morbidity and mortality is contrasted by the skeletal muscle complaints, which often leads to nonadherence. Previous studies have shown that inhibition of mitochondrial function plays a key role in statin intolerance. Recently, it was found that statins may also influence energy metabolism in cardiomyocytes. This study assessed the effects of statin use on cardiac muscle ex vivo from patients using atorvastatin, rosuvastatin, simvastatin or pravastatin and controls. METHODS Cardiac tissue and skeletal muscle tissue were harvested during open heart surgery after patients provided written informed consent. Patients included were undergoing cardiac surgery and either taking statins (atorvastatin, rosuvastatin, simvastatin or pravastatin) or without statin therapy (controls). Contractile behaviour of cardiac auricles was tested in an ex vivo set-up and cellular respiration of both cardiac and skeletal muscle tissue samples was measured using an Oxygraph-2k. Finally, statin acid and lactone concentrations were quantified in cardiac and skeletal homogenates by LC-MS/MS. RESULTS Fatty acid oxidation and mitochondrial complex I and II activity were reduced in cardiac muscle, while contractile function remained unaffected. Inhibition of mitochondrial complex III by statins, as previously described, was confirmed in skeletal muscle when compared to control samples, but not observed in cardiac tissue. Statin concentrations determined in skeletal muscle tissue and cardiac muscle tissue were comparable. CONCLUSIONS Statins reduce skeletal and cardiac muscle cell respiration without significantly affecting cardiac contractility.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands.
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Margit C M Janssen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Wim J Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Renee G C Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
| | - Jan W Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, VU University, De Boelelaan 1108, Amsterdam 1081HZ, The Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, De Boelelaan 1117, Amsterdam 1081HZ, The Netherlands
| | - Petra H H van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Tom J J Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| |
Collapse
|
2
|
Fishbein GA, Bois MC, d'Amati G, Glass C, Masuelli L, Rodriguez ER, Seidman MA. Ultrastructural cardiac pathology: the wide (yet so very small) world of cardiac electron microscopy. Cardiovasc Pathol 2024; 73:107670. [PMID: 38880163 DOI: 10.1016/j.carpath.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Electron microscopy (EM) was a popular diagnostic tool in the 1970s and early 80s. With the adoption of newer, less expensive techniques, such as immunohistochemistry, the role of EM in diagnostic surgical pathology has dwindled substantially. Nowadays, even in academic centers, EM interpretation is relegated to renal pathologists and the handful of (aging) pathologists with experience using the technique. As such, EM interpretation is truly arcane-understood by few and mysterious to many. Nevertheless, there remain situations in which EM is the best or only ancillary test to ascertain a specific diagnosis. Thus, there remains a critical need for the younger generation of surgical pathologists to learn EM interpretation. Recognizing this need, cardiac EM was made the theme of the Cardiovascular Evening Specialty Conference at the 2023 United States and Canadian Academy of Pathology (USCAP) annual meeting in New Orleans, Louisiana. Each of the speakers contributed their part to this article, the purpose of which is to review EM as it pertains to myocardial tissue and provide illustrative examples of the spectrum of ultrastructural cardiac pathology seen in storage/metabolic diseases, cardiomyopathies, infiltrative disorders, and cardiotoxicities.
Collapse
Affiliation(s)
- Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giulia d'Amati
- Department of Oncological, Radiological and Pathological Sciences, Sapienza Università di Roma, Rome, Italy
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - E Rene Rodriguez
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Chen L, Lv Y, Wu H, Wang Y, Xu Z, Liu G, He Y, Li X, Liu J, Feng Y, Bai Y, Xie W, Zhou Q, Wu Q. Gastrodin exerts perioperative myocardial protection by improving mitophagy through the PINK1/Parkin pathway to reduce myocardial ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155900. [PMID: 39094441 DOI: 10.1016/j.phymed.2024.155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Although blood flow is restored after treatment of myocardial infarction (MI), myocardial ischemia and reperfusion (I/R) can cause cardiac injury, which is a leading cause of heart failure. Gastrodin (GAS) exerts protective effects against brain, heart, and kidney I/R. However, its pharmacological mechanism in myocardial I/R injury (MIRI) remains unclear. PURPOSE GAS regulates autophagy in various diseases, such as acute hepatitis, vascular dementia, and stroke. We hypothesized that GAS could repair mitochondrial damage and regulate autophagy to protect against MIRI. STUDY DESIGN Male C57BL/6 mice and H9C2 cells were subjected to I/R and hypoxia-reoxygenation (H/R) injury after GAS administration, respectively, to assess the impact of GAS on cardiomyocyte phenotypes, heart, and mitochondrial structure and function. The effect of GAS on cardiac function and mitochondrial structure in patients undergoing cardiac surgery has been observed in clinical practice. METHODS The effects of GAS on cardiac structure and function, mitochondrial structure, and expression of related molecules in an animal model of MIRI were evaluated using immunohistochemical staining, enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy, western blotting, and gene sequencing. Its effects on the morphological, molecular, and functional phenotypes of cardiomyocytes undergoing H/R were observed using immunohistochemical staining, real-time quantitative PCR, and western blotting. RESULTS GAS significantly reduces myocardial infarct size and improves cardiac function in MIRI mice in animal models and increases cardiomyocyte viability and reduces cardiomyocyte damage in cellular models. In clinical practice, myocardial injury was alleviated with better cardiac function in patients undergoing cardiac surgery after the application of GAS; improvements in mitochondria and autophagy activation were also observed. GAS primarily exerts cardioprotective effects through activation of the PINK1/Parkin pathway, which promotes mitochondrial autophagy to clear damaged mitochondria. CONCLUSION GAS can promote mitophagy and preserve mitochondria through PINK1/Parkin, thus indicating its tremendous potential as an effective perioperative myocardial protective agent.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China; Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, PR China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Huiliang Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Yunxiao Bai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China
| | - Quanjun Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China.
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, PR China.
| |
Collapse
|
4
|
Berkman AM, Goodenough CG, Durakiewicz P, Howell CR, Wang Z, Easton J, Mulder HL, Armstrong GT, Hudson MM, Kundu M, Ness KK. Associations between mitochondrial copy number, exercise capacity, physiologic cost of walking, and cardiac strain in young adult survivors of childhood cancer. J Cancer Surviv 2024; 18:1154-1167. [PMID: 38635100 PMCID: PMC11324404 DOI: 10.1007/s11764-024-01590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Childhood cancer survivors are at risk for cardiac dysfunction and impaired physical performance, though underlying cellular mechanisms are not well studied. In this cross-sectional study, we examined the association between peripheral blood mitochondrial DNA copy number (mtDNA-CN, a proxy for mitochondrial function) and markers of performance impairment and cardiac dysfunction. METHODS Whole-genome sequencing, validated by quantitative polymerase chain reaction, was used to estimate mtDNA-CN in 1720 adult survivors of childhood cancer (48.5% female; mean age = 30.7 years, standard deviation (SD) = 9.0). Multivariable logistic regression was performed to evaluate the associations between mtDNA-CN and exercise intolerance, walking inefficiency, and abnormal global longitudinal strain (GLS), adjusting for treatment exposures, age, sex, and race and ethnicity. RESULTS The prevalence of exercise intolerance, walking inefficiency, and abnormal GLS among survivors was 25.7%, 10.7%, and 31.7%, respectively. Each SD increase of mtDNA-CN was associated with decreased odds of abnormal GLS (adjusted odds ratio (OR) = 0.88, p = 0.04) but was not associated with exercise intolerance (OR = 1.02, p = 0.76) or walking inefficiency (OR = 1.06, p = 0.46). Alkylating agent exposure was associated with increased odds of exercise intolerance (OR = 2.25, p < 0.0001), walking inefficiency (OR = 2.37, p < 0.0001), and abnormal GLS (OR = 1.78, p = 0.0002). CONCLUSIONS Increased mtDNA-CN is associated with decreased odds of abnormal cardiac function in childhood cancer survivors. IMPLICATIONS FOR CANCER SURVIVORS These findings demonstrate a potential role for mtDNA-CN as a biomarker of early cardiac dysfunction in this population.
Collapse
Affiliation(s)
- Amy M Berkman
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chelsea G Goodenough
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Paul Durakiewicz
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Carrie R Howell
- Division of Preventive Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Benli M, Huck O, Özcan M. Effect of low-level gallium aluminum arsenide laser therapy on the chewing performance and pain perception of patients with systemic lupus erythematosus: A randomized controlled clinical trial. Cranio 2024; 42:411-420. [PMID: 34455912 DOI: 10.1080/08869634.2021.1971888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate the effect of low-level laser therapy (LLLT) on pain intensity (PI) and chewing performance (CP) in systemic lupus erythematosus (SLE) patients with myogenic temporomandibular disorder (TMD). METHODS Ninety-one patients were randomly allocated to three groups: Group L (intervention), Group P (placebo), and Group C (control). Outcomes were PI (assessed with visual analog scale (VAS)) and CP (assessed with the geometric mean diameter (GMD) of crushed test food). Measurements were performed at T0 (before the LLLT), T1 (immediately after the LLLT), and T2 (1-month follow-up). Data were analyzed using Generalized Linear Models, Kruskal-Wallis, and Friedman tests. RESULTS For T1 and T2, Group L demonstrated the lowest values for both GMD (6283.7 ± 257.2 µm; 6382.7 ± 303.7 µm) and VAS (5;6) (p < 0.001). CONCLUSION LLLT was an effective therapeutic approach in reducing pain and improving CP for one month in SLE patients with myogenic TMD.
