1
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
2
|
Reiländer S, Schmehl W, Popp K, Nuss K, Kronen P, Verdino D, Wiezorek C, Gutmann M, Hahn L, Däubler C, Meining A, Raschig M, Kaiser F, von Rechenberg B, Scherf-Clavel O, Meinel L. Oral Use of Therapeutic Carbon Monoxide for Anyone, Anywhere, and Anytime. ACS Biomater Sci Eng 2022. [DOI: 10.1021/acsbiomaterials.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Reiländer
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Wolfgang Schmehl
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Kevin Popp
- German Plastics Center (SKZ), Friedrich-Bergius-Ring 22, Wuerzburg97076, Germany
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Peter Kronen
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Dagmar Verdino
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Christina Wiezorek
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lukas Hahn
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Christof Däubler
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Alexander Meining
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Martina Raschig
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg97070, Germany
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Würzburg97070, Germany
| |
Collapse
|
3
|
Role and Potential Mechanism of Heme Oxygenase-1 in Intestinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11030559. [PMID: 35326209 PMCID: PMC8945098 DOI: 10.3390/antiox11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Intestinal ischemia-reperfusion (IR) injury is a complex, multifactorial, and pathophysiological condition with high morbidity and mortality, leading to serious difficulties in treatment, especially in humans. Heme oxygenase (HO) is the rate-limiting enzyme involved in heme catabolism. HO-1 (an inducible form) confers cytoprotection by inhibiting inflammation and oxidation. Furthermore, nuclear factor-erythroid 2-related factor 2 (Nrf2) positively regulates HO-1 transcription, whereas BTB and CNC homolog 1 (Bach1) competes with Nrf2 and represses its transcription. We investigated the role and potential mechanism of action of HO-1 in intestinal IR injury. Intestinal ischemia was induced for 45 min followed by 4 h of reperfusion in wild-type, Bach1-deficient, and Nrf2-deficient mice, and a carbon monoxide (CO)-releasing molecule (CORM)-3 was administered. An increase in inflammatory marker levels, nuclear factor-κB (NF-κB) activation, and morphological impairments were observed in the IR-induced intestines of wild-type mice. These inflammatory changes were significantly attenuated in Bach1-deficient mice or those treated with CORM-3, and significantly exacerbated in Nrf2-deficient mice. Treatment with an HO-1 inhibitor reversed this attenuation in IR-induced Bach1-deficient mice. Bach1 deficiency and treatment with CORM-3 resulted in the downregulation of NF-κB activation and suppression of adhesion molecules. Together, Bach1, Nrf2, and CO are valuable therapeutic targets for intestinal IR injury.
Collapse
|
4
|
Jing YZ, Li SJ, Sun ZJ. Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:8541-8557. [PMID: 34608920 DOI: 10.1039/d1tb01661j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H2S and H2 in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Collapse
Affiliation(s)
- Yuan-Zhe Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
5
|
Zheng Y, Li Z, Yin M, Gong X. Heme oxygenase‑1 improves the survival of ischemic skin flaps (Review). Mol Med Rep 2021; 23:235. [PMID: 33537805 PMCID: PMC7893698 DOI: 10.3892/mmr.2021.11874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Heat shock protein 32 (Hsp32), also known as heme oxygenase‑1 (HO‑1), is an enzyme that exists in microsomes. HO‑1 can be induced by a variety of stimuli, including heavy metals, heat shock, inflammatory stimuli, heme and its derivatives, stress, hypoxia, and biological hormones. HO‑1 is the rate‑limiting enzyme of heme catabolism, which splits heme into biliverdin, carbon monoxide (CO) and iron. The metabolites of HO‑1 have anti‑inflammatory and anti‑oxidant effects, and provide protection to the cardiovascular system and transplanted organs. This review summarizes the biological characteristics of HO‑1 and the functional significance of its products, and specifically elaborates on its protective effect on skin flaps. HO‑1 improves the survival rate of ischemic skin flaps through anti‑inflammatory, anti‑oxidant and vasodilatory effects of enzymatic reaction products. In particular, this review focuses on the role of carbon monoxide (CO), one of the primary metabolites of HO‑1, in flap survival and discusses the feasibility and existing challenges of HO‑1 in flap surgery.
Collapse
Affiliation(s)
- Yinhua Zheng
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenlan Li
- Department of Rehabilitation Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yin
- Department of Nephrology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xu Gong
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
6
|
Takagi T, Naito Y, Higashimura Y, Uchiyama K, Okayama T, Mizushima K, Katada K, Kamada K, Ishikawa T, Itoh Y. Rectal administration of carbon monoxide inhibits the development of intestinal inflammation and promotes intestinal wound healing via the activation of the Rho-kinase pathway in rats. Nitric Oxide 2021; 107:19-30. [PMID: 33340673 DOI: 10.1016/j.niox.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The inhalation of carbon monoxide (CO) gas and the administration of CO-releasing molecules were shown to inhibit the development of intestinal inflammation in a murine colitis model. However, it remains unclear whether CO promotes intestinal wound healing. Herein, we aimed to evaluate the therapeutic effects of the topical application of CO-saturated saline enemas on intestinal inflammation and elucidate the underlying mechanism. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. A CO-saturated solution was prepared via bubbling 50% CO gas into saline and was rectally administrated twice a day after colitis induction; rats were sacrificed 3 or 7 days after induction for the study of the acute or healing phases, respectively. The distal colon was isolated, and ulcerated lesions were measured. In vitro wound healing assays were also employed to determine the mechanism underlying rat intestinal epithelial cell restitution after CO treatment. CO solution rectal administration ameliorated acute TNBS-induced colonic ulceration and accelerated ulcer healing without elevating serum CO levels. The increase in thiobarbituric acid-reactive substances and myeloperoxidase activity after induction of acute TNBS colitis was also significantly inhibited after CO treatment. Moreover, the wound healing assays revealed that the CO-saturated medium enhanced rat intestinal epithelial cell migration via the activation of Rho-kinase. In addition, the activation of Rho-kinase in response to CO treatment was confirmed in the inflamed colonic tissue. Therefore, the rectal administration of a CO-saturated solution protects the intestinal mucosa from inflammation and accelerates colonic ulcer healing through enhanced epithelial cell restitution. CO may thus represent a novel therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
7
|
Iwata M, Inoue T, Asai Y, Hori K, Fujiwara M, Matsuo S, Tsuchida W, Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem Biophys Rep 2020; 23:100790. [PMID: 32760814 PMCID: PMC7390790 DOI: 10.1016/j.bbrep.2020.100790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important part of the host defense mechanism; however, it displays both pro- and anti-inflammatory properties depending on its location and concentration. Importantly, excessive or inappropriate NO production can cause tissue damage. Systemic and local administration of NO synthase (NOS) inhibitors ameliorates and may exacerbate the inflammatory response, respectively. Here, we used a carrageenan-induced pleurisy model of acute inflammation in rats to confirm the location-dependent effects of NO and investigate the underlying mechanisms. As expected, localized suppression of NO production exacerbated inflammation, as evidenced by increased pleural exudate volumes and leukocyte counts and enhanced activity of enzymes related to oxidative stress. In contrast, local NO supplementation reduced leukocyte infiltration, vascular permeability, and the activity of oxidative stress-related enzymes. Interestingly, inhibition of heme oxygenase-1 (HO-1) reversed the anti-inflammatory effects of localized NO production, while the addition of hemin (HO-1 substrate) or carbon monoxide (CO; HO-1 metabolite) decreased leukocyte migration and exudation. Together, these findings confirm a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway. Thus, NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases. Systemic NOS inhibition ameliorated inflammation in a rat Cg-induced pleurisy model. Conversely, localized NOS inhibition increased all examined markers of inflammation. HO-1, hemin, and CO enhanced the localized anti-inflammatory effects of NO. NOC-18, l-arginine, hemin, and CORM-3 decreased levels of inflammatory cytokines. The localized anti-inflammatory effect of NO may be mediated via the HO-1/CO pathway.
