1
|
Boyes NG, Klassen SA, Baker SE, Nicholson WT, Joyner MJ, Shoemaker JK, Limberg JK. Interaction of simultaneous hypoxia and baroreflex loading on control of sympathetic action potential subpopulations. J Neurophysiol 2024; 132:1087-1097. [PMID: 39140588 PMCID: PMC11427050 DOI: 10.1152/jn.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Efferent muscle sympathetic nerve activity (MSNA) is under tonic baroreflex control. The arterial baroreflex exerts the strongest influence over medium-sized sympathetic action potential (AP) subpopulations in efferent MSNA recordings. Prior work from multiunit MSNA recordings has shown baroreflex loading selectively abolishes the sympathetic response to hypoxia. The purpose of the study was to examine baroreflex control over different-sized AP clusters and characterize the neural recruitment strategies of sympathetic AP subpopulations with baroreflex and combined baroreflex/chemoreflex (i.e., hypoxia) activation. We loaded the arterial baroreceptors [intravenous phenylephrine (PE)] alone and in combination with systemic hypoxia ([Formula: see text] 80%) in nine healthy young men. We extracted sympathetic APs using the wavelet-based methodology and quantified baroreflex gain for individual AP clusters. AP baroreflex threshold gain was measured as the slope of the linear relationship between AP probability versus diastolic blood pressure for 10 normalized clusters. Baroreflex loading with phenylephrine decreased MSNA and AP firing compared with baseline (all P < 0.05). However, the phenylephrine-mediated decrease in AP firing was lost with concurrent hypoxia (P = 0.384). Compared with baseline, baroreflex loading reduced medium-sized AP cluster baroreflex threshold slope (condition P = 0.005) and discharge probability (condition P < 0.0001); these reductions from baseline were maintained during simultaneous hypoxia (both P < 0.05). Present findings indicate a key modulatory role of the baroreceptors on medium-sized APs in blood pressure regulation that withstands competing signals from peripheral chemoreflex activation.NEW & NOTEWORTHY This study provides a novel understanding on baroreflex control of efferent sympathetic nervous system activity during competing stressors: baroreflex loading and peripheral chemoreflex activation. We show chemoreflex activation buffers baroreflex-mediated reductions in sympathetic nervous system activity. More importantly, baroreflex loading reduced baroreflex threshold gain of sympathetic action potential clusters and this reduction withstood chemoreflex activation. These data suggest the arterial baroreflex holds a primary regulatory role over medium-sized sympathetic neurons despite competing chemoreflex signals.
Collapse
Affiliation(s)
- Natasha G Boyes
- Department of Nutrition & Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- School of Kinesiology, Brock University, St. Catharines, Ontario,Canada
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Wayne T Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Jacqueline K Limberg
- Department of Nutrition & Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Klassen SA, Limberg JK, Harvey RE, Wiggins CC, Iannarelli NJ, Senefeld JW, Nicholson WT, Curry TB, Joyner MJ, Shoemaker JK, Baker SE. Central α 2-adrenergic mechanisms regulate human sympathetic neuronal discharge strategies. J Physiol 2024; 602:4053-4071. [PMID: 39058701 PMCID: PMC11326960 DOI: 10.1113/jp286450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg-1; maintenance infusion of 0.1-0.5 µg kg h-1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats-1, P = 0.003) most strongly for medium-sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats-1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ -0.09 ± 0.07 to Δ -0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0 ± 5 to -1.6 ± 2 % mmHg-1; P = 0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.