Collapse
Affiliation(s)
- Merve Benli
- University of Pittsburgh, School of Dental Medicine, Department of Oral Biology, Pittsburgh, PA, USA
- Istanbul University, Faculty of Dentistry, Department of Prosthodontics, Istanbul, Turkey
| | - Olivier Huck
- Inserm, Umr 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculty of Medicine, Strasbourg, France
- University of Strasbourg, Faculty of Dentistry, Department of Periodontology, Strasbourg, France
| | - Mutlu Özcan
- University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich, Switzerland
| |
Collapse
|
6
|
Dikalov S, Panov A, Dikalova A. Critical Role of Mitochondrial Fatty Acid Metabolism in Normal Cell Function and Pathological Conditions. Int J Mol Sci 2024; 25:6498. [PMID: 38928204 PMCID: PMC11203650 DOI: 10.3390/ijms25126498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
There is a "popular" belief that a fat-free diet is beneficial, supported by the scientific dogma indicating that high levels of fatty acids promote many pathological metabolic, cardiovascular, and neurodegenerative conditions. This dogma pressured scientists not to recognize the essential role of fatty acids in cellular metabolism and focus on the detrimental effects of fatty acids. In this work, we critically review several decades of studies and recent publications supporting the critical role of mitochondrial fatty acid metabolism in cellular homeostasis and many pathological conditions. Fatty acids are the primary fuel source and essential cell membrane building blocks from the origin of life. The essential cell membranes phospholipids were evolutionarily preserved from the earlier bacteria in human subjects. In the past century, the discovery of fatty acid metabolism was superseded by the epidemic growth of metabolic conditions and cardiovascular diseases. The association of fatty acids and pathological conditions is not due to their "harmful" effects but rather the result of impaired fatty acid metabolism and abnormal lifestyle. Mitochondrial dysfunction is linked to impaired metabolism and drives multiple pathological conditions. Despite metabolic flexibility, the loss of mitochondrial fatty acid oxidation cannot be fully compensated for by other sources of mitochondrial substrates, such as carbohydrates and amino acids, resulting in a pathogenic accumulation of long-chain fatty acids and a deficiency of medium-chain fatty acids. Despite popular belief, mitochondrial fatty acid oxidation is essential not only for energy-demanding organs such as the heart, skeletal muscle, and kidneys but also for metabolically "inactive" organs such as endothelial and epithelial cells. Recent studies indicate that the accumulation of long-chain fatty acids in specific organs and tissues support the impaired fatty acid oxidation in cell- and tissue-specific fashion. This work, therefore, provides a basis to challenge these established dogmas and articulate the need for a paradigm shift from the "pathogenic" role of fatty acids to the critical role of fatty acid oxidation. This is important to define the causative role of impaired mitochondrial fatty acid oxidation in specific pathological conditions and develop novel therapeutic approaches targeting mitochondrial fatty acid metabolism.
Collapse
Affiliation(s)
- Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 554, Nashville, TN 37232, USA; (A.P.); (A.D.)
| | | | | |
Collapse
|
7
|
Wang C, Zhang L, Zhang Q, Zheng H, Yang X, Cai W, Zou Q, Lin J, Zhang L, Zhong L, Li X, Liao Y, Liu Q, Chen L, Li Y. Transketolase drives the development of aortic dissection by impairing mitochondrial bioenergetics. Acta Physiol (Oxf) 2024; 240:e14113. [PMID: 38380737 DOI: 10.1111/apha.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
AIM Aortic dissection (AD) is a disease with rapid onset but with no effective therapeutic drugs yet. Previous studies have suggested that glucose metabolism plays a critical role in the progression of AD. Transketolase (TKT) is an essential bridge between glycolysis and the pentose phosphate pathway. However, its role in the development of AD has not yet been elucidated. In this study, we aimed to explore the role of TKT in AD. METHODS We collected AD patients' aortic tissues and used high-throughput proteome sequencing to analyze the main factors influencing AD development. We generated an AD model using BAPN in combination with angiotensin II (Ang II) and pharmacological inhibitors to reduce TKT expression. The effects of TKT and its downstream mediators on AD were elucidated using human aortic vascular smooth muscle cells (HAVSMCs). RESULTS We found that glucose metabolism plays an important role in the development of AD and that TKT is upregulated in patients with AD. Western blot and immunohistochemistry confirmed that TKT expression was upregulated in mice with AD. Reduced TKT expression attenuated AD incidence and mortality, maintained the structural integrity of the aorta, aligned elastic fibers, and reduced collagen deposition. Mechanistically, TKT was positively associated with impaired mitochondrial bioenergetics by upregulating AKT/MDM2 expression, ultimately contributing to NDUFS1 downregulation. CONCLUSION Our results provide new insights into the role of TKT in mitochondrial bioenergetics and AD progression. These findings provide new intervention options for the treatment of AD.
Collapse
Affiliation(s)
- Chaoyun Wang
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Physiology & Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qinghua Zhang
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hui Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Yang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Weixing Cai
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qiuying Zou
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jingjing Lin
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lin Zhong
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinyao Li
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yuqing Liao
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qin Liu
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Yumei Li
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
8
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
9
|
Pesta D. Mitochondrial density in skeletal and cardiac muscle. Mitochondrion 2024; 75:101838. [PMID: 38158151 DOI: 10.1016/j.mito.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Kubat et al. provide a review on the role Mitochondrial density in skeletal and cardiac muscle of mitochondrial dysfunction in muscle atrophy. They stress mitochondria's pivotal function, citing a 52 % density in skeletal muscle. However, the reference to Park et al.'s work misinterprets their findings. Park et al. report citrate synthase (CS) activity, indicating mitochondrial density as 222 ± 13 μmol.min-1.mg-1 for cardiac muscle and 115 ± 2 μmol.min-1.mg-1 for skeletal muscle. Thus, the authors should clarify that skeletal muscle density is approximately 52 % of cardiac muscle, not an absolute 52 %. Mitochondrial volume density assessment, predominantly through TEM, establishes cardiomyocytes at 25-30 % and untrained skeletal muscle at 2-6 %, increasing to 11 % in trained athletes. However, this remains modest compared to myofibrils' 75 %-85 % of muscle fiber volume. Although the utility of CS activity is evident, TEM and other novel approaches such as three-dimensional focused ion beam scanning electron microscopy are likely superior for assessing mitochondrial volume density and morphology.
Collapse
Affiliation(s)
- D Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Greaves LM, Zaleski KS, Matias AA, Gyampo AO, Giuriato G, Lynch M, Lora B, Tomasi T, Basso E, Finegan E, Schickler J, Venturelli M, DeBlauw JA, Shostak E, Blum OE, Ives SJ. Limb, sex, but not acute dietary capsaicin, modulate the near-infrared spectroscopy-vascular occlusion test estimate of muscle metabolism. Physiol Rep 2024; 12:e15988. [PMID: 38537943 PMCID: PMC10972678 DOI: 10.14814/phy2.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
The downward slope during the near-infrared spectroscopy (NIRS)-vascular occlusion test (NIRS-VOT) is purported as a simplified estimate of metabolism. Whether or not the NIRS-VOT exhibits sex- or limb-specificity or may be acutely altered remains to be elucidated. Thus, we investigated if there is limb- or sex specificity in tissue desaturation rates (DeO2) during a NIRS-VOT, and if acute dietary capsaicin may alter this estimate of muscle metabolism. Young healthy men (n = 25, 21 ± 4 years) and women (n = 20, 20 ± 1 years) ingested either placebo or capsaicin, in a counterbalanced, single-blind, crossover design after which a simplified NIRS-VOT was conducted to determine the DeO2 (%/s), as an estimate of oxidative muscle metabolism, in both the forearm (flexors) and thigh (vastus lateralis). There was a significant limb effect with the quadriceps having a greater DeO2 than the forearm (-2.31 ± 1.34 vs. -1.78 ± 1.22%/s, p = 0.007, ηp 2 = 0.19). There was a significant effect of sex on DeO2 (p = 0.005, ηp 2 = 0.203) with men exhibiting a lesser DeO2 than women (-1.73 ± 1.03 vs. -2.36 ± 1.32%/s, respectively). This manifested in significant interactions of limb*capsaicin (p = 0.001, ηp 2 = 0.26) as well as limb*capsaicin*sex on DeO2 (p = 0.013, ηp 2 = 0.16) being observed. Capsaicin does not clearly alter O2-dependent muscle metabolism, but there was apparent limb and sex specificity, interacting with capsaicin in this NIRS-derived assessment.
Collapse
Affiliation(s)
- Lauren M. Greaves
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Kendall S. Zaleski
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Alexs A. Matias
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Abena O. Gyampo
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Gaia Giuriato
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Meaghan Lynch
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Brian Lora
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Tawn Tomasi
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Emma Basso
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Emma Finegan
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Jack Schickler
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Justin A. DeBlauw
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Elena Shostak
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Oliver E. Blum
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Stephen J. Ives
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| |
Collapse
|
11
|
Nguyen TM, Jang WB, Lee Y, Kim YH, Lim HJ, Lee EJ, Nguyen TMT, Choi EJ, Kwon SM, Oh JW. Non-intrusive quality appraisal of differentiation-induced cardiovascular stem cells using E-Nose sensor technology. Biosens Bioelectron 2024; 246:115838. [PMID: 38042052 DOI: 10.1016/j.bios.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Thu M T Nguyen
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Eun-Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
12
|
Siniscalchi C, Di Palo A, Petito G, Senese R, Manfrevola F, Leo ID, Mosca N, Chioccarelli T, Porreca V, Marchese G, Ravo M, Chianese R, Cobellis G, Lanni A, Russo A, Potenza N. A landscape of mouse mitochondrial small non-coding RNAs. PLoS One 2024; 19:e0293644. [PMID: 38165955 PMCID: PMC10760717 DOI: 10.1371/journal.pone.0293644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/17/2023] [Indexed: 01/04/2024] Open
Abstract
Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.