Collapse
Affiliation(s)
- Masahiro Iwata
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan.,Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Takayuki Inoue
- Department of Rehabilitation, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yuji Asai
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Mitsuhiro Fujiwara
- Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.,Kamiiida Rehabilitation Hospital, 3-57 Kamiiida Kita-machi, Kita-ku, Nagoya, 462-0802, Japan
| | - Shingo Matsuo
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Wakako Tsuchida
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Shigeyuki Suzuki
- Department of Health and Sports Sciences, School of Health Sciences, Asahi University, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
8
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Guerci P, Ergin B, Kandil A, Ince Y, Heeman P, Hilty MP, Bakker J, Ince C. Resuscitation with PEGylated carboxyhemoglobin preserves renal cortical oxygenation and improves skeletal muscle microcirculatory flow during endotoxemia. Am J Physiol Renal Physiol 2020; 318:F1271-F1283. [PMID: 32281418 DOI: 10.1152/ajprenal.00513.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PEGylated carboxyhemoglobin (PEGHbCO), which has carbon monoxide-releasing properties and plasma expansion and oxygen-carrying properties, may improve both skeletal microcirculatory flow and renal cortical microcirculatory Po2 (CµPo2) and, subsequently, limit endotoxemia-induced acute kidney injury. Anesthetized, ventilated Wistar albino rats (n = 44) underwent endotoxemic shock. CµPo2 was measured in exposed kidneys using a phosphorescence-quenching method. Rats were randomly assigned to the following five groups: 1) unresuscitated lipopolysaccharide (LPS), 2) LPS + Ringer's acetate (RA), 3) LPS + RA + 0.5 µg·kg·-1min-1 norepinephrine (NE), 4) LPS + RA + 320 mg/kg PEGHbCO, and 5) LPS + RA + PEGHbCO + NE. The total volume was 30 mL/kg in each group. A time control animal group was used. Skeletal muscle microcirculation was assessed by handheld intravital microscopy. Kidney immunohistochemistry and myeloperoxidase-stained leukocytes in glomerular and peritubular areas were analyzed. Endotoxemia-induced histological damage was assessed. Plasma levels of IL-6, heme oxygenase-1, malondialdehyde, and syndecan-1 were assessed by ELISA. CµPo2 was higher in the LPS + RA + PEGHbCO-resuscitated group, at 35 ± 6mmHg compared with 21 ± 12 mmHg for the LPS+RA group [mean difference: -13.53, 95% confidence interval: (-26.35; -0.7156), P = 0.035]. The number of nonflowing, intermittent, or sluggish capillaries was smaller in groups infused with PEGHbCO compared with RA alone (P < 0.05), while the number of normally perfused vessels was greater (P < 0.05). The addition of NE did not further improve CµPo2 or microcirculatory parameters. Endotoxemia-induced kidney immunohistochemistry and histological alterations were not mitigated by PEGHbCO 1 h after resuscitation. Renal leukocyte infiltration and plasma levels of biomarkers were similar across groups. PEGHbCO enhanced CµPo2 while restoring skeletal muscle microcirculatory flow in previously nonflowing capillaries. PEGHbCO should be further evaluated as a resuscitation fluid in mid- to long-term models of sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
- Philippe Guerci
- Department of Translational Physiology, Amsterdam University Medical Center Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Institut National de la Santé et de la Recherche Médicale U1116, University of Lorraine, Vandoeuvre-Les-Nancy, France.,Department of Anesthesiology and Critical Care Medicine, University Hospital of Nancy, Nancy, France
| | - Bülent Ergin
- Department of Translational Physiology, Amsterdam University Medical Center Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Aslı Kandil
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Yasin Ince
- Department of Translational Physiology, Amsterdam University Medical Center Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Paul Heeman
- Department of Medical Technical Innovation & Development, Amsterdam University Medical Center Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Peter Hilty
- Department of Translational Physiology, Amsterdam University Medical Center Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Bakker
- Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands.,Department of Pulmonology and Critical Care, Columbia University Medical Center, New York.,Department of Intensive Care, Pontifical Catholic University of Chile, Santiago, Chile
| | - Can Ince