Collapse
Affiliation(s)
- Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jacqueline K. Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Ronée E. Harvey
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C. Wiggins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | | | - Jonathon W. Senefeld
- Department of Health and Kinesiology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Wayne T. Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy B. Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J. Kevin Shoemaker
- School of Kinesiology, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
McMillan NJ, Jacob DW, Shariffi B, Harper JL, Foster GE, Manrique-Acevedo C, Padilla J, Limberg JK. Effect of acute intranasal insulin administration on muscle sympathetic nerve activity in healthy young adults. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38787381 PMCID: PMC11390129 DOI: 10.1152/ajpheart.00253.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [TC, n = 13 (5 females/8 males), 28 ± 1 yr] or 160 IU of intranasal insulin administered over 5 min [n = 15 (5 females/10 males), 26 ± 2 yr]; five (1 female/4 males) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, and 15 and 30 min following insulin administration. Leg vascular conductance [LVC = (LBF ÷ mean BP) × 100] was calculated. Venous insulin and glucose concentrations remained unchanged throughout (P > 0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15, 121 ± 8%; minute 30, 118 ± 6%; P = 0.009, n = 7) and mean BP (baseline = 100%; minute 15, 103 ± 1%; minute 30, 102 ± 1%; P = 0.003) increased, whereas LVC decreased (baseline = 100%; minute 15, 93 ± 3%; minute 30, 99 ± 3%; P = 0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (P > 0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.NEW & NOTEWORTHY Systemic insulin increases muscle sympathetic nerve activity (MSNA) via central actions within the brainstem and peripheral activation of the arterial baroreflex. In the absence of peripheral insulin action, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans was unknown. We provide the first evidence that intranasal insulin administration increases MSNA and blood pressure and reduces leg vascular conductance. These results enhance mechanistic understanding of the sympathetic and hemodynamic response to insulin.
Collapse
Affiliation(s)
- Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Glen E Foster
- School of Health and Exercise Sciences, Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, Canada
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Shafer BM, West CR, Foster GE. Advancements in the neurocirculatory reflex response to hypoxia. Am J Physiol Regul Integr Comp Physiol 2024; 327:R1-R13. [PMID: 38738293 PMCID: PMC11380992 DOI: 10.1152/ajpregu.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Hypoxia is a pivotal factor in the pathophysiology of various clinical conditions, including obstructive sleep apnea, which has a strong association with cardiovascular diseases like hypertension, posing significant health risks. Although the precise mechanisms linking hypoxemia-associated clinical conditions with hypertension remains incompletely understood, compelling evidence suggests that hypoxia induces plasticity of the neurocirculatory control system. Despite variations in experimental designs and the severity, frequency, and duration of hypoxia exposure, evidence from animal and human models consistently demonstrates the robust effects of hypoxemia in triggering reflex-mediated sympathetic activation. Both acute and chronic hypoxia alters neurocirculatory regulation and, in some circumstances, leads to sympathetic outflow and elevated blood pressures that persist beyond the hypoxic stimulus. Dysregulation of autonomic control could lead to adverse cardiovascular outcomes and increase the risk of developing hypertension.
Collapse
Affiliation(s)
- Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
D'Alesio G, Stumpp LI, Sciarrone P, Navari A, Gentile F, Borrelli C, Ballanti S, Degl'Innocenti E, Carrasco A, Costa AC, Andrade A, Mannini A, Macefield VG, Emdin M, Passino C, Mazzoni A, Giannoni A, Oddo CM. An open computational toolbox to analyze multi- and single-unit sympathetic nerve activity in microneurography. BIOPHYSICS REVIEWS 2024; 5:021401. [PMID: 38895135 PMCID: PMC11184970 DOI: 10.1063/5.0202385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Microelectrode recordings from human peripheral and cranial nerves provide a means to study both afferent and efferent axonal signals at different levels of detail, from multi- to single-unit activity. Their analysis can lead to advancements both in diagnostic and in the understanding of the genesis of neural disorders. However, most of the existing computational toolboxes for the analysis of microneurographic recordings are limited in scope or not open-source. Additionally, conventional burst-based metrics are not suited to analyze pathological conditions and are highly sensitive to distance of the microelectrode tip from the active axons. To address these challenges, we developed an open-source toolbox that offers advanced analysis capabilities for studying neuronal reflexes and physiological responses to peripheral nerve activity. Our toolbox leverages the observation of temporal sequences of action potentials within inherently cyclic signals, introducing innovative methods and indices to enhance analysis accuracy. Importantly, we have designed our computational toolbox to be accessible to novices in biomedical signal processing. This may include researchers and professionals in healthcare domains, such as clinical medicine, life sciences, and related fields. By prioritizing user-friendliness, our software application serves as a valuable resource for the scientific community, allowing to extract advanced metrics of neural activity in short time and evaluate their impact on other physiological variables in a consistent and standardized manner, with the final aim to widen the use of microneurography among researchers and clinicians.