Collapse
Affiliation(s)
- Chiara Siniscalchi
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Armando Di Palo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ilenia De Leo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
- Genomix4Life S.r.l., Baronissi (SA), Italy
| | - Nicola Mosca
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Marchese
- Genomix4Life S.r.l., Baronissi (SA), Italy
- Genome Research Center for Health, CRGS, Baronissi, Italy
| | - Maria Ravo
- Genomix4Life S.r.l., Baronissi (SA), Italy
- Genome Research Center for Health, CRGS, Baronissi, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonia Lanni
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
13
|
Decker ST, Matias AA, Cuadra AE, Bannon ST, Madden JP, Erol ME, Serviente C, Fenelon K, Layec G. Tissue-specific mitochondrial toxicity of cigarette smoke concentrate: consequence to oxidative phosphorylation. Am J Physiol Heart Circ Physiol 2023; 325:H1088-H1098. [PMID: 37712922 PMCID: PMC10907033 DOI: 10.1152/ajpheart.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Cigarette smoke exposure is a well-known risk factor for developing numerous chronic health conditions, including pulmonary disease and cardiometabolic disorders. However, the cellular mechanisms mediating the toxicity of cigarette smoke in extrapulmonary tissues are still poorly understood. Therefore, the purpose of this study was to characterize the acute dose-dependent toxicity of cigarette smoke on mitochondrial metabolism by determining the susceptibility and sensitivity of mitochondrial respiration from murine skeletal (gastrocnemius and soleus) and cardiac muscles, as well as the aorta to cigarette smoke concentrate (CSC). In all tissues, exposure to CSC inhibited tissue-specific respiration capacity, measured by high-resolution respirometry, according to a biphasic pattern. With a break point of 451 ± 235 μg/mL, the aorta was the least susceptible to CSC-induced mitochondrial respiration inhibition compared with the gastrocnemius (151 ± 109 μg/mL; P = 0.008, d = 2.3), soleus (211 ± 107 μg/mL; P = 0.112; d = 1.7), and heart (94 ± 51 μg/mL; P < 0.001; d = 2.6) suggesting an intrinsic resistance of the vascular smooth muscle mitochondria to cigarette smoke toxicity. In contrast, the cardiac muscle was the most susceptible and sensitive to the effects of CSC, demonstrating the greatest decline in tissue-specific respiration with increasing CSC concentration (P < 0.001, except the soleus). However, when normalized to citrate synthase activity to account for differences in mitochondrial content, cardiac fibers' sensitivity to cigarette smoke inhibition was no longer significantly different from both fast-twitch gastrocnemius and slow-twitch soleus muscle fibers, thus suggesting similar mitochondrial phenotypes. Collectively, these findings established the acute dose-dependent toxicity of cigarette smoke on oxidative phosphorylation in permeabilized tissues involved in the development of smoke-related cardiometabolic diseases.NEW & NOTEWORTHY Despite numerous investigations into the mechanisms underlying cigarette smoke-induced mitochondrial dysfunction, no studies have investigated the tissue-specific mitochondrial toxicity to cigarette smoke. We demonstrate that, while aorta is least sensitive and susceptible to cigarette smoke-induced toxicity, the degree of cigarette smoke-induced toxicity in striated muscle depends on the tissue-specific mitochondrial content. We conclude that while the mitochondrial content influences cigarette smoke-induced toxicity in striated muscles, aorta is intrinsically protected against cigarette smoke-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Alexs A Matias
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Adolfo E Cuadra
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Jack P Madden
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - M Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Corinna Serviente
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Karine Fenelon
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
- Institute for Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
14
|
Somers T, Siddiqi S, Morshuis WJ, Russel FGM, Schirris TJJ. Statins and Cardiomyocyte Metabolism, Friend or Foe? J Cardiovasc Dev Dis 2023; 10:417. [PMID: 37887864 PMCID: PMC10607220 DOI: 10.3390/jcdd10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The mechanism underlying these complaints has become increasingly clear, but less is known about the effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we explore the differences in the mechanism of action and potential side effects of statins in cardiac and skeletal muscle and how they present clinically. These insights may contribute to a more personalized treatment strategy.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Wim J. Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom J. J. Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
15
|
Adar O, Hollander A, Ilan Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv Respir Med 2023; 91:350-367. [PMID: 37736974 PMCID: PMC10514877 DOI: 10.3390/arm91050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Variability characterizes breathing, cellular respiration, and the underlying quantum effects. Variability serves as a mechanism for coping with changing environments; however, this hypothesis does not explain why many of the variable phenomena of respiration manifest randomness. According to the constrained disorder principle (CDP), living organisms are defined by their inherent disorder bounded by variable boundaries. The present paper describes the mechanisms of breathing and cellular respiration, focusing on their inherent variability. It defines how the CDP accounts for the variability and randomness in breathing and respiration. It also provides a scheme for the potential role of respiration variability in the energy balance in biological systems. The paper describes the option of using CDP-based artificial intelligence platforms to augment the respiratory process's efficiency, correct malfunctions, and treat disorders associated with the respiratory system.
Collapse
Affiliation(s)
- Ofek Adar
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Adi Hollander
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| |
Collapse
|
16
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
17
|
Kim JW, Shin SK, Kwon EY. Luteolin Protects Against Obese Sarcopenia in Mice with High-Fat Diet-Induced Obesity by Ameliorating Inflammation and Protein Degradation in Muscles. Mol Nutr Food Res 2023; 67:e2200729. [PMID: 36708177 DOI: 10.1002/mnfr.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/04/2023] [Indexed: 01/29/2023]
Abstract
SCOPE Although sarcopenia is mainly caused by aging, sarcopenia due to obesity has become an emerging issue given the increase in obesity among people of various ages. There are studies on obesity or sarcopenia, our understanding of obesity-mediated sarcopenia is insufficient. Luteolin (LU) has exhibited antiobesity effects, but no studies have investigated the LU effects on antisarcopenia. This study therefore investigated the effects of LU on obese sarcopenia in mice with high-fat diet (HFD)-induced obesity. METHODS AND RESULTS To evaluate its inhibitory efficacy against obese sarcopenia, 5-week-old mice are fed an HFD supplemented with LU for 20 weeks. LU exerts suppressive effects on obesity, inflammation, and protein degradation in the HFD-fed obese mice. It also inhibits lipid infiltration into the muscle and decreases p38 activity and the mRNA expression of inflammatory factors, including TNF-α, Tlr2, Tlr4, MCP1, and MMP2, in the muscle. The suppression of muscle inflammation by LU leads to the inhibition of myostatin, FoxO, atrogin, and MuRF expression. These effects of LU affect inhibition of protein degradation and improvement of muscle function. CONCLUSION Here, it demonstrates that LU's antiobesity and antiinflammatory functionality affect inhibition of muscle protein degradation, and consequently, these interactions by LU exerts a protective effect against obese sarcopenia.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
| |
Collapse
|
18
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
19
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Younis AZ, Lavery GG, Christian M, Doig CL. Rapid isolation of respiring skeletal muscle mitochondria using nitrogen cavitation. Front Physiol 2023; 14:1114595. [PMID: 36960150 PMCID: PMC10027933 DOI: 10.3389/fphys.2023.1114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Methods of isolating mitochondria commonly utilise mechanical force and shear stress to homogenize tissue followed by purification by multiple rounds of ultracentrifugation. Existing protocols can be time-consuming with some physically impairing integrity of the sensitive mitochondrial double membrane. Here, we describe a method for the recovery of intact, respiring mitochondria from murine skeletal muscle tissue and cell lines using nitrogen cavitation. This protocol results in high-yield, pure and respiring mitochondria without the need for purification gradients or ultracentrifugation. The protocol takes under an hour and requires limited specialised equipment. Our methodology is successful in extracting mitochondria of both cell extracts and skeletal muscle tissue. This represents an improved yield in comparison to many of the existing methods. Western blotting and electron microscopy demonstrate the enrichment of mitochondria with their ultrastructure well-preserved and an absence of contamination from cytoplasmic or nuclear fractions. Using respirometry analysis we show that mitochondria extracted from murine skeletal muscle cell lines (C2C12) and tibialis anterior tissue have an appropriate respiratory control ratio. These measures are indicative of healthy coupled mitochondria. Our method successfully demonstrates the rapid isolation of functional mitochondria and will benefit researchers studying mitochondrial bioenergetics as well as providing greater throughput and application for time-sensitive assays.
Collapse
|
21
|
Abdelazim H, Payne LB, Nolan K, Paralkar K, Bradley V, Kanodia R, Gude R, Ward R, Monavarfeshani A, Fox MA, Chappell JC. Pericyte heterogeneity identified by 3D ultrastructural analysis of the microvessel wall. Front Physiol 2022; 13:1016382. [PMID: 36589416 PMCID: PMC9800988 DOI: 10.3389/fphys.2022.1016382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Confident identification of pericytes (PCs) remains an obstacle in the field, as a single molecular marker for these unique perivascular cells remains elusive. Adding to this challenge is the recent appreciation that PC populations may be heterogeneous, displaying a range of morphologies within capillary networks. We found additional support on the ultrastructural level for the classification of these PC subtypes-"thin-strand" (TSP), mesh (MP), and ensheathing (EP)-based on distinct morphological characteristics. Interestingly, we also found several examples of another cell type, likely a vascular smooth muscle cell, in a medial layer between endothelial cells (ECs) and pericytes (PCs) harboring characteristics of the ensheathing type. A conserved feature across the different PC subtypes was the presence of extracellular matrix (ECM) surrounding the vascular unit and distributed in between neighboring cells. The thickness of this vascular basement membrane was remarkably consistent depending on its location, but never strayed beyond a range of 150-300 nm unless thinned to facilitate closer proximity of neighboring cells (suggesting direct contact). The density of PC-EC contact points ("peg-and-socket" structures) was another distinguishing feature across the different PC subtypes, as were the apparent contact locations between vascular cells and brain parenchymal cells. In addition to this thinning, the extracellular matrix (ECM) surrounding EPs displayed another unique configuration in the form of extensions that emitted out radially into the surrounding parenchyma. Knowledge of the origin and function of these structures is still emerging, but their appearance suggests the potential for being mechanical elements and/or perhaps signaling nodes via embedded molecular cues. Overall, this unique ultrastructural perspective provides new insights into PC heterogeneity and the presence of medial cells within the microvessel wall, the consideration of extracellular matrix (ECM) coverage as another PC identification criteria, and unique extracellular matrix (ECM) configurations (i.e., radial extensions) that may reveal additional aspects of PC heterogeneity.