- Department of Translational Physiology, Amsterdam University Medical Center Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Systemic Administration of Carbon Monoxide-Releasing Molecule-3 Protects the Skeletal Muscle in Porcine Model of Compartment Syndrome. Crit Care Med 2019; 46:e469-e472. [PMID: 29384781 DOI: 10.1097/ccm.0000000000002998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Acute limb compartment syndrome, a complication of musculoskeletal trauma, results in muscle necrosis and cell death. Carbon monoxide, liberated from the carbon monoxide-releasing molecule-3, has been shown protective in a rat model of compartment syndrome. The purpose of this study was to test the effect of carbon monoxide-releasing molecule-3 in a preclinical large animal model of compartment syndrome, with the ultimate goal of developing a pharmacologic adjunct treatment for compartment syndrome. DESIGN Animal research study. SETTING Basic research laboratory in a hospital setting. SUBJECTS Male Yorkshire-Landrace pigs (50-60 kg). INTERVENTIONS Pigs underwent 6 hours of intracompartmental pressure elevation by infusing fluid into the anterior compartment of the right hind limb. Carbon monoxide-releasing molecule-3 was administered systemically (2 mg/kg, IV) at fasciotomy, followed by 3-hour reperfusion. MEASUREMENTS AND MAIN RESULTS Muscle perfusion, inflammation, injury, and apoptosis were assessed in the skeletal muscle. Systemic leukocyte activation was assessed during compartment syndrome and reperfusion. Elevation of hind limb intracompartmental pressure resulted in significant microvascular perfusion deficits (44% ± 1% continuously perfused capillaries in compartment syndrome vs 76% ± 4% in sham; p < 0.001), increased tissue injury (ethidium bromide/bisbenzimide of 0.31 ± 0.07 in compartment syndrome vs 0.17 ± 0.03 in sham; p < 0.05), apoptosis (fluorescence in vivo/bisbenzimide of 0.26 ± 0.06 in compartment syndrome vs 0.13 ± 0.03 in sham; p < 0.05), and systemic leukocyte activation (14.7 relative luminescence units/10 polymorphonuclear leukocytes in compartment syndrome vs 1.0 ± 0.1 in baseline; p < 0.001). Systemic application of carbon monoxide-releasing molecule-3 at fasciotomy increased the number of continuously perfused capillaries (68% ± 3%; p < 0.001), diminished tissue injury (ethidium bromide/bisbenzimide of 0.13 ± 0.04; p < 0.05), apoptosis (fluorescence in vivo/bisbenzimide of 0.12 ± 0.03; p < 0.05), and blocked systemic leukocyte activation (3.9 ± 0.3 relative luminescence unit/10 polymorphonuclear leukocytes; p < 0.001). CONCLUSIONS Administration of carbon monoxide-releasing molecule-3 at fasciotomy offered protection against compartment syndrome-induced microvascular perfusion deficit, tissue injury, and systemic leukocyte activation. The data suggest the potential therapeutic application of carbon monoxide-releasing molecule-3 to patients at risk of developing compartment syndrome.
Collapse
|
11
|
Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation 2019; 26:e12577. [PMID: 31230399 DOI: 10.1111/micc.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Limb compartment syndrome (CS), a complication of trauma, results in muscle necrosis and cell death; ischemia and inflammation contribute to microvascular dysfunction and parenchymal injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been shown to protect microvascular perfusion and reduce inflammation in animal models of CS. The purpose of the study was to test the effect of CORM-3 in human in vitro CS model, allowing exploration of the mechanism(s) of CO protection and potential development of pharmacologic treatment. METHODS Confluent human vascular endothelial cells (HUVECs) were stimulated for 6 h with serum isolated from patients with CS. Intracellular oxidative stress (production of reactive oxygen species (ROS)) apoptosis, transendothelial resistance (TEER), polymorphonuclear leukocyte (PMN) activation and transmigration across the monolayer in response to the CS stimulus were assessed. All experiments were performed in the presence of CORM-3 (100 μM) or its inactive form, iCORM-3. RESULTS CS serum induced a significant increase in ROS, apoptosis and endothelial monolayer breakdown; it also increased PMN superoxide production, leukocyte rolling and adhesion/transmigration. CORM-3 completely prevented CS-induced ROS production, apoptosis, PMN adhesion, rolling and transmigration, while improving monolayer integrity. CONCLUSION CORM-3 offers potent anti-oxidant and anti-inflammatory effects, and may have a potential application to patients at risk of developing CS.
Collapse
Affiliation(s)
- Aurelia Bihari
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Kyukwang Akira Chung
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David Sanders
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Emil Schemitsch
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada
| | - Abdel-Rahman Lawendy
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Inhalation of high concentrations of carbon monoxide (CO) is known to lead to serious systemic complications and neuronal disturbances. However, it has been found that not only is CO produced endogenously, but also that low concentrations can bestow beneficial effects which may be of interest in biology and medicine. As translocation of CO through the human organism is difficult, small molecules known as CO-releasing molecules (CORMs) deliver controlled amounts of CO to biological systems, and these are of great interest from a medical point of view. These actions may prevent vascular dysfunction, regulate blood pressure, inhibit blood platelet aggregation or have anti-inflammatory effects. This review summarizes the functions of various CO-releasing molecules in biology and medicine.