Collapse
Affiliation(s)
- Giacomo D'Alesio
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Alessandro Navari
- Cardiovascular Medicine Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Chiara Borrelli
- Medical Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Sara Ballanti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | - Alexandre Andrade
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Andrea Mannini
- Artificial Intelligence for Rehabilitation Laboratory, Fondazione Don Carlo Gnocchi IRCCS, Florence, Italy
| | | | | | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | |
Collapse
|
6
|
Shafer BM, Nardone M, Incognito AV, Vermeulen TD, Teixeira AL, Millar PJ, Sheel AW, West C, Ayas N, Foster GE. Acute hypoxia elicits lasting reductions in the sympathetic action potential transduction of arterial blood pressure in males. J Physiol 2023; 601:669-687. [PMID: 36542455 DOI: 10.1113/jp283979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Post-hypoxia sympathoexcitation does not elicit corresponding changes in vascular tone, suggesting diminished sympathetic signalling. Blunted sympathetic transduction following acute hypoxia, however, has not been confirmed and the effects of hypoxia on the sympathetic transduction of mean arterial pressure (MAP) as a function of action potential (AP) activity is unknown. We hypothesized that MAP changes would be blunted during acute hypoxia but restored in recovery and asynchronous APs would elicit smaller MAP changes than synchronous APs. Seven healthy males (age: 24 (3) years; BMI: 25 (3) kg/m2 ) underwent 20 min isocapnic hypoxia (PET O2 : 47 (2) mmHg) and 30 min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 7 min) and late (last 7 min) recovery. AP groups were classified as synchronous APs, asynchronous APs (occurring outside an MSNA burst) and no AP activity. Sympathetic transduction of MAP was quantified using signal-averaging, with ΔMAP tracked following AP group cardiac cycles. Following synchronous APs, ΔMAP was reduced in hypoxia (+1.8 (0.9) mmHg) and early recovery (+1.5 (0.7) mmHg) compared with baseline (+3.1 (2.2) mmHg). AP group-by-condition interactions show that at rest asynchronous APs attenuate MAP reductions compared with no AP activity (-0.4 (1.1) vs. -2.2 (1.2) mmHg, respectively), with no difference between AP groups in hypoxia, early or late recovery. Sympathetic transduction of MAP is blunted in hypoxia and early recovery. At rest, asynchronous sympathetic APs contribute to neural regulation of MAP by attenuating nadir pressure responses. KEY POINTS: Acute isocapnic hypoxia elicits lasting sympathoexcitation that does not correspond to parallel changes in vascular tone, suggesting blunted sympathetic transduction. Signal-averaging techniques track the magnitude and temporal cardiovascular responses following integrated muscle sympathetic nerve activity (MSNA) burst and non-burst cardiac cycles. However, this does not fully characterize the effects of sympathetic action potential (AP) activity on blood pressure control. We show that hypoxia blunts the sympathetic transduction of mean arterial pressure (MAP) following synchronous APs that form integrated MSNA bursts and that sympathetic transduction of MAP remains attenuated into early recovery. At rest, asynchronous APs attenuate the reduction in MAP compared with cardiac cycles following no AP activity, thus asynchronous sympathetic APs appear to contribute to the neural regulation of blood pressure. The results advance our understanding of sympathetic transduction of arterial pressure during and following exposure to acute isocapnic hypoxia in humans.