Collapse
Affiliation(s)
- Hanaa Abdelazim
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Vascular and Heart Research, Roanoke, VA, United States
| | - Laura Beth Payne
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Vascular and Heart Research, Roanoke, VA, United States
| | - Kyle Nolan
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Karan Paralkar
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Vanessa Bradley
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Ronak Kanodia
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Rosalie Gude
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Rachael Ward
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Aboozar Monavarfeshani
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Michael A. Fox
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Neurobiology, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - John C. Chappell
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Vascular and Heart Research, Roanoke, VA, United States
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
22
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
23
|
Park SY, Pekas EJ, Anderson CP, Kambis TN, Mishra PK, Schieber MN, Wooden TK, Thompson JR, Kim KS, Pipinos II. Impaired microcirculatory function, mitochondrial respiration, and oxygen utilization in skeletal muscle of claudicating patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2022; 322:H867-H879. [PMID: 35333113 PMCID: PMC9018007 DOI: 10.1152/ajpheart.00690.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease that impairs blood flow and muscle function in the lower limbs. A skeletal muscle myopathy characterized by mitochondrial dysfunction and oxidative damage is present in PAD; however, the underlying mechanisms are not well established. We investigated the impact of chronic ischemia on skeletal muscle microcirculatory function and its association with leg skeletal muscle mitochondrial function and oxygen delivery and utilization capacity in PAD. Gastrocnemius samples and arterioles were harvested from patients with PAD (n = 10) and age-matched controls (Con, n = 11). Endothelium-dependent and independent vasodilation was assessed in response to flow (30 μL·min-1), acetylcholine, and sodium nitroprusside (SNP). Skeletal muscle mitochondrial respiration was quantified by high-resolution respirometry, microvascular oxygen delivery, and utilization capacity (tissue oxygenation index, TOI) were assessed by near-infrared spectroscopy. Vasodilation was attenuated in PAD (P < 0.05) in response to acetylcholine (Con: 71.1 ± 11.1%, PAD: 45.7 ± 18.1%) and flow (Con: 46.6 ± 20.1%, PAD: 29.3 ± 10.5%) but not SNP (P = 0.30). Complex I + II state 3 respiration (P < 0.01) and TOI recovery rate were impaired in PAD (P < 0.05). Both flow and acetylcholine-mediated vasodilation were positively associated with complex I + II state 3 respiration (r = 0.5 and r = 0.5, respectively, P < 0.05). Flow-mediated vasodilation and complex I + II state 3 respiration were positively associated with TOI recovery rate (r = 0.8 and r = 0.7, respectively, P < 0.05). These findings suggest that chronic ischemia attenuates skeletal muscle arteriole endothelial function, which may be a key mediator for mitochondrial and microcirculatory dysfunction in the PAD leg skeletal muscle. Targeting microvascular dysfunction may be an effective strategy to prevent and/or reverse disease progression in PAD.NEW & NOTEWORTHY Ex vivo skeletal muscle arteriole endothelial function is impaired in claudicating patients with PAD, and this is associated with attenuated skeletal muscle mitochondrial respiration. In vivo skeletal muscle oxygen delivery and utilization capacity is compromised in PAD, and this may be due to microcirculatory and mitochondrial dysfunction. These results suggest that targeting skeletal muscle arteriole function may lead to improvements in skeletal muscle mitochondrial respiration and oxygen delivery and utilization capacity in claudicating patients with PAD.
Collapse
Affiliation(s)
- Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Cody P Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Molly N Schieber
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kyung Soo Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
24
|
Zeng ZL, Yuan Q, Zu X, Liu J. Insights Into the Role of Mitochondria in Vascular Calcification. Front Cardiovasc Med 2022; 9:879752. [PMID: 35571215 PMCID: PMC9099050 DOI: 10.3389/fcvm.2022.879752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a growing burden in aging societies worldwide, and with a significant increase in all-cause mortality and atherosclerotic plaque rupture, it is frequently found in patients with aging, diabetes, atherosclerosis, or chronic kidney disease. However, the mechanism of VC is still not yet fully understood, and there are still no effective therapies for VC. Regarding energy metabolism factories, mitochondria play a crucial role in maintaining vascular physiology. Discoveries in past decades signifying the role of mitochondrial homeostasis in normal physiology and pathological conditions led to tremendous advances in the field of VC. Therapies targeting basic mitochondrial processes, such as energy metabolism, damage in mitochondrial DNA, or free-radical generation, hold great promise. The remarkably unexplored field of the mitochondrial process has the potential to shed light on several VC-related diseases. This review focuses on current knowledge of mitochondrial dysfunction, dynamics anomalies, oxidative stress, and how it may relate to VC onset and progression and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- ZL Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuyu Zu
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Jianghua Liu
| |
Collapse
|
25
|
Wang H, Li B, Yang L, Jiang C, Zhang T, Liu S, Zhuang Z. Expression profiles and transcript properties of fast-twitch and slow-twitch muscles in a deep-sea highly migratory fish, Pseudocaranx dentex. PeerJ 2022; 10:e12720. [PMID: 35378928 PMCID: PMC8976474 DOI: 10.7717/peerj.12720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
Fast-twitch and slow-twitch muscles are the two principal skeletal muscle types in teleost with obvious differences in metabolic and contractile phenotypes. The molecular mechanisms that control and maintain the different muscle types remain unclear yet. Pseudocaranx dentex is a highly mobile active pelagic fish with distinctly differentiated fast-twitch and slow-twitch muscles. Meanwhile, P. dentex has become a potential target species for deep-sea aquaculture because of its considerable economic value. To elucidate the molecular characteristics in the two muscle types of P. dentex, we generated 122 million and 130 million clean reads from fast-twitch and slow-witch muscles using RNA-Seq, respectively. Comparative transcriptome analysis revealed that 2,862 genes were differentially expressed. According to GO and KEGG analysis, the differentially expressed genes (DEGs) were mainly enriched in energy metabolism and skeletal muscle structure related pathways. Difference in the expression levels of specific genes for glycolytic and lipolysis provided molecular evidence for the differences in energy metabolic pathway between fast-twitch and slow-twitch muscles of P. dentex. Numerous genes encoding key enzymes of mitochondrial oxidative phosphorylation pathway were significantly upregulated at the mRNA expression level suggested slow-twitch muscle had a higher oxidative phosphorylation to ensure more energy supply. Meanwhile, expression patterns of the main skeletal muscle developmental genes were characterized, and the expression signatures of Sox8, Myod1, Calpain-3, Myogenin, and five insulin-like growth factors indicated that more myogenic cells of fast-twitch muscle in the differentiating state. The analysis of important skeletal muscle structural genes showed that muscle type-specific expression of myosin, troponin and tropomyosin may lead to the phenotypic structure differentiation. RT-qPCR analysis of twelve DEGs showed a good correlation with the transcriptome data and confirmed the reliability of the results presented in the study. The large-scale transcriptomic data generated in this study provided an overall insight into the thorough gene expression profiles of skeletal muscle in a highly mobile active pelagic fish, which could be valuable for further studies on molecular mechanisms responsible for the diversity and function of skeletal muscle.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Busu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Long Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China,College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Chen Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Tao Zhang
- Dalian Tianzheng Industry Co., Ltd., Dalian, Liaoning, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| |
Collapse
|
26
|
Jacobsen NL, Norton CE, Shaw RL, Cornelison DDW, Segal SS. Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. J Physiol 2022; 600:41-60. [PMID: 34761825 PMCID: PMC8965732 DOI: 10.1113/jp282292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Injury to skeletal muscle disrupts myofibres and their microvascular supply. While the regeneration of myofibres is well described, little is known of how the microcirculation is affected by skeletal muscle injury or its recovery during regeneration. Nevertheless, the microvasculature must also recover to restore skeletal muscle function. We aimed to define the nature of microvascular damage and time course of repair during muscle injury and regeneration induced by the myotoxin BaCl2 . To test the hypothesis that microvascular disruption occurred secondary to myofibre injury, isolated microvessels were exposed to BaCl2 or the myotoxin was injected into the gluteus maximus (GM) muscle of mice. In isolated microvessels, BaCl2 depolarized smooth muscle cells (SMCs) and endothelial cells while increasing intracellular calcium in SMCs but did not elicit death of either cell type. At 1 day post-injury (dpi) of the GM, capillary fragmentation coincided with myofibre degeneration while arteriolar and venular networks remained intact; neutrophil depletion before injury did not prevent capillary damage. Perfused capillary networks reformed by 5 dpi in association with more terminal arterioles and were dilated through 10 dpi. With no change in microvascular area or branch point number in regenerating capillary networks, fewer capillaries aligned with myofibres and were no longer organized into microvascular units. By 21 dpi, capillary orientation and microvascular unit organization were no longer different from uninjured GM. We conclude that following their disruption secondary to myofibre damage, capillaries regenerate as disorganized networks that remodel into microvascular units as regenerated myofibres mature. KEY POINTS: Skeletal muscle regenerates after injury; however, the nature of microvascular damage and repair is poorly understood. Here, the myotoxin BaCl2 , a standard experimental method of acute skeletal muscle injury, was used to investigate the response of the microcirculation to local injury of intact muscle. Intramuscular injection of BaCl2 induced capillary fragmentation with myofibre degeneration; arteriolar and venular networks remained intact. Direct exposure to BaCl2 did not kill microvascular endothelial cells or smooth muscle cells. Dilated capillary networks reformed by 5 days post-injury (dpi) in association with more terminal arterioles. Capillary orientation remained disorganized through 10 dpi. Capillaries realigned with myofibres and reorganized into microvascular units by 21 dpi, which coincides with the recovery of vasomotor control and maturation of nascent myofibres. Skeletal muscle injury disrupts its capillary supply secondary to myofibre degeneration. Reorganization of regenerating microvascular networks accompanies the recovery of blood flow regulation.