Collapse
|
13
|
Nemeth Z, Csizmadia E, Vikstrom L, Li M, Bisht K, Feizi A, Otterbein S, Zuckerbraun B, Costa DB, Pandolfi PP, Fillinger J, Döme B, Otterbein LE, Wegiel B. Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth. Oncotarget 2018; 7:23919-32. [PMID: 26993595 PMCID: PMC5029674 DOI: 10.18632/oncotarget.8081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
We hypothesized that tumor-associated macrophages (TAMs) are controlled by the diffusible gas carbon monoxide (CO). We demonstrate that induction of apoptosis in lung tumors treated with low doses of CO is associated with increased CD86 expression and activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (Erk) 1/2 pathway in tumor microenvironment. Presence of CD86-positive cells was required for the anti-tumoral effects of CO in established A549 xenografts. We show that the effects of CO on tumor stroma and reprogramming of macrophages towards the anti-tumoral phenotype is mediated by reactive oxygen species (ROS)-dependent activation of MAPK/Erk1/2-c-myc pathway as well as Notch 1-dependent negative feedback on the metabolic enzyme heme oxygenase-1 (HO-1). We find a similar negative correlation between HO-1 and active MAPK-Erk1/2 levels in human lung cancer specimens. In summary, we describe novel non-cell autonomous mechanisms by which the diffusible gas CO dictates changes in the tumor microenvironment through the modulation of macrophages.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Tumor Biology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
| | - Eva Csizmadia
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa Vikstrom
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mailin Li
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kavita Bisht
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Alborz Feizi
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sherrie Otterbein
- Department of Surgery, Section of Trauma and Acute Care Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian Zuckerbraun
- Department of Surgery, Section of Trauma and Acute Care Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel B Costa
- Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Janos Fillinger
- Department of Pathology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
| | - Balazs Döme
- Department of Tumor Biology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary.,Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Budapest, Hungary
| | - Leo E Otterbein
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara Wegiel
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Wu J, Zhang R, Hu G, Zhu HH, Gao WQ, Xue J. Carbon Monoxide Impairs CD11b+Ly-6ChiMonocyte Migration from the Blood to Inflamed Pancreas via Inhibition of the CCL2/CCR2 Axis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2104-2114. [DOI: 10.4049/jimmunol.1701169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 01/13/2023]
|
15
|
Bihari A, Cepinskas G, Forbes TL, Potter RF, Lawendy AR. Systemic application of carbon monoxide-releasing molecule 3 protects skeletal muscle from ischemia-reperfusion injury. J Vasc Surg 2017; 66:1864-1871. [DOI: 10.1016/j.jvs.2016.11.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
|
16
|
Yamamoto-Oka H, Mizuguchi S, Toda M, Minamiyama Y, Takemura S, Shibata T, Cepinskas G, Nishiyama N. Carbon monoxide-releasing molecule, CORM-3, modulates alveolar macrophage M1/M2 phenotype in vitro. Inflammopharmacology 2017; 26:435-445. [PMID: 28674739 DOI: 10.1007/s10787-017-0371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
Abstract
Alveolar macrophages are key contributors to both the promotion and resolution of inflammation in the lung and are categorized into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. The change in M1/M2 balance has been reported in various pulmonary diseases and is a target for therapeutic intervention. The aim of this study was to assess the modulation of M1/M2 phenotype in alveolar macrophages by water-soluble carbon monoxide-releasing molecule-3 (CORM-3). Rat alveolar macrophages (AM) (NR8383) in culture were stimulated with LPS (5 ng/ml)/IFN-γ (10 U/ml) or IL-4 (10 ng/ml)/IL-13 (10 ng/ml) to induce M1 and M2 phenotypes, respectively. Expression of M1 phenotype markers, iNOS and TNF-α, and M2 phenotype markers, CD206 and Ym-1, was assessed by western blotting after 1, 3, 6, or 24 h in the absence or presence of CORM-3 (0.15 mM) treatment. Inactive CORM-3 (iCORM-3) was used as a control. Treatment of naïve (unstimulated) AM with CORM-3 promoted progression of the M2 phenotype as evidenced by the increased expression of CD206 (at 1 h; 1.8-fold) and Ym-1 (at 3 h; 1.9-fold), respectively. Surprisingly, CORM-3 treatment also upregulated the expression of iNOS protein as assessed 6 h following stimulation of AM with CORM-3 (2.6-fold). On the contrary, CORM-3 effectively reduced LPS/IFN-γ-induced expression of iNOS protein (0.6-fold); however, it had no effect on TNF-α expression. Finally, CORM-3 acutely (1-3 h) upregulated CD206 (1.4-fold) and Ym-1 (1.6-fold) levels in IL-4-/IL-13-treated (M2-stimulus) macrophages. These findings indicate that CORM-3 modulates macrophage M1 and M2 phenotypes in vitro with respect to continuous suppression of iNOS expression in M1-polarized macrophages and transient (early-phase) upregulation of CD206 and Ym-1 proteins in M2-polarized macrophages.
Collapse
Affiliation(s)
- Hiroko Yamamoto-Oka
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinjiro Mizuguchi
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Michihito Toda
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yukiko Minamiyama
- Department of Food Science and Nutrition Health, Kyoto Prefectural University, Kyoto, Japan
| | - Shigekazu Takemura
- Department Hepato-Biliary-Pancreatic Surgery, Osaka City University, Osaka, Japan
| | - Toshihiko Shibata
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Food Science and Nutrition Health, Kyoto Prefectural University, Kyoto, Japan.,Department Hepato-Biliary-Pancreatic Surgery, Osaka City University, Osaka, Japan
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Noritoshi Nishiyama
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
17
|
Abstract
Part I of this review discussed the similarities between embryogenesis, mammalian adaptions to hypoxia (primarily driven by hypoxia-inducible factor-1 [HIF-1]), ischemia-reperfusion injury (and its relationship with reactive oxygen species), hibernation, diving animals, cancer, and sepsis, and it focused on the common characteristics that allow cells and organisms to survive in these states. Part II of this review describes techniques by which researchers gain insight into subcellular energetics and identify potential future tools for clinicians. In particular, P nuclear magnetic resonance to measure high-energy phosphates, serum lactate measurements, the use of near-infrared spectroscopy to measure the oxidation state of cytochrome aa3, and the ability of the protoporphyrin IX-triplet state lifetime technique to measure mitochondrial oxygen tension are discussed. In addition, this review discusses novel treatment strategies such as hyperbaric oxygen, preconditioning, exercise training, therapeutic gases, as well as inhibitors of HIF-1, HIF prolyl hydroxylase, and peroxisome proliferator-activated receptors.
Collapse
Affiliation(s)
- Robert H Thiele
- From the Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Inoue K, Patterson EK, Capretta A, Lawendy AR, Fraser DD, Cepinskas G. Carbon Monoxide-Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1121-1133. [PMID: 28320610 DOI: 10.1016/j.ajpath.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 01/13/2023]
Abstract
Carbon monoxide-releasing molecules (CORMs) suppress inflammation by reducing polymorphonuclear leukocyte (PMN) recruitment to the affected organs. We investigated modulation of PMN-endothelial cell adhesive interactions by water-soluble CORM-401 using an experimental model of endotoxemia in vitro. Human umbilical vein endothelial cells (HUVEC) grown on laminar-flow perfusion channels were stimulated with 1 μg/mL lipopolysaccharide for 6 hours and perfused with 100 μmol/L CORM-401 (or inactive compound iCORM-401)-pretreated PMN for 5 minutes in the presence of 1.0 dyn/cm2 shear stress. HUVEC PMN co-cultures were perfused for additional 15 minutes with PMN-free medium containing CORM-401/inactive CORM-401. The experiments were videorecorded (phase-contrast microscopy), and PMN adhesion/migration were assessed off-line. In parallel, CORM-401-dependent modulation of PMN chemotaxis, F-actin expression/distribution, and actin-regulating pathways [eg, p21-activated protein kinases (PAK1/2) and extracellular signal-regulated kinase (ERK)/C-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK)] were assessed in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. Pretreating PMN with CORM-401 did not suppress PMN adhesion to HUVEC, but significantly reduced PMN transendothelial migration (P < 0.0001) and fMLP-induced PMN chemotaxis (ie, migration directionality and velocity). These changes were associated with CORM-401-dependent suppression of F-actin levels/cellular distribution and fMLP-induced phosphorylation of PAK1/2 and ERK/JNK MAPK (P < 0.05). CORM-401 had no effect on p38 MAPK activation. In summary, this study demonstrates, for the first time, CORM-401-dependent suppression of neutrophil migratory potential associated with modulation of PAK1/2 and ERK/JNK MAPK signaling and F-actin dynamics.