Collapse
Affiliation(s)
- Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Chris West
- Faculty of Medicine, University of British Columbia, Kelowna, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Najib Ayas
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
7
|
Shafer BM, Incognito AV, Vermeulen TD, Nardone M, Teixeira AL, Klassen SA, Millar PJ, Foster GE. Action potential amplitude and baroreflex resetting of action potential clusters mediate hypoxia-induced sympathetic long-term facilitation. J Physiol 2022; 600:3127-3147. [PMID: 35661360 DOI: 10.1113/jp282933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Acute isocapnic hypoxia resets the arterial baroreflex and permits long-lasting sympathoexcitation called sympathetic long-term facilitation. Our understanding of sympathetic long-term facilitation following hypoxia in humans is based on multiunit muscle sympathetic nerve activity and does not fully characterize the underlying baroreflex control of sympathetic neuronal subpopulations or their discharge/recruitment strategies. We show that sympathetic long-term facilitation is mediated by baroreflex resetting of sympathetic action potential clusters to higher arterial pressure operating points, a reduction in the percentage of action potentials firing asynchronously, and a shift toward larger amplitude action potential activity. The results advance our fundamental understanding of how the sympathetic nervous system mediates sympathetic long-term facilitation following exposure to acute isocapnic hypoxia in humans. ABSTRACT Baroreflex resetting permits sympathetic long-term facilitation (sLTF) following hypoxia; however, baroreflex control of action potential (AP) clusters and AP recruitment patterns facilitating sLTF is unknown. We hypothesized that baroreflex resetting of arterial pressure operating points (OPs) of AP clusters and recruitment of large-amplitude APs would mediate sLTF following hypoxia. Eight men (age: 24 (3) yrs; BMI: 24 (3) kg/m2 ) underwent 20-min isocapnic hypoxia (PET O2 : 47 (2) mmHg) and 30-min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and a continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 5-min), and late recovery (last 5-min). AP amplitude (normalized to largest baseline AP amplitude), percent APs occurring outside a MSNA burst (% asynchronous APs), and proportion of APs firing in small (1-3), medium (4-6), and large (7-10) normalized cluster sizes was calculated. Normalized clusters were used to assess baroreflex OPs and sensitivity. Hypoxia increased total MSNA activity, which remained elevated during recovery (P<0.0001). Baroreflex OPs were shifted rightward for all clusters in recovery, with no effect on slope. Compared to baseline, AP amplitude was elevated by 3 (2) % and 4 (2) % while asynchronous APs were reduced by 9 (5) % and 7 (6) % in early and late recovery, respectively. In early recovery, the proportion of APs firing in large clusters was increased compared to baseline. Hypoxia-induced sLTF is mediated by baroreflex resetting of AP clusters to higher OPs, reduced asynchronous AP firing, and increased contribution from large-amplitude APs. Abstract figure legend Eight healthy men underwent 20-min isocapnic hypoxia and 30-min recovery. The study tested the hypothesis that baroreflex resetting of arterial pressure operating points (OPs) of action potential (AP) clusters and recruitment of large-amplitude APs would mediate sympathetic long-term facilitation (sLTF) following acute hypoxic exposure. Hypoxia increased multi-unit muscle sympathetic nerve activity (MSNA; measured via microneurography), which remained elevated throughout recovery. Sympathetic APs were detected in the filtered MSNA neurogram using a continuous wavelet transform with matched mother wavelet. An effect of condition revealed that compared to baseline, AP amplitude was elevated while asynchronous APs were reduced in early and late recovery, respectively. Our findings show that AP amplitude distributions are shifting towards larger AP amplitudes in all subjects following hypoxia. Our findings indicate that hypoxia-induced sLTF is mediated by baroreflex resetting of AP clusters to higher OPs, reduced asynchronous AP firing, and increased contribution from large-amplitude APs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | | | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
8
|