Collapse
Affiliation(s)
- Nicole L. Jacobsen
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rebecca L. Shaw
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - D. D. W. Cornelison
- Biological Sciences, University of Missouri, Columbia, MO, USA,Christopher S. Bond Life Sciences Center, University of MO, Columbia, MO, USA
| | - Steven S. Segal
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
Yoshida K, Sato H, Kimura S, Tanaka T, Kasai K. A case of sudden cardiac death due to mitochondrial disease. Leg Med (Tokyo) 2022; 55:102026. [DOI: 10.1016/j.legalmed.2022.102026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
28
|
Shin TH, Kim SG, Ji M, Kwon DH, Hwang JS, George NP, Ergando DS, Park CB, Paik MJ, Lee G. Diesel-derived PM 2.5 induces impairment of cardiac movement followed by mitochondria dysfunction in cardiomyocytes. Front Endocrinol (Lausanne) 2022; 13:999475. [PMID: 36246901 PMCID: PMC9554599 DOI: 10.3389/fendo.2022.999475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Particulate matter (PM) in polluted air can be exposed to the human body through inhalation, ingestion, and skin contact, accumulating in various organs throughout the body. Organ accumulation of PM is a growing health concern, particularly in the cardiovascular system. PM emissions are formed in the air by solid particles, liquid droplets, and fuel - particularly diesel - combustion. PM2.5 (size < 2.5 μm particle) is a major risk factor for approximately 200,000 premature deaths annually caused by air pollution. This study assessed the deleterious effects of diesel-derived PM2.5 exposure in HL-1 mouse cardiomyocyte cell lines. The PM2.5-induced biological changes, including ultrastructure, intracellular reactive oxygen species (ROS) generation, viability, and intracellular ATP levels, were analyzed. Moreover, we analyzed changes in transcriptomics using RNA sequencing and metabolomics using gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in PM2.5-treated HL-1 cells. Ultrastructural analysis using transmission electron microscopy revealed disruption of mitochondrial cristae structures in a PM2.5 dose-dependent manner. The elevation of ROS levels and reduction in cell viability and ATP levels were similarly observed in a PM2.5 dose-dependently. In addition, 6,005 genes were differentially expressed (fold change cut-off ± 4) from a total of 45,777 identified genes, and 20 amino acids (AAs) were differentially expressed (fold change cut-off ± 1.2) from a total of 28 identified AAs profiles. Using bioinformatic analysis with ingenuity pathway analysis (IPA) software, we found that the changes in the transcriptome and metabolome are highly related to changes in biological functions, including homeostasis of Ca2+, depolarization of mitochondria, the function of mitochondria, synthesis of ATP, and cardiomyopathy. Moreover, an integrated single omics network was constructed by combining the transcriptome and the metabolome. In silico prediction analysis with IPA predicted that upregulation of mitochondria depolarization, ROS generation, cardiomyopathy, suppression of Ca2+ homeostasis, mitochondrial function, and ATP synthesis occurred in PM2.5-treated HL-1 cells. In particular, the cardiac movement of HL-1 was significantly reduced after PM2.5 treatment. In conclusion, our results assessed the harmful effects of PM2.5 on mitochondrial function and analyzed the biological changes related to cardiac movement, which is potentially associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Do Hyeon Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Dube Solomon Ergando
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- *Correspondence: Man Jeong Paik, ; Gwang Lee,
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- *Correspondence: Man Jeong Paik, ; Gwang Lee,
| |
Collapse
|
29
|
Luan Y, Ren KD, Luan Y, Chen X, Yang Y. Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases. Front Cardiovasc Med 2021; 8:770574. [PMID: 34938787 PMCID: PMC8685340 DOI: 10.3389/fcvm.2021.770574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular diseases, particularly atherosclerosis, are associated with high morbidity and mortality. Endothelial cell (EC) or vascular smooth muscle cell (VSMC) dysfunction leads to blood vessel abnormalities, which cause a series of vascular diseases. The mitochondria are the core sites of cell energy metabolism and function in blood vessel development and vascular disease pathogenesis. Mitochondrial dynamics, including fusion and fission, affect a variety of physiological or pathological processes. Multiple studies have confirmed the influence of mitochondrial dynamics on vascular diseases. This review discusses the regulatory mechanisms of mitochondrial dynamics, the key proteins that mediate mitochondrial fusion and fission, and their potential effects on ECs and VSMCs. We demonstrated the possibility of mitochondrial dynamics as a potential target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Bagshaw OR, Moradi F, Moffatt CS, Hettwer HA, Liang P, Goldman J, Drelich JW, Stuart JA. Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100027. [PMID: 36824572 PMCID: PMC9934485 DOI: 10.1016/j.bbiosy.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention. This suppression appears to be smooth muscle cell-specific, as reendothelization of the neointima is not inhibited. To better understand the basis of zinc's differential effects on rat aortic smooth muscle (RASMC) versus endothelial (RAENDO) cells, we conducted a transcriptomic analysis of both cell types following one-week continuous treatment with 5 µM or 50 µM zinc. This analysis indicated that genes whose protein products regulate mitochondrial functions, including oxidative phosphorylation and fusion/fission, are differentially affected by zinc in the two cell types. To better understand this, we performed Seahorse metabolic flux assays and quantitative imaging of mitochondrial networks in both cell types. Zinc treatment differently affected energy metabolism and mitochondrial structure/function in the two cell types. For example, both basal and maximal oxygen consumption rates were increased by zinc in RASMC but not in RAENDO. Zinc treatment increased apparent mitochondrial fusion in RASMC cells but increased mitochondrial fission in RAENDO cells. These results provide some insight into the mechanisms by which zinc treatment differently affects the two cell types and this information is important for understanding the role of zinc treatment in vascular cells and improving its use in biodegradable metal implants.
Collapse
Affiliation(s)
- Olivia R.M. Bagshaw
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Christopher S. Moffatt
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Hillary A. Hettwer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
| | - Jaroslaw W. Drelich
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| |
Collapse
|
31
|
Booz GW, Kennedy D, Bowling M, Robinson T, Azubuike D, Fisher B, Brooks K, Chinthakuntla P, Hoang NH, Hosler JP, Cunningham MW. Angiotensin II type 1 receptor agonistic autoantibody blockade improves postpartum hypertension and cardiac mitochondrial function in rat model of preeclampsia. Biol Sex Differ 2021; 12:58. [PMID: 34727994 PMCID: PMC8562001 DOI: 10.1186/s13293-021-00396-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Women with preeclampsia (PE) have a greater risk of developing hypertension, cardiovascular disease (CVD), and renal disease later in life. Angiotensin II type I receptor agonistic autoantibodies (AT1-AAs) are elevated in women with PE during pregnancy and up to 2-year postpartum (PP), and in the reduced uterine perfusion pressure (RUPP) rat model of PE. Blockade of AT1-AA with a specific 7 amino acid peptide binding sequence (‘n7AAc’) improves pathophysiology observed in RUPP rats; however, the long-term effects of AT1-AA inhibition in PP is unknown. Pregnant Sprague Dawley rats were divided into three groups: normal pregnant (NP) (n = 16), RUPP (n = 15), and RUPP + ‘n7AAc’ (n = 16). Gestational day 14, RUPP surgery was performed and ‘n7AAc’ (144 μg/day) administered via osmotic minipump. At 10-week PP, mean arterial pressure (MAP), renal glomerular filtration rate (GFR) and cardiac functions, and cardiac mitochondria function were assessed. MAP was elevated PP in RUPP vs. NP (126 ± 4 vs. 116 ± 3 mmHg, p < 0.05), but was normalized in in RUPP + ‘n7AAc’ (109 ± 3 mmHg) vs. RUPP (p < 0.05). PP heart size was reduced by RUPP + ’n7AAc’ vs. RUPP rats (p < 0.05). Complex IV protein abundance and enzymatic activity, along with glutamate/malate-driven respiration (complexes I, III, and IV), were reduced in the heart of RUPP vs. NP rats which was prevented with ‘n7AAc’. AT1-AA inhibition during pregnancy not only improves blood pressure and pathophysiology of PE in rats during pregnancy, but also long-term changes in blood pressure, cardiac hypertrophy, and cardiac mitochondrial function PP.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel Kennedy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael Bowling
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Taprieka Robinson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel Azubuike
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Brandon Fisher
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Karen Brooks
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pooja Chinthakuntla
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ngoc H Hoang
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jonathan P Hosler
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mark W Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
32
|
Lin YN, Mesquita T, Sanchez L, Chen YH, Liu W, Li C, Rogers R, Wang Y, Li X, Wu D, Zhang R, Ibrahim A, Marbán E, Cingolani E. Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice. Eur Heart J 2021; 42:3558-3571. [PMID: 34345905 PMCID: PMC8442111 DOI: 10.1093/eurheartj/ehab419] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive loss of cardiomyocytes, and fibrofatty tissue replacement. Extracellular vesicles (EVs) secreted by cardiosphere-derived cells, immortalized, and engineered to express high levels of β-catenin, exert anti-inflammatory, and anti-fibrotic effects. The aim of the current study was to assess efficacy of EVs in an ACM murine model. METHODS AND RESULTS Four-week-old homozygous knock-in mutant desmoglein-2 (Dsg2mt/mt) were randomized to receive weekly EVs or vehicle for 4 weeks. After 4 weeks, DSG2mt/mt mice receiving EVs showed improved biventricular function (left, P < 0.0001; right, P = 0.0037) and less left ventricular dilation (P < 0.0179). Electrocardiography revealed abbreviated QRS duration (P = 0.0003) and QTc interval (P = 0.0006) in EV-treated DSG2mt/mt mice. Further electrophysiology testing in the EV group showed decreased burden (P = 0.0042) and inducibility of ventricular arrhythmias (P = 0.0037). Optical mapping demonstrated accelerated repolarization (P = 0.0290) and faster conduction (P = 0.0274) in Dsg2mt/mt mice receiving EVs. DSG2mt/mt hearts exhibited reduced fibrosis, less cell death, and preserved connexin 43 expression after EV treatment. Hearts of Dsg2mt/mt mice expressed markedly increased levels of inflammatory cytokines that were, in part, attenuated by EV therapy. The pan-inflammatory transcription factor nuclear factor-κB (NF-κB), the inflammasome sensor NLRP3, and the macrophage marker CD68 were all reduced in EV-treated animals. Blocking EV hsa-miR-4488 in vitro and in vivo reactivates NF-κB and blunts the beneficial effects of EVs. CONCLUSIONS Extracellular vesicle treatment improved cardiac function, reduced cardiac inflammation, and suppressed arrhythmogenesis in ACM. Further studies are needed prior to translating the present findings to human forms of this heterogenous disease.