Collapse
Affiliation(s)
- Ken Inoue
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Abdel R Lawendy
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
19
|
Stolt C, Schmidt IHE, Sayfart Y, Steinmetz I, Bast A. Heme Oxygenase-1 and Carbon Monoxide PromoteBurkholderia pseudomalleiInfection. THE JOURNAL OF IMMUNOLOGY 2016; 197:834-46. [DOI: 10.4049/jimmunol.1403104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
20
|
Liu Z, Zhong T, Zheng D, Cepinskas I, Peng T, Su L. Heat stress pretreatment decreases lipopolysaccharide-induced apoptosis via the p38 signaling pathway in human umbilical vein endothelial cells. Mol Med Rep 2016; 14:1007-13. [PMID: 27222013 DOI: 10.3892/mmr.2016.5303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 03/07/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate vascular endothelial apoptosis, and the regulatory molecules involved in the condition of heatstroke caused by direct hyperthermia due to high core temperature and gut‑derived endotoxemia. Human umbilical vascular endothelial cells (HUVECs) were isolated and treated with heat stress (43˚C for 1 h), lipopolysaccharide (LPS; 1 µg/ml), or a combination of heat stress pretreatment followed by LPS. Caspase‑3 activity, DNA fragmentation, and cell viability, determined using a 3‑(4, 5‑dimethyl thiazol‑2‑yl)‑2,5‑diphenyl tetrazolium bromide assay, were measured to examine cellular apoptosis. Changes in the expression levels of heat shock protein (HSP) 27, HSP90 and B‑cell lymphoma 2 (Bcl‑2), and the phosphorylation of p38 were detected using Western blot assays. The specific inhibitor of p38, SB203580, was also used. LPS induced endothelial apoptosis, as indicated by increased caspase‑3 activity, a high level of DNA fragmentation and low cell viability. LPS also increased p38 phosphorylation and decreased the expression levels of HSP27, HSP90 and Bcl‑2. Heat stress pretreatment inhibited LPS‑induced cellular apoptosis, increased the phosphorylation of p38, and increased the expression levels of HSP27, HSP90 and Bcl‑2. Pretreatment with SB203580 had effects similar to those of heat stress in the amelioration of LPS‑induced effects. These findings demonstrated that heat stress pretreatment decreased LPS‑induced Bcl‑2‑associated apoptosis in HUVECs by attenuating p38 activation, thereby increasing the expression levels of HSP27 and HSP90.
Collapse
Affiliation(s)
- Zhifeng Liu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Tianyu Zhong
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Dong Zheng
- Critical Illness Research Centre, Lawson Health Research Institute, University of Western Ontario, London, ON N6A 4G5, Canada
| | - Inga Cepinskas
- Critical Illness Research Centre, Lawson Health Research Institute, University of Western Ontario, London, ON N6A 4G5, Canada
| | - Tianqing Peng
- Critical Illness Research Centre, Lawson Health Research Institute, University of Western Ontario, London, ON N6A 4G5, Canada
| | - Lei Su
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
21
|
Liu D, Wang X, Qin W, Chen J, Wang Y, Zhuang M, Sun B. Suppressive effect of exogenous carbon monoxide on endotoxin-stimulated platelet over-activation via the glycoprotein-mediated PI3K-Akt-GSK3β pathway. Sci Rep 2016; 6:23653. [PMID: 27020460 PMCID: PMC4810323 DOI: 10.1038/srep23653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
Platelet activation is an important event involved in the pathophysiological processes of the coagulation system. Clinical evidence has shown that platelets undergo distinctive pathological processes during sepsis. Unfortunately, how platelets physiologically respond to inflammation or sepsis is not well understood. In this study, we used a lipopolysaccharide (LPS)-stimulated platelet model to systemically investigate alterations in membrane glycoprotein expression, molecular signaling, morphology and critical functions of platelets. We found that platelet adhesion, aggregation, secretion, and spreading on immobilized fibrinogen and the expression of platelet membrane glycoproteins were significantly increased by LPS stimulation, and these changes were accompanied by a significant decrease in cGMP levels and an abnormal distribution of platelet α-granules. Exogenous CO reversed these alterations. Profound morphological changes in LPS-stimulated platelets were observed using atomic force microscopy and phase microscopy. Furthermore, the elevated activities of PI3Ks, AKt and GSK-3β were effectively suppressed by exogenous CO, leading to the improvement of platelet function. Together, these results provide evidence that platelet over-activation persists under LPS-stimulation and that exogenous CO plays an important role in suppressing platelet activation via the glycoprotein-mediated PI3K-Akt-GSK3β pathway.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Critical Care Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xu Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Weiting Qin
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jingjia Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yawei Wang
- School of Science, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mingfeng Zhuang
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
22
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
23
|
Serizawa F, Patterson E, Potter RF, Fraser DD, Cepinskas G. Pretreatment of human cerebrovascular endothelial cells with CO-releasing molecule-3 interferes with JNK/AP-1 signaling and suppresses LPS-induced proadhesive phenotype. Microcirculation 2015; 22:28-36. [PMID: 25098198 DOI: 10.1111/micc.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exogenously administered CO interferes with PMN recruitment to the inflamed organs. The mechanisms of CO-dependent modulation of vascular proadhesive phenotype, a key step in PMN recruitment, are unclear. METHODS We assessed the effects/mechanisms of CO liberated from a water-soluble CORM-3 on modulation of the proadhesive phenotype in hCMEC/D3 in an in vitro model of endotoxemia. To this end, hCMEC/D3 were stimulated with LPS (1 μg/mL) for six hours. In some experiments hCMEC/D3 were pretreated with CORM-3 (200 μmol/L) before LPS-stimulation. PMN rolling/adhesion to hCMEC/D3 were assessed under conditions of laminar shear stress (0.7 dyn/cm(2) ). In parallel, expression of adhesion molecules E-selectin, ICAM-1, and VCAM-1 (qPCR), activation of transcription factors, NF-κB and AP-1 (ELISA), and MAPK-signaling (expression/phosphorylation of p38, ERK1/2, and JNK1/2; western blot) were assessed. RESULTS The obtained results indicate that CORM-3 pretreatment reduces PMN rolling/adhesion to LPS-stimulated hCMEC/D3 (p < 0.05). Decreased PMN rolling/adhesion to hCMEC/D3 was associated with CORM-3-dependent inhibition of MAPK JNK1/2 activation (Tyr-phosphorylation), inhibition of transcription factor, AP-1 (c-Jun phosphorylation), and subsequent suppression of VCAM-1 expression (p < 0.05). CONCLUSIONS These findings indicate that CORM-3 pretreatment interferes with JNK/AP-1 signaling and suppresses LPS-induced upregulation of the proadhesive phenotype in hCMEC/D3.