Kulas B, Klassen S, Moir ME, Shoemaker JK. Interactive effects of apneic and baroreflex stress on neural coding strategies in human muscle sympathetic nerve activity. J Neurophysiol 2022; 127:1086-1097. [PMID: 35294276 DOI: 10.1152/jn.00395.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sympathetic nervous system exhibits patterns of action potential (AP) discharge in human muscle sympathetic nerve activity that suggest coding strategies express reflex specificity. This study explored the interactive effects of baroreceptor unloading using lower body negative pressure (LBNP) and volitional end-expiratory apnea (APN) on sympathetic postganglionic neuronal discharge patterns inferred from the firing patterns of differently sized sympathetic AP clusters. Seven individuals were studied using multi-unit microneurography (fibular) and a continuous wavelet approach to quantify AP discharge probability, recruitment, and latency during APN performed under ambient conditions, -10 and -40 mmHg LBNP. Compared to the ambient condition, LBNP increased AP discharge rate at -10 and -40 mmHg and recruited larger previously-silent sympathetic neurons at -40 mmHg. Compared to spontaneous breathing, APN increased AP discharge when performed during the ambient condition (∆351±132 AP/min), -10 mmHg (∆423±184 AP/min), and -40 mmHg (∆355±278 AP/min; main effect APN: P<0.01; LBNP-by-APN interaction: P=0.55). APN recruited larger previously-silent AP clusters during the ambient condition (∆4±3; P<0.02) and -10 mmHg (∆4±3; P<0.01), but not -40 mmHg (∆0±2; P=0.53; LBNP-by-APN: P<0.01). LBNP did not affect AP latency. However, APN reduced AP latency similarly during all conditions (ambient pressure: ∆-0.04±0.04s, -10 mmHg: ∆-0.03±0.03s, -40 mmHg: ∆-0.03±0.04s; main effect APN: P<0.01; LBNP-by-APN: P=0.48). These data indicate that apneic and baroreflex mechanisms appear to additively modify the axonal discharge rate of previously active sympathetic postganglionic neurons and interact to affect recruitment of previously-silent sympathetic neurons. Reductions in AP latency due to apneic stress were not impacted by baroreflex unloading.
Collapse
Affiliation(s)
- Bartek Kulas
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Stephen Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - M Erin Moir
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Klassen SA, Joyner MJ, Baker SE. The impact of ageing and sex on sympathetic neurocirculatory regulation. Semin Cell Dev Biol 2021; 116:72-81. [PMID: 33468420 PMCID: PMC8282778 DOI: 10.1016/j.semcdb.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The sympathetic nervous system represents a critical mechanism for homoeostatic blood pressure regulation in humans. This review focuses on age-related alterations in neurocirculatory regulation in men and women by highlighting human studies that examined the relationship between muscle sympathetic nerve activity (MSNA) acquired by microneurography and circulatory variables (e.g., blood pressure, vascular resistance). We frame this review with epidemiological evidence highlighting sex-specific patterns in age-related blood pressure increases in developed nations. Indeed, young women exhibit lower blood pressure than men, but women demonstrate larger blood pressure increases with age, such that by about age 60 years, blood pressure is greater in women. Sympathetic neurocirculatory mechanisms contribute to sex differences in blood pressure rises with age. Muscle sympathetic nerve activity increases with age in both sexes, but women demonstrate greater age-related increases. The circulatory adjustments imposed by MSNA - referred to as neurovascular transduction or autonomic (sympathetic) support of blood pressure - differ in men and women. For example, whereas young men demonstrate a positive relationship between resting MSNA and vascular resistance, this relationship is absent in young women due to beta-2 adrenergic vasodilation, which offsets alpha-adrenergic vasoconstriction. However, post-menopausal women demonstrate a positive relationship between MSNA and vascular resistance due to a decline in beta-2 adrenergic vasodilatory mechanisms. Emerging data suggest that greater aerobic fitness appears to modulate neurocirculatory regulation, at least in young, healthy men and women. This review also highlights recent advances in microneurographic recordings of sympathetic action potential discharge, which may nuance our understanding of age-related alterations in sympathetic neurocirculatory regulation in humans.