Collapse
Affiliation(s)
- Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, 2, Yu-Der Road, North District, Taichung 40447, Taiwan; and
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Yin-Huei Chen
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, 2, Yu-Der Road, North District, Taichung 40447, Taiwan; and
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Chang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Russell Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Xinling Li
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
33
|
Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 2021; 4:1029. [PMID: 34475520 PMCID: PMC8413315 DOI: 10.1038/s42003-021-02564-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
MCL1 (myeloid cell leukemia-1) is a widely recognized pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) family and a promising target for cancer therapy. While the role MCL1 plays in apoptosis is well defined, its participation in emerging non-apoptotic signaling pathways is only beginning to be appreciated. Here, we synthesize studies characterizing MCL1s influence on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that MCL1 plays in cellular homeostasis regulation. Throughout this review, we discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy Bcl-2 homology 3 (BH3)-mimetics in the future. In this review Widden and Placzek synthesize studies characterizing the influence that myeloid cell leukemia-1 (MCL1) has on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that it plays in cellular homeostasis regulation. They discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy BH3-mimetics in the future.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Hwang DJ, Kwon KC, Choi DH, Song HK, Kim KS, Jung YS, Hwang DY, Cho JY. Comparison of intrinsic exercise capacity and response to acute exercise in ICR (Institute of Cancer Research) mice derived from three different lineages. Lab Anim Res 2021; 37:21. [PMID: 34348800 PMCID: PMC8335942 DOI: 10.1186/s42826-021-00094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a laboratory animal resource, the ICR mouse is commonly used in a variety of research fields. However, information on differences in exercise-related characteristics in ICR mice derived from different lineages and the underlying mechanisms remains to be elucidated. In this study, we investigated the intrinsic exercise capacity and a magnitude of response to acute exercise, and sought to identify mechanisms contributing to difference in Korl:ICR (a novel ICR lineage recently established by the National Institute of Food and Drug Safety Evaluation, Korea) and two commercialized ICR lineages derived from different origins (viz., A:ICR mouse from Orient Bio Com, the United States, and B:ICR mouse from Japan SLC Inc., Japan). RESULTS Results showed that despite no significant difference in body weight and weight-proportioned tissue mass of heart and skeletal muscles among groups, the relatively low intrinsic exercise capacity and exaggerated response to acute exercise were identified in B:ICR comparted with Korl:ICR and A:ICR, as reflected by total work and lactate threshold (LT). Also, the mitochondrial efficiency expressed as the complex 1 and complex 1 + 2 respiratory control ratio (RCR) values for cardiac mitochondrial O2 consumption in B:ICR was significantly lower than that in Korl:ICR with higher level of state 2 respiration by glutamate/malate and UCP3 expression in cardiac muscle. CONCLUSIONS Taken together, these results indicate that the intrinsic exercise capacity of ICR mouse varies according to lineages, suggesting the role of cardiac mitochondrial coupling efficiency as a possible mechanism that might contribute to differences in the intrinsic exercise capacity and magnitude of response to exercise.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Ki-Chun Kwon
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Dong-Hun Choi
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Hyun-Keun Song
- Department of Microbiology and Immunology, INJE University College of Medicine, Inje-ro, Gimhae-si, Gyeongsangnam-do, Republic of Korea
| | - Kil-Soo Kim
- College of Veterinary Medicine, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Hansen C, Olsen K, Pilegaard H, Bangsbo J, Gliemann L, Hellsten Y. High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells. Physiol Rep 2021; 9:e14855. [PMID: 34288561 PMCID: PMC8290479 DOI: 10.14814/phy2.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
The influence of glucose and palmitic acid (PA) on mitochondrial respiration and emission of hydrogen peroxide (H2 O2 ) was determined in skeletal muscle-derived microvascular endothelial cells. Measurements were assessed in intact and permeabilized (cells treated with 0.025% saponin) low passage endothelial cells with acute-or prolonged (3 days) incubation with regular (1.7 mM) or elevated (2.2 mM) PA concentrations and regular (5 mM) or elevated (11 mM) glucose concentrations. In intact cells, acute incubation with 1.7 mM PA alone or with 1.7 mM PA + 5 mM glucose (p < .001) led to a lower mitochondrial respiration (p < 0.01) and markedly higher H2 O2 /O2 emission (p < 0.05) than with 5 mM glucose alone. Prolonged incubation of intact cells with 1.7 mM PA +5 mM glucose led to 34% (p < 0.05) lower respiration and 2.5-fold higher H2 O2 /O2 emission (p < 0.01) than incubation with 5 mM glucose alone. Prolonged incubation of intact cells with elevated glucose led to 60% lower (p < 0.05) mitochondrial respiration and 4.6-fold higher H2 O2 /O2 production than incubation with 5 mM glucose in intact cells (p < 0.001). All effects observed in intact cells were present also in permeabilized cells (State 2). In conclusion, our results show that acute and prolonged lipid availability, as well as prolonged hyperglycemia, induces mitochondrial dysfunction as evidenced by lower mitochondrial respiration and enhanced H2 O2/ O2 emission. Elevated plasma substrate availability may lead to microvascular dysfunction in skeletal muscle by impairing endothelial mitochondrial function.
Collapse
Affiliation(s)
- Camilla Hansen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Karina Olsen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Henriette Pilegaard
- Department of BiologySection of Cell Biology and PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
36
|
Clayton ZS, Hutton DA, Mahoney SA, Seals DR. Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging. ACTA ACUST UNITED AC 2021; 2:45-69. [PMID: 34212156 DOI: 10.1002/aac2.12033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and age is by far the greatest risk factor for developing CVD. Vascular dysfunction, including endothelial dysfunction and arterial stiffening, is responsible for much of the increase in CVD risk with aging. A key mechanism involved in vascular dysfunction with aging is oxidative stress, which reduces the bioavailability of nitric oxide (NO) and induces adverse changes to the extracellular matrix of the arterial wall (e.g., elastin fragmentation/degradation, collagen deposition) and an increase in advanced glycation end products, which form crosslinks in arterial wall structural proteins. Although vascular dysfunction and CVD are most prevalent in older adults, several conditions can "accelerate" these events at any age. One such factor is chemotherapy with anthracyclines, such as doxorubicin (DOXO), to combat common forms of cancer. Children, adolescents and young adults treated with these chemotherapeutic agents demonstrate impaired vascular function and an increased risk of future CVD development compared with healthy age-matched controls. Anthracycline treatment also worsens vascular dysfunction in mid-life (50-64 years of age) and older (65 and older) adults such that endothelial dysfunction and arterial stiffness are greater compared to age-matched controls. Collectively, these observations indicate that use of anthracycline chemotherapeutic agents induce a vascular aging-like phenotype and that the latter contributes to premature CVD in cancer survivors exposed to these agents. Here, we review the existing literature supporting these ideas, discuss potential mechanisms as well as interventions that may protect arteries from these adverse effects, identify research gaps and make recommendations for future research.
Collapse
|
37
|
Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021; 320:H2080-H2100. [PMID: 33834868 PMCID: PMC8163660 DOI: 10.1152/ajpheart.00917.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) affects one in three adults and remains the leading cause of death in America. Advancing age is a major risk factor for CVD. Recent plateaus in CVD-related mortality rates in high-income countries after decades of decline highlight a critical need to identify novel therapeutic targets and strategies to mitigate and manage the risk of CVD development and progression. Vascular dysfunction, characterized by endothelial dysfunction and large elastic artery stiffening, is independently associated with an increased CVD risk and incidence and is therefore an attractive target for CVD prevention and management. Vascular mitochondria have emerged as an important player in maintaining vascular homeostasis. As such, age- and disease-related impairments in mitochondrial function contribute to vascular dysfunction and consequent increases in CVD risk. This review outlines the role of mitochondria in vascular function and discusses the ramifications of mitochondrial dysfunction on vascular health in the setting of age and disease. The adverse vascular consequences of increased mitochondrial-derived reactive oxygen species, impaired mitochondrial quality control, and defective mitochondrial calcium cycling are emphasized, in particular. Current evidence for both lifestyle and pharmaceutical mitochondrial-targeted strategies to improve vascular function is also presented.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
38
|
Bittel DC, Bittel AJ, Varadhachary AS, Pietka T, Sinacore DR. Deficits in the Skeletal Muscle Transcriptome and Mitochondrial Coupling in Progressive Diabetes-Induced CKD Relate to Functional Decline. Diabetes 2021; 70:1130-1144. [PMID: 33526590 PMCID: PMC8173802 DOI: 10.2337/db20-0688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Two-thirds of people with type 2 diabetes mellitus (T2DM) have or will develop chronic kidney disease (CKD), which is characterized by rapid renal decline that, together with superimposed T2DM-related metabolic sequelae, synergistically promotes early frailty and mobility deficits that increase the risk of mortality. Distinguishing the mechanisms linking renal decline to mobility deficits in CKD progression and/or increasing severity in T2DM is instrumental both in identifying those at high risk for functional decline and in formulating effective treatment strategies to prevent renal failure. While evidence suggests that skeletal muscle energetics may relate to the development of these comorbidities in advanced CKD, this has never been assessed across the spectrum of CKD progression, especially in T2DM-induced CKD. Here, using next-generation sequencing, we first report significant downregulation in transcriptional networks governing oxidative phosphorylation, coupled electron transport, electron transport chain (ETC) complex assembly, and mitochondrial organization in both middle- and late-stage CKD in T2DM. Furthermore, muscle mitochondrial coupling is impaired as early as stage 3 CKD, with additional deficits in ETC respiration, enzymatic activity, and increased redox leak. Moreover, mitochondrial ETC function and coupling strongly relate to muscle performance and physical function. Our results indicate that T2DM-induced CKD progression impairs physical function, with implications for altered metabolic transcriptional networks and mitochondrial functional deficits as primary mechanistic factors early in CKD progression in T2DM.
Collapse
Affiliation(s)
- Daniel C Bittel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Adam J Bittel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Arun S Varadhachary
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Terri Pietka
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - David R Sinacore
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Physical Therapy, Congdon School of Health Sciences, High Point University, High Point, NC
| |
Collapse
|
39
|
Ramos PM, Bell LC, Wohlgemuth SE, Scheffler TL. Mitochondrial Function in Oxidative and Glycolytic Bovine Skeletal Muscle Postmortem. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Meat quality is traditionally associated with anaerobic metabolism due to cessation of the oxygen supply post-mortem. However, mitochondrial (mt) function early postmortem may affect the development of meat quality characteristics, such as adenosine triphosphate levels and pH decline. Therefore, the objective of this study was to evaluate mt function ex vivo during the first 24 h postmortem in muscles with differences in mt content. Samples from longissimus lumborum (LL) and diaphragm (Dia) were taken from steers (n = 6) at 1, 3, and 24 h postmortem and frozen to determine citrate synthase (CS) activity and mt protein expression (immunodetection) or were fresh-preserved for high-resolution respirometry. Integrative oxygen consumption rate (picomoles per second per milligram of tissue) was measured and normalized to CS activity as a proxy for mt content (intrinsic mt function, picomoles per second per unit CS). CS activity (P < 0.001) and mt protein expression (P < 0.001) were greater in Dia, which was reflected in mt respiration. Muscle type affected (P < 0.001) integrative leak respiration and was greater in mt from Dia; oxidative phosphorylation (OXPHOS) was also greater in Dia and influenced by time postmortem (muscle × time: P = 0.01). Intrinsic leak and OXPHOS were affected by muscle and time (muscle × time: P = 0.05 and P = 0.01, respectively), with the most pronounced differences at 24 h postmortem. Stimulation of OXPHOS by cytochrome c as an indicator of outer mt membrane integrity was influenced by muscle and time postmortem (muscle × time: P = 0.03); it was greater in mt from LL. Despite intrinsic differences in respiratory function at 24 h, mt from both muscles were intact and coupled at 1 h postmortem. Reduced content and respiratory function in mt from LL are associated with early fragmentation, which could impact protease activation and subsequently meat quality.