Collapse
Affiliation(s)
- Fukashi Serizawa
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Katada K, Takagi T, Uchiyama K, Naito Y. Therapeutic roles of carbon monoxide in intestinal ischemia-reperfusion injury. J Gastroenterol Hepatol 2015; 30 Suppl 1:46-52. [PMID: 25827804 DOI: 10.1111/jgh.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal ischemia-reperfusion (I-R) injury is a complex, multifactorial, pathophysiological process with high morbidity and mortality, leading to serious difficulty in treatment. The mechanisms involved in the pathogenesis of intestinal I-R injury have been examined in detail and various therapeutic approaches for intestinal I-R injury have been developed; however, existing circumstances have not yet led to a dramatic change of treatment. Carbon monoxide (CO), one of the by-products of heme degradation by heme oxygenase (HO), is considered as a candidate for treatment of intestinal I-R injury and indeed HO-1-derived endogenous CO and exogenous CO play a pivotal role in protecting the gastrointestinal tract from intestinal I-R injury. Interestingly, anti-inflammatory effects of CO have been elucidated sufficiently in various cell types including endothelial cells, circulating leukocytes, macrophages, lymphocytes, epithelial cells, fibroblast, organ-specific cells, and immune-presenting cells. In this review, we herein focus on the therapeutic roles of CO in intestinal I-R injury and the cell-specific anti-inflammatory effects of CO, clearly demonstrating future therapeutic strategies of CO for treating intestine I-R injury.
Collapse
Affiliation(s)
- Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medial Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
25
|
The severity of microvascular dysfunction due to compartment syndrome is diminished by the systemic application of CO-releasing molecule-3. J Orthop Trauma 2014; 28:e263-8. [PMID: 24675751 DOI: 10.1097/bot.0000000000000097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To examine the protective effects of carbon monoxide (CO), liberated from a novel CO-releasing molecule (CORM-3), on the function of compartment syndrome (CS)-challenged muscle in a rodent model, thus providing for a potential development of a pharmacologic adjunctive treatment for CS. METHODS Wistar rats were randomized into 4 groups: sham (no CS), CS, CS with inactive CORM-3 (iCORM-3), and CS + CORM-3 (10 mg/kg intraperitoneally). CS was induced by elevation of intracompartmental pressure to 30 mm Hg through an infusion of isotonic saline into the anterior compartment of the hind limb for 2 hours. Both CORM-3 and iCORM-3 were injected immediately after fasciotomy. Microvascular perfusion, cellular tissue injury, and inflammatory response within the extensor digitorum longus muscle were assessed using intravital video microscopy 45 minutes after fasciotomy. Systemic levels of tumor necrosis factor alpha (TNF-α) were also measured. RESULTS Elevation of intracompartmental pressure resulted in significant microvascular perfusion deficits (23% ± 2% continuously perfused capillaries in CS vs. 76% ± 4% in sham, P < 0.0001; 55% ± 2% nonperfused capillaries in CS vs. 13% ± 2% in sham, P < 0.0001), significant increase in tissue injury (ethidium bromide/bisbenzimide of 0.31 ± 0.05 in CS vs. 0.05 ± 0.03 in sham, P < 0.0001) and adherent leukocytes (13.7 ± 0.9 in CS vs. 1.8 ± 0.5 in sham, P < 0.0001), and a progressive rise in systemic TNF-α. CORM-3 (but not iCORM-3) treatment restored the number of continuously perfused capillaries (57% ± 5%, P < 0.001), diminished tissue injury (ethidium bromide/bisbenzimide of 0.07 ± 0.01, P < 0.001), reversed the CS-associated rise in TNF-α, and decreased leukocyte adherence (0.6 ± 0.3, P < 0.001). CONCLUSIONS CORM-3 displays a potent protective/anti-inflammatory action in an experimental model of CS, suggesting a potential therapeutic application to patients at risk of developing CS.
Collapse
|
26
|
Babu D, Motterlini R, Lefebvre RA. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation. Br J Pharmacol 2014; 172:1557-73. [PMID: 24641722 DOI: 10.1111/bph.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Carbon monoxide (CO) is enzymatically generated in mammalian cells alongside the liberation of iron and the production of biliverdin and bilirubin. This occurs during the degradation of haem by haem oxygenase (HO) enzymes, a class of ubiquitous proteins consisting of constitutive and inducible isoforms. The constitutive HO2 is present in the gastrointestinal tract in neurons and interstitial cells of Cajal and CO released from these cells might contribute to intestinal inhibitory neurotransmission and/or to the control of intestinal smooth muscle cell membrane potential. On the other hand, increased expression of the inducible HO1 is now recognized as a beneficial response to oxidative stress and inflammation. Among the products of haem metabolism, CO appears to contribute primarily to the antioxidant and anti-inflammatory effects of the HO1 pathway explaining the studies conducted to exploit CO as a possible therapeutic agent. This article reviews the effects and, as far as known today, the mechanism(s) of action of CO administered either as CO gas or via CO-releasing molecules in acute gastrointestinal inflammation. We provide here a comprehensive overview on the effect of CO in experimental in vivo models of post-operative ileus, intestinal injury during sepsis and necrotizing enterocolitis. In addition, we will analyse the in vitro data obtained so far on the effect of CO on intestinal epithelial cell lines exposed to cytokines, considering the important role of the intestinal mucosa in the pathology of gastrointestinal inflammation.