Collapse
Affiliation(s)
- Stephen A Klassen
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Baker
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Macefield VG. Recording and quantifying sympathetic outflow to muscle and skin in humans: methods, caveats and challenges. Clin Auton Res 2021; 31:59-75. [PMID: 32588247 PMCID: PMC7907024 DOI: 10.1007/s10286-020-00700-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 01/04/2023]
Abstract
The development of microneurography, in which the electrical activity of axons can be recorded via an intrafascicular microelectrode inserted through the skin into a peripheral nerve in awake human participants, has contributed a great deal to our understanding of sensorimotor control and the control of sympathetic outflow to muscle and skin. This review summarises the different approaches to recording muscle sympathetic nerve activity (MSNA) and skin sympathetic nerve activity (SSNA), together with discussion on the issues that determine the quality of a recording. Various analytical approaches are also described, with a primary emphasis on those developed by the author, aimed at maximizing the information content from recordings of postganglionic sympathetic nerve activity in awake humans.
Collapse
Affiliation(s)
- Vaughan G Macefield
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC, 3004, Australia.
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Klassen SA, Shoemaker JK. Action potential subpopulations within human muscle sympathetic nerve activity: Discharge properties and governing mechanisms. Auton Neurosci 2020; 230:102743. [PMID: 33202287 DOI: 10.1016/j.autneu.2020.102743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Sympathetic emissions directed towards the skeletal muscle circulation - muscle sympathetic nerve activity (MSNA) - represent a key mechanism for maintaining homeostasis and supporting human survival during physiological stress. Pulse-rhythmic bursts formed by the synchronous discharge of differently-sized sympathetic action potentials (APs) represent the primary characteristic of MSNA. Of the APs firing under baseline conditions (reflecting low-threshold c-fibre activity), a range of subpopulations exists, of which three general categories can be discussed based on their peak-to-peak amplitude in the filtered raw neurogram - small, medium, and large. These subpopulations express nonuniform discharge, recruitment, and synchronization patterns. The subpopulation of medium APs fires synchronously in most bursts, while the subpopulations of small and large APs fire less often. However, 30% of total AP discharge occurs asynchronously between sympathetic bursts, a pattern expressed most often by small APs. In response to physiological stress (e.g., baroreflex unloading), the subpopulation of medium APs exhibits the largest increase in firing probability and a subpopulation of previously-silent larger and faster-conducting APs (reflecting high-threshold c-fibre activity) becomes recruited. Heterogeneous discharge, synchronization, and recruitment thresholds among AP subpopulations stem from differential regulation within the sympathetic organization including the arterial baroreflex and paravertebral ganglia. Indeed, the arterial baroreflex strongly regulates medium APs at baseline and enhances its control over this subpopulation during periods of baroreflex unloading. Conversely, small and large APs express weak baroreflex control. Trimethaphan infusion has revealed that ganglionic processes including nicotinic and non-nicotinic mechanisms may contribute to heterogenous firing behaviours among low-threshold AP subpopulations. This review highlights recent work revealing new insight to the discharge properties expressed by, and mechanisms governing, AP subpopulations within human MSNA.
Collapse
Affiliation(s)
- Stephen A Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
Ott EP, Jacob DW, Baker SE, Holbein WW, Scruggs ZM, Shoemaker JK, Limberg JK. Sympathetic neural recruitment strategies following acute intermittent hypoxia in humans. Am J Physiol Regul Integr Comp Physiol 2020; 318:R961-R971. [PMID: 32267729 DOI: 10.1152/ajpregu.00004.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We examined the effect of acute intermittent hypoxia (IH) on sympathetic neural firing patterns and the role of the carotid chemoreceptors. We hypothesized exposure to acute IH would increase muscle sympathetic nerve activity (MSNA) via an increase in action potential (AP) discharge rates and within-burst firing. We further hypothesized any change in discharge patterns would be attenuated during acute chemoreceptor deactivation (hyperoxia). MSNA (microneurography) was assessed in 17 healthy adults (11 male/6 female; 31 ± 1 yr) during normoxic rest before and after 30 min of experimental IH. Prior to and following IH, participants were exposed to 2 min of 100% oxygen (hyperoxia). AP patterns were studied from the filtered raw MSNA signal using wavelet-based methodology. Compared with baseline, multiunit MSNA burst incidence (P < 0.01), AP incidence (P = 0.01), and AP content per burst (P = 0.01) were increased following IH. There was an increase in the probability of a particular AP cluster firing once (P < 0.01) and more than once (P = 0.03) per burst following IH. There was no effect of hyperoxia on multiunit MSNA at baseline or following IH (P > 0.05); however, hyperoxia following IH attenuated the probability of particular AP clusters firing more than once per burst (P < 0.01). Acute IH increases MSNA by increasing AP discharge rates and within-burst firing. A portion of the increase in within-burst firing following IH can be attributed to the carotid chemoreceptors. These data advance the mechanistic understanding of sympathetic activation following acute IH in humans.