Collapse
|
40
|
Rodrigues NA, Gobatto CA, Forte LDM, Sousa FADB, Torsoni AS, Fante TD, Manchado-Gobatto FB. Load-matched acute and chronic exercise induce changes in mitochondrial biogenesis and metabolic markers. Appl Physiol Nutr Metab 2021; 46:1196-1206. [PMID: 33779293 DOI: 10.1139/apnm-2020-1053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the effects of acute and chronic exercise, prescribed in different intensity zones, but with total load-matched on mitochondrial markers (cytochrome C oxidase subunit IV (COX-IV), mitochondrial transcription factor A (Tfam), and citrate synthase (CS) activity in skeletal muscles, heart, and liver), glycogen stores, aerobic capacity, and anaerobic index in swimming rats. For this, 2 experimental designs were performed (acute and chronic efforts). Load-matched exercises were prescribed below, above, and on the anaerobic threshold (AnT), determined by the lactate minimum test. In chronic programs, 2 training prescription strategies were assessed (monotonous and linear periodized model). Results show changes in glycogen stores but no modification in the COX-IV and Tfam contents after acute exercises. In the chronic protocols, COX-IV and Tfam proteins and CS adaptations were intensity- and tissue-dependent. Monotonous training promoted better adaptations than the periodized model. Training at 80% of the AnT improved both performance variables, emphasizing the anaerobic index, concomitant to CS and COX-IV improvement (soleus muscle). The aerobic capacity and CS activity (gastrocnemius) were increased after 120% AnT training. In conclusion, acute exercise protocol did not promote responses in mitochondrial target proteins. An intensity and tissue dependence were reported in the chronic protocols, highlighting training at 80 and 120% of the AnT. Novelty: Load-matched acute exercise did not enhance COX-IV and Tfam contents in skeletal muscles, heart, and liver. In chronic exercise, COX-IV, Tfam, and CS activity adaptations were intensity- and tissue-dependent. Monotonous training was more efficient than the periodized linear model in adaptations of target proteins and enzymatic activity.
Collapse
Affiliation(s)
- Natália Almeida Rodrigues
- Laboratory of Applied Sports Physiology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sports Physiology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Lucas Dantas Maia Forte
- Laboratory of Applied Sports Physiology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | | | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | | |
Collapse
|
41
|
Shaw RL, Norton CE, Segal SS. Apoptosis in resistance arteries induced by hydrogen peroxide: greater resilience of endothelium versus smooth muscle. Am J Physiol Heart Circ Physiol 2021; 320:H1625-H1633. [PMID: 33606587 DOI: 10.1152/ajpheart.00956.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Reactive oxygen species (ROS) are implicated in cardiovascular and neurologic disorders including atherosclerosis, heart attack, stroke, and traumatic brain injury. Although oxidative stress can lead to apoptosis of vascular cells, such findings are largely based upon isolated vascular smooth muscle cells (SMCs) and endothelial cells (ECs) studied in culture. Studying intact resistance arteries, we have focused on understanding how SMCs and ECs in the blood vessel wall respond to acute oxidative stress induced by hydrogen peroxide, a ubiquitous, membrane-permeant ROS. We find that apoptosis induced by H2O2 is far greater in SMCs compared to ECs. For both cell types, apoptosis is associated with a rise in intracellular calcium concentration ([Ca2+]i) during H2O2 exposure. Consistent with their greater death, the rise in [Ca2+]i for SMCs exceeds that in ECs. Finding that disruption of the endothelium increases SMC death, we address how myoendothelial coupling and paracrine signaling attenuate apoptosis. Remarkably, conditions associated with chronic oxidative stress (advanced age, Western-style diet) protect SMCs during H2O2 exposure, as does female sex. In light of intracellular Ca2+ handling, we consider how glycolytic versus oxidative pathways for ATP production and changes in mitochondrial structure and function impact cellular resilience to H2O2-induced apoptosis. Gaining new insight into protective signaling within and between SMCs and ECs of the arterial wall can be applied to promote vascular cell survival (and recovery of blood flow) in tissues subjected to acute oxidative stress as occurs during reperfusion following myocardial infarction and thrombotic stroke.
Collapse
Affiliation(s)
- Rebecca L Shaw
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Charles E Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
42
|
Christiansen LB, Reimann MJ, Schou-Pedersen AMV, Larsen S, Lykkesfeldt J, Olsen LH. Depleted Myocardial Coenzyme Q10 in Cavalier King Charles Spaniels with Congestive Heart Failure Due to Myxomatous Mitral Valve Disease. Antioxidants (Basel) 2021; 10:antiox10020161. [PMID: 33499156 PMCID: PMC7911325 DOI: 10.3390/antiox10020161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) has been associated with depleted myocardial coenzyme Q10 (Q10) concentrations in human patients. The aim of this study was to investigate associations between myocardial Q10 concentrations and myxomatous mitral valve disease (MMVD) severity in dogs. Furthermore, citrate synthase (CS) activity was analysed to determine if a reduction in myocardial Q10 was associated with mitochondrial depletion in the myocardium. Thirty Cavalier King Charles spaniels (CKCS) in MMVD stages B1 (n = 11), B2 (n = 5) and C (n = 14) according to the American College of Veterinary Internal Medicine (ACVIM) guidelines and 10 control (CON) dogs of other breeds were included. Myocardial Q10 concentration was analysed in left ventricular tissue samples using HPLC-ECD. CKCS with congestive heart failure (CHF; group C) had significantly reduced Q10 concentrations (median, 1.54 µg/mg; IQR, 1.36–1.94), compared to B1 (2.76 µg/mg; 2.10–4.81, p < 0.0018), B2 (3.85 µg/mg; 3.13–4.46, p < 0.0054) and CON dogs (2.8 µg/mg; 1.64–4.88, p < 0.0089). CS activity was comparable between disease groups. In conclusion, dogs with CHF due to MMVD had reduced myocardial Q10 concentrations. Studies evaluating antioxidant defense mechanisms as a therapeutic target for treatment of CHF in dogs are warranted.
Collapse
Affiliation(s)
- Liselotte B. Christiansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Maria J. Reimann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Anne Marie V. Schou-Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Steen Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Lisbeth H. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
- Correspondence:
| |
Collapse
|
43
|
Heskamp L, Lebbink F, van Uden MJ, Maas MC, Claassen JAHR, Froeling M, Kemp GJ, Boss A, Heerschap A. Post-exercise intramuscular O 2 supply is tightly coupled with a higher proximal-to-distal ATP synthesis rate in human tibialis anterior. J Physiol 2021; 599:1533-1550. [PMID: 33369737 PMCID: PMC7986184 DOI: 10.1113/jp280771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
Key points The post‐exercise recovery of phosphocreatine, a measure of the oxidative capacity of muscles, as assessed by 31P MR spectroscopy, shows a striking increase from distal to proximal along the human tibialis anterior muscle. To investigate why this muscle exhibits a greater oxidative capacity proximally, we tested whether the spatial variation in phosphocreatine recovery rate is related to oxygen supply, muscle fibre type or type of exercise. We revealed that oxygen supply also increases from distal to proximal along the tibialis anterior, and that it strongly correlated with phosphocreatine recovery. Carnosine level, a surrogate measure for muscle fibre type was not different between proximal and distal, and type of exercise did not affect the gradient in phosphocreatine recovery rate. Taken together, the findings of this study suggest that the post‐exercise spatial gradients in oxygen supply and phosphocreatine recovery are driven by a higher intrinsic mitochondrial oxidative capacity proximally.
Abstract Phosphorus magnetic resonance spectroscopy (31P MRS) of human tibialis anterior (TA) revealed a strong proximo‐distal gradient in the post‐exercise phosphocreatine (PCr) recovery rate constant (kPCr), a measure of muscle oxidative capacity. The aim of this study was to investigate whether this kPCr gradient is related to O2 supply, resting phosphorylation potential, muscle fibre type, or type of exercise. Fifteen male volunteers performed continuous isometric ankle dorsiflexion at 30% maximum force until exhaustion. At multiple locations along the TA, we measured the oxidative PCr resynthesis rate (VPCr = kPCr × PCr depletion) by 31P MRS, the oxyhaemoglobin recovery rate constant (kO2Hb) by near infrared spectroscopy, and muscle perfusion with MR intravoxel incoherent motion imaging. The kO2Hb, kPCr, VPCr and muscle perfusion depended on measurement location (P < 0.001, P < 0.001, P = 0.032 and P = 0.003, respectively), all being greater proximally. The kO2Hb and muscle perfusion correlated with kPCr (r = 0.956 and r = 0.852, respectively) and VPCr (r = 0.932 and r = 0.985, respectively), the latter reflecting metabolic O2 consumption. Resting phosphorylation potential (PCr/inorganic phosphate) was also higher proximally (P < 0.001). The surrogate for fibre type, carnosine content measured by 1H MRS, did not differ between distal and proximal TA (P = 0.884). Performing intermittent exercise to avoid exercise ischaemia, still led to larger kPCr proximally than distally (P = 0.013). In conclusion, the spatial kPCr gradient is strongly associated with the spatial variation in O2 supply. It cannot be explained by exercise‐induced ischaemia nor by fibre type. Our findings suggest it is driven by a higher proximal intrinsic mitochondrial oxidative capacity, apparently to support contractile performance of the TA. The post‐exercise recovery of phosphocreatine, a measure of the oxidative capacity of muscles, as assessed by 31P MR spectroscopy, shows a striking increase from distal to proximal along the human tibialis anterior muscle. To investigate why this muscle exhibits a greater oxidative capacity proximally, we tested whether the spatial variation in phosphocreatine recovery rate is related to oxygen supply, muscle fibre type or type of exercise. We revealed that oxygen supply also increases from distal to proximal along the tibialis anterior, and that it strongly correlated with phosphocreatine recovery. Carnosine level, a surrogate measure for muscle fibre type was not different between proximal and distal, and type of exercise did not affect the gradient in phosphocreatine recovery rate. Taken together, the findings of this study suggest that the post‐exercise spatial gradients in oxygen supply and phosphocreatine recovery are driven by a higher intrinsic mitochondrial oxidative capacity proximally.