Collapse
Affiliation(s)
- D Babu
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | | | | |
Collapse
|
27
|
Anti-inflammatory effects of carbon monoxide-releasing molecule on trinitrobenzene sulfonic acid-induced colitis in mice. Dig Dis Sci 2014; 59:1142-51. [PMID: 24442266 DOI: 10.1007/s10620-013-3014-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Recent findings indicate that carbon monoxide (CO) in non-toxic doses exerts a beneficial anti-inflammatory action in various experimental models. However, the precise anti-inflammatory mechanism of CO in the intestine remains unclear. Here, we assessed the effects of a novel water-soluble CO-releasing molecule, CORM-3, on trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. METHODS To induce colitis, C57BL/6 male mice received an enema of TNBS. CORM-3 or its inactive compound, iCORM-3, were administered intraperitoneally, once immediately before, and twice daily after receiving an enema of TNBS. Three days after TNBS administration, the distal colon was removed, assessed for colonic damage and histological scores, polymorphonuclear leukocyte recruitment (tissue-associated myeloperoxidase, MPO activity), and TNF-α, IFN-γ and IL-17A expression (mRNA and protein levels in the colon mucosa). CD4(+) T cells isolated from murine spleens were stimulated with anti-CD3/CD28, in the presence or absence of CORM-3/iCORM-3. The cell supernatants were assessed for TNF-α and IFN-γ expression, 24 h following stimulation. RESULTS Colonic damage and histological scores were significantly increased in TNBS-induced mice compared to sham-operated mice. Tissue-associated MPO activity and expression of TNF-α, IFN-γ, and IL-17A in the colonic mucosa were higher in TNBS-induced colitis mice. The above changes were attenuated in CORM-3-treated mice. Further, CORM-3 was effective in reducing TNF-α and IFN-γ production in anti-CD3/CD28-stimulated CD4(+) T cells. CONCLUSIONS These findings indicate that CO released from CORM-3 ameliorates inflammatory responses in the colon of TNBS-challenged mice at least in part through a mechanism that involves the suppression of inflammatory cell recruitment/activation.
Collapse
|
28
|
Patterson EK, Fraser DD, Capretta A, Potter RF, Cepinskas G. Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against MPO-induced vascular endothelial cell activation/dysfunction. Free Radic Biol Med 2014; 70:167-73. [PMID: 24583458 DOI: 10.1016/j.freeradbiomed.2014.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 12/20/2022]
Abstract
Polymorphonuclear leukocyte (PMN)-derived myeloperoxidase (MPO) contributes to the pathophysiology of numerous systemic inflammatory disorders through: (1) direct peroxidation of targets and (2) production of strong oxidizing compounds, e.g., hypohalous acids, particularly hypochlorous acid, which furthers oxidant damage and contributes to the propagation of inflammation and tissue injury/dysfunction. Carbon monoxide-releasing molecules (CORMs) offer potent anti-inflammatory effects; however, the mechanism(s) of action is not fully understood. This study assessed the potential of MPO activity inhibition by a water-soluble CORM, CORM-3. To this end, we used in vitro assays to study CORM-3-dependent modulation of MPO activity with respect to: (1) the inhibition of MPO's catalytic activity generally and (2) the specific inhibition of MPO's peroxidation and halogenation (i.e., production of hypochlorous acid) reactions. Further, we employed primary human umbilical vein endothelial cells (HUVECs) to investigate MPO-dependent cellular activation and dysfunction by measuring intracellular oxidant stress (DHR-123 oxidation) and HUVEC permeability (flux of Texas red-dextran), respectively. The results indicate that CORM-3 significantly inhibits MPO activity as well as MPO's peroxidation and hypohalous acid cycles specifically (p<0.05 vs uninhibited MPO). In addition, CORM-3 significantly decreases PMN homogenate- or rhMPO-induced intracellular DHR-123 oxidation in HUVECs and rhMPO-induced HUVEC monolayer permeability (p<0.05 vs untreated). In all assays the inactivated CORM-3 was significantly less effective than CORM-3 (p<0.05). Taken together our findings indicate that CORM-3 is a novel MPO inhibitor and mitigates inflammatory damage at least in part through a mechanism involving the inhibition of neutrophilic MPO activity.
Collapse
Affiliation(s)
- Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, ON N6A 4G4, Canada; Department of Physiology & Pharmacology, Department of Paediatrics, and Department of Clinical Neurological Sciences and Western University, London, ON, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, ON, Canada
| | - Richard F Potter
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada; Department of Medical Biophysics, Western University, London, ON, Canada.
| |
Collapse
|
29
|
Abstract
SIGNIFICANCE Heme oxygenase enzymes, which exist as constitutive (HO-2) and inducible (HO-1) isoforms, degrade heme to carbon monoxide (CO) and the bile pigment biliverdin. In the last two decades, substantial scientific evidence has been collected on the function of HO-1 in cell homeostasis, emphasizing these two important features: (i) HO-1 is a fundamental "sensor" of cellular stress and directly contributes toward limiting or preventing tissue damage; (ii) the products of HO-1 activity dynamically participate in cellular adaptation to stress and are inherently involved in the mechanisms of defence. RECENT ADVANCES On the basis of its promising cytoprotective features, scientists have pursued the targeting of HO-1 as an attractive cellular pathway for drug discovery. Three different pharmacological approaches are currently being investigated in relation to HO-1, namely the use of CO gas, the development of CO-releasing molecules (CO-RMs), and small molecules possessing the ability to up-regulate HO-1 in cells and tissues. CRITICAL ISSUE: Studies on the regulation and amplification of the HO-1/CO pathway by selective pharmacological approaches may lead to the discovery of novel drugs for the treatment of a variety of diseases. FUTURE DIRECTIONS In this review, we will discuss in detail the importance of pharmacologically manipulating the HO-1 pathway and its products for conferring protection against a variety of conditions that are characterized by oxidative stress and inflammation. We will also evaluate each of the strategic approaches being developed by considering their intrinsic advantages and disadvantages, which may have implications for their use as therapeutics in specific pathological conditions.