Collapse
Affiliation(s)
- Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Klassen SA, Wiggins CC, Senefeld JW. Does the broad nature of sympathetic discharge affect our understanding regarding the impact of intermittent hypoxia on neurovascular transduction? J Physiol 2020; 598:2055-2057. [PMID: 32187381 DOI: 10.1113/jp279684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Klassen SA, Moir ME, Usselman CW, Shoemaker JK. Heterogeneous baroreflex control of sympathetic action potential subpopulations in humans. J Physiol 2020; 598:1881-1895. [PMID: 32091132 DOI: 10.1113/jp279326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Emission patterns in muscle sympathetic nerve activity stem from differently sized action potential (AP) subpopulations that express varying discharge probabilities. The mechanisms governing these firing behaviours are unclear. This study investigated the hypothesis that the arterial baroreflex exerts varying control over the different AP subpopulations. During baseline, medium APs expressed the greatest baroreflex slopes, while small and large APs exhibited weaker slopes. On going from baseline to lower body negative pressure (LBNP; simulated orthostatic stress), baroreflex slopes for some clusters of medium APs expressed the greatest increase, while slopes for large APs also increased but to a lesser degree. A subpopulation of previously silent larger APs was recruited with LBNP but these APs expressed weak baroreflex slopes. The arterial baroreflex heterogeneously regulates sympathetic AP subpopulations, exerting its strongest effect over medium APs. Weak baroreflex mechanisms govern the recruitment of latent larger AP subpopulations during orthostatic stress. ABSTRACT Muscle sympathetic nerve activity (MSNA) occurs primarily in bursts of action potentials (AP) with subpopulations that differ in size and discharge probabilities. The mechanisms determining these discharge patterns remain unclear. This study investigated the hypothesis that variations in AP discharge are due to subpopulation-specific baroreflex control. We employed multi-unit microneurography and a continuous wavelet analysis approach to extract sympathetic APs in 12 healthy individuals during baseline (BSL) and lower body negative pressure (LBNP; -40, -60, -80 mmHg). For each AP cluster, the baroreflex threshold slope was measured from the linear regression between AP probability (%) and diastolic blood pressure (mmHg). During BSL, the baroreflex exerted non-uniform regulation over AP subpopulations: medium-sized AP clusters expressed the greatest slopes while clusters of small and large APs expressed weaker slopes. On going from BSL to LBNP, the baroreflex slopes for each AP subpopulation were modified differently. Baroreflex slopes (%/mmHg) for some medium APs (cluster 5: -4.4 ± 4 to -9.1 ± 5) expressed the greatest increase with LBNP, while slopes for large APs (cluster 9: -1.3 ± 1 to -2.6 ± 2) also increased, but to a lesser degree. Slopes for small APs present at BSL exhibited reductions with LBNP (cluster 2: -3.9 ± 3 to -2.2 ± 3). Larger previously silent AP clusters recruited with LBNP expressed weak baroreflex regulation (cluster 14: -0.9 ± 1%/mmHg). The baroreflex exerts the strongest control over medium-sized APs. Augmenting baroreflex gain and upward resetting of discrete AP subpopulations active at BSL, as well as recruiting larger previously silent APs with weak baroreflex control, facilitates elevated MSNA during orthostatic stress.
Collapse
Affiliation(s)
- Stephen A Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada
| | - M Erin Moir
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada
| | - Charlotte W Usselman
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada.,Department of Kinesiology and Physical Education, McGill University, Canada
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, Canada
| |
Collapse
|