Collapse
Affiliation(s)
- Linda Heskamp
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Franciska Lebbink
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Mark J van Uden
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Marnix C Maas
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Graham J Kemp
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| | - Andreas Boss
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Yue XF, Shen CX, Wang JW, Dai LY, Fang Q, Long L, Zhi Y, Li XR, Wang YW, Shen GF, Liu ZJ, Shi CM, Li WB. The near-infrared dye IR-61 restores erectile function in a streptozotocin-induced diabetes model via mitochondrial protection. Asian J Androl 2021; 23:249-258. [PMID: 33402547 PMCID: PMC8152422 DOI: 10.4103/aja.aja_69_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study aimed to evaluate the therapeutic effect of IR-61, a novel mitochondrial heptamethine cyanine dye with antioxidant effects, on diabetes mellitus-induced erectile dysfunction (DMED). Eight-week-old male Sprague-Dawley rats were intraperitoneally injected with streptozotocin (STZ) to induce type 1 diabetes. Eight weeks after STZ injection, all rats were divided into three groups: the control group, DM group, and DM + IR-61 group. In the DM + IR-61 group, the rats were administered IR-61 (1.6 mg kg-1) twice a week by intravenous injection. At week 13, erectile function was evaluated by determining the ratio of the maximal intracavernous pressure to mean arterial pressure, and the penises were then harvested for fluorescent imaging, transmission electron microscopy, histological examinations, and Western blot analysis. Whole-body imaging suggested that IR-61 was highly accumulated in the penis after intravenous injection. IR-61 treatment significantly improved the maximal ICP of diabetic rats. Additionally, IR-61 ameliorated diabetes-induced inflammation, apoptosis, and phenotypic transition of corpus cavernosum smooth muscle cells (CCSMCs) in penile tissue. IR-61 also attenuated mitochondrial damage, reduced reactive oxygen species production in the corpus cavernosum and upregulated sirtuin1 (SIRT1), sirtuin3 (SIRT3), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase expression in penile tissue. In conclusion, IR-61 represents a potential therapeutic option for DMED by protecting the mitochondria of CCSMCs, which may be mediated by activation of the SIRT1, SIRT3, and Nrf2 pathways.
Collapse
Affiliation(s)
- Xiao-Feng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Chong-Xing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Jian-Wu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lin-Yong Dai
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xue-Ru Li
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Ya-Wei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Gu-Fang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Zu-Juan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Chun-Meng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Wei-Bing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| |
Collapse
|
45
|
Gao L, Kumar V, Vellichirammal NN, Park SY, Rudebush TL, Yu L, Son WM, Pekas EJ, Wafi AM, Hong J, Xiao P, Guda C, Wang HJ, Schultz HD, Zucker IH. Functional, proteomic and bioinformatic analyses of Nrf2- and Keap1- null skeletal muscle. J Physiol 2020; 598:5427-5451. [PMID: 32893883 PMCID: PMC7749628 DOI: 10.1113/jp280176] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Nrf2 is a master regulator of endogenous cellular defences, governing the expression of more than 200 cytoprotective proteins, including a panel of antioxidant enzymes. Nrf2 plays an important role in redox haemostasis of skeletal muscle in response to the increased generation of reactive oxygen species during contraction. Employing skeletal muscle-specific transgenic mouse models with unbiased-omic approaches, we uncovered new target proteins, downstream pathways and molecular networks of Nrf2 in skeletal muscle following Nrf2 or Keap1 deletion. Based on the findings, we proposed a two-way model to understand Nrf2 function: a tonic effect through a Keap1-independent mechanism under basal conditions and an induced effect through a Keap1-dependent mechanism in response to oxidative and other stresses. ABSTRACT Although Nrf2 has been recognized as a master regulator of cytoprotection, its functional significance remains to be completely defined. We hypothesized that proteomic/bioinformatic analyses from Nrf2-deficient or overexpressed skeletal muscle tissues will provide a broader spectrum of Nrf2 targets and downstream pathways than are currently known. To this end, we created two transgenic mouse models; the iMS-Nrf2flox/flox and iMS-Keap1flox/flox , employing which we demonstrated that selective deletion of skeletal muscle Nrf2 or Keap1 separately impaired or improved skeletal muscle function. Mass spectrometry revealed that Nrf2-KO changed expression of 114 proteins while Keap1-KO changed expression of 117 proteins with 10 proteins in common between the groups. Gene ontology analysis suggested that Nrf2 KO-changed proteins are involved in metabolism of oxidoreduction coenzymes, purine ribonucleoside triphosphate, ATP and propanoate, which are considered as the basal function of Nrf2, while Keap1 KO-changed proteins are involved in cellular detoxification, NADP metabolism, glutathione metabolism and the electron transport chain, which belong to the induced effect of Nrf2. Canonical pathway analysis suggested that Keap1-KO activated four pathways, whereas Nrf2-KO did not. Ingenuity pathway analysis further revealed that Nrf2-KO and Keap1-KO impacted different signal proteins and functions. Finally, we validated the proteomic and bioinformatics data by analysing glutathione metabolism and mitochondrial function. In conclusion, we found that Nrf2-targeted proteins are assigned to two groups: one mediates the tonic effects evoked by a low level of Nrf2 at basal condition; the other is responsible for the inducible effects evoked by a surge of Nrf2 that is dependent on a Keap1 mechanism.
Collapse
Affiliation(s)
- Lie Gao
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Vikas Kumar
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182
| | - Tara L. Rudebush
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yu
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Won-Mok Son
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182
| | - Ahmed M. Wafi
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Juan Hong
- Department of Anesthesiology; University of Nebraska Medical Center, Omaha, NE 68198
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198
| | - Han-Jun Wang
- Department of Anesthesiology; University of Nebraska Medical Center, Omaha, NE 68198
| | - Harold D. Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Irving H. Zucker
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
46
|
Roy S, Edwards JM, Tomcho JC, Schreckenberger Z, Bearss NR, Zhang Y, Morgan EE, Cheng X, Spegele AC, Vijay-Kumar M, McCarthy CG, Koch LG, Joe B, Wenceslau CF. Intrinsic Exercise Capacity and Mitochondrial DNA Lead to Opposing Vascular-Associated Risks. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa029. [PMID: 33363281 PMCID: PMC7749784 DOI: 10.1093/function/zqaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Exercise capacity is a strong predictor of all-cause morbidity and mortality in humans. However, the associated hemodynamic traits that link this valuable indicator to its subsequent disease risks are numerable. Additionally, exercise capacity has a substantial heritable component and genome-wide screening indicates a vast amount of nuclear and mitochondrial DNA (mtDNA) markers are significantly associated with traits of physical performance. A long-term selection experiment in rats confirms a divide for cardiovascular risks between low- and high-capacity runners (LCR and HCR, respectively), equipping us with a preclinical animal model to uncover new mechanisms. Here, we evaluated the LCR and HCR rat model system for differences in vascular function at the arterial resistance level. Consistent with the known divide between health and disease, we observed that LCR rats present with resistance artery and perivascular adipose tissue dysfunction compared to HCR rats that mimic qualities important for health, including improved vascular relaxation. Uniquely, we show by generating conplastic strains, which LCR males with mtDNA of female HCR (LCR-mtHCR/Tol) present with improved vascular function. Conversely, HCR-mtLCR/Tol rats displayed indices for cardiac dysfunction. The outcome of this study suggests that the interplay between the nuclear genome and the maternally inherited mitochondrial genome with high intrinsic exercise capacity is a significant factor for improved vascular physiology, and animal models developed on an interaction between nuclear and mtDNA are valuable new tools for probing vascular risk factors in the offspring.
Collapse
Affiliation(s)
- Shaunak Roy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jonnelle M Edwards
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jeremy C Tomcho
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Zachary Schreckenberger
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Nicole R Bearss
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Youjie Zhang
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Eric E Morgan
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Department of Radiology Nationwide Children's Hospital, OH, USA
| | - Xi Cheng
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Adam C Spegele
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Matam Vijay-Kumar
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Cameron G McCarthy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Lauren G Koch
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Bina Joe
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Camilla Ferreira Wenceslau
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Address correspondence to C.F.W. (e-mail: )
| |
Collapse
|
47
|
Ives SJ, Zaleski KS, Slocum C, Escudero D, Sheridan C, Legesse S, Vidal K, Lagalwar S, Reynolds TH. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol Rep 2020; 8:e14630. [PMID: 33185326 PMCID: PMC7663994 DOI: 10.14814/phy2.14630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity, insulin resistance, and poor metabolic profile are hallmarks of a high-fat diet (HFD), highlighting the need to understand underlying mechanisms. Therefore, we sought to determine the effect of succinic acid (SA) on metabolism in high-fat diet (HFD)-induced obesity. Animals were randomly assigned to either low-fat diet (LFD) or a high-fat diet (HFD). Mice consumed their respective diets for 4.5 months and then assigned to the following groups: (LFD)+vehicle, LFD + SA (0.75 mg/ml), HFD + vehicle, or HFD + SA. Body weight (BW), food, and water intake, were tracked weekly. After 6 weeks, insulin, glucose, and pyruvate tolerance tests were completed, and spontaneous physical activity was assessed. Epididymal white adipose tissue (EWAT) mass and in vitro measurements of oxidative skeletal muscle (soleus) respiration were obtained. Expectedly, the HFD increased BW and EWAT mass, and reduced glucose and insulin tolerance. SA significantly reduced EWAT mass, more so in HFD (p < .05), but had no effect on any in vivo measurements (BW, insulin, glucose, or pyruvate tolerance, nor physical activity, all p > .05). A significant (p < .05) interaction was observed between mitochondrial respiration and treatment, where SA increased respiration, likely owed to greater mitochondrial content, as assessed by complex IV activity in both LFD and HFD. In HFD-induced obesity, coupled with insulin desensitization, we found no favorable effect of succinic acid on glucose regulation, though adiposity was attenuated. In oxidative skeletal muscle, there was a tendency for increased respiratory capacity, likely owed to greater mitochondrial content, suggestive of a succinic acid-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Stephen J. Ives
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kendall S. Zaleski
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Cheyanne Slocum
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Daniela Escudero
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Caty Sheridan
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Saada Legesse
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kavey Vidal
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Sarita Lagalwar
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
48
|
Fuchs C, Bakuradze T, Steinke R, Grewal R, Eckert GP, Richling E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin Sci (Lond) 2020; 134:1491-1519. [PMID: 32584404 DOI: 10.1042/cs20190559] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the primary risk factor for CVD. The development of vascular dysfunction, including endothelial dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss current evidence for prevention and treatment of vascular aging via lifestyle and pharmacological strategies that improve mitochondrial health. We will also identify promising areas and important considerations ('research gaps') for future investigation.
Collapse
|
50
|
Penman SL, Jensen RL, Kiy RT, Chadwick AE. The mitochondrial paradox. eLife 2020; 9:59140. [PMID: 32583799 PMCID: PMC7316502 DOI: 10.7554/elife.59140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
A structural motif that is found in two cancer drugs may be responsible for their ability to tackle cancers and for the side-effects caused by the drugs.
Collapse
Affiliation(s)
- Sophie L Penman
- MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca L Jensen
- MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Robyn T Kiy
- MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|