Collapse
|
30
|
Liang F, Cao J, Qin WT, Wang X, Qiu XF, Sun BW. Regulatory effect and mechanisms of carbon monoxide-releasing molecule II on hepatic energy metabolism in septic mice. World J Gastroenterol 2014; 20:3301-3311. [PMID: 24696611 PMCID: PMC3964400 DOI: 10.3748/wjg.v20.i12.3301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible mechanisms of exogenous carbon monoxide-releasing molecule II (CORM-2) intervention on hepatic energy metabolism in experimental sepsis.
METHODS: Forty-eight C57BL/6 mice were randomly divided into four groups (n = 12): sham group; cecal ligation and puncture (CLP) group; CLP + CORM-2 group and CLP + iCORM-2 (inactive CORM-2) group. Survival rates were determined after 72 h. Twenty-four similarly treated mice (n = 6 in each group) were assayed for post-operative continuous blood glucose in the first 36 h. Thirty-six similarly treated mice (n = 9 in each group) underwent micro-positron emission tomography (PET) scanning after tail vein injection of 18F-fluorodeoxyglucose (FDG) 24 h after operation. Plasma and liver specimens were collected for assay of liver pathology, alanine transaminase (ALT) and aspartate transaminase (AST) activities. Hepatic glucokinase activity, lactic acid levels and mitochondrial swelling were also determined.
RESULTS: Improved survival was observed in CORM-2 treated mice. Both the CLP and CLP + CORM-2 groups had sustained low blood glucose levels within the first post-operative 36 h. 18F-FDG micro-PET images showed abnormally high levels of hepatic glucose metabolism (standardized uptake value) in the CLP group (2.76 ± 0.39 vs 0.84 ± 0.14, P < 0.01), which declined to normal levels after CORM-2 intervention (1.29 ± 0.32 vs 2.76 ± 0.39, P < 0.05). glucokinase activity was markedly increased in the CLP group (6.38 ± 0.56 U/g vs 4.60 ± 0.21 U/g, P < 0.01), but was normal after CORM-2 intervention (4.74 ± 0.14 U/g vs 6.38 ± 0.56 U/g, P < 0.05). CORM-2 suppressed plasma lactic acid levels (4.02 ± 0.02 mmol/L vs 7.72 ± 2.37 mmol/L, P < 0.05) and protected hepatic mitochondria in CLP mice. CORM-2 intervention also reduced elevated plasma AST (199.67 ± 11.08 U/L vs 379.67 ± 16.34 U/L, P < 0.05) and ALT (63.67 ± 12.23 U/L vs 112.67 ± 9.74 U/L, P < 0.05) activities in CLP mice.
CONCLUSION: The release of CO molecules by CORM-2 protects mitochondria and maintains a stable level of hepatic glucose metabolism. Thus, CORM-2 improves liver function and survival in septic mice.
Collapse
|
31
|
Liu D, Liang F, Wang X, Cao J, Qin W, Sun B. Suppressive effect of CORM-2 on LPS-induced platelet activation by glycoprotein mediated HS1 phosphorylation interference. PLoS One 2013; 8:e83112. [PMID: 24376647 PMCID: PMC3869782 DOI: 10.1371/journal.pone.0083112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/31/2013] [Indexed: 01/31/2023] Open
Abstract
In recent years, it has been discovered that septic patients display coagulation abnormalities. Platelets play a major role in the coagulation system. Studies have confirmed that carbon monoxide (CO) has important cytoprotective and anti-inflammatory function. However, whether CO could alter abnormal activation of platelets and coagulation and thereby reduce the incidence of mortality during sepsis has not been defined. In this report, we have used CO-releasing molecules (CORM-2) to determine whether CO inhibits LPS-induced abnormal activation of platelets and have explored the potential mechanisms. LPS was used to induce activation of platelets in vitro, which were purified from the peripheral venous blood of healthy adult donors. CORM-2 was applied as a potential therapeutic agent. CORM-2 preconditioning and delayed treatment were also studied. We found that in the LPS groups, the function of platelets such as spreading, aggregation, and release were enhanced abnormally. By contrast, the platelets in the CORM-2 group were gently activated. Further studies showed that the expression of platelet membrane glycoproteins increased in the LPS group. Coincidently, both hematopoietic lineage cell-specific protein 1 and its phosphorylated form also increased dramatically. These phenomena were less dramatically seen in the CORM-2 groups. Taken together, we conclude that during LPS stimulation, platelets were abnormally activated, and this functional state may be associated with the signal that is transmitted between membrane glycoproteins and HS1. CORM-released CO suppresses the abnormal activation of platelets by interfering with glycoprotein-mediated HS1 phosphorylation.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Feng Liang
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Xu Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Cao
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Weiting Qin
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Bingwei Sun
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Gziut M, MacGregor HJ, Nevell TG, Mason T, Laight D, Shute JK. Anti-inflammatory effects of tobramycin and a copper-tobramycin complex with superoxide dismutase-like activity. Br J Pharmacol 2013; 168:1165-81. [PMID: 23072509 DOI: 10.1111/bph.12018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway inflammation in cystic fibrosis (CF) patients is characterized by accumulations of neutrophils in the airway and T cells in bronchial tissue, with activation of platelets in the circulation. CF patients are routinely treated with systemic or inhaled tobramycin for airway infection with Pseudomonas aeruginosa. Clinical trials have indicated an anti-inflammatory effect of tobramycin beyond its bactericidal activity. Here, we investigate the anti-inflammatory properties of tobramycin in vitro and consider if these relate to the ability of tobramycin to bind copper, which is elevated in blood and sputum in CF. EXPERIMENTAL APPROACH A copper-tobramycin complex was synthesized. The effect of tobramycin and copper-tobramycin on neutrophil activation and migration of T cells and neutrophils across human lung microvascular endothelial cells in response to thrombin-activated platelets were investigated in vitro. Tobramycin uptake was detected by immunocytochemistry. Intracellular reactive oxygen species were detected using the fluorescent indicator, 2',7'-dichlorofluorescein diacetate (DCFDA). Neutrophil superoxide, hydrogen peroxide and neutrophil elastase activity were measured using specific substrates. Copper was measured using atomic absorption spectroscopy. KEY RESULTS Tobramycin and copper-tobramycin were taken up by endothelial cells via a heparan sulphate-dependent mechanism and significantly inhibited T-cell and neutrophil transendothelial migration respectively. Copper-tobramycin has intracellular and extracellular superoxide dismutase-like activity. Neutrophil elastase inhibition by α1-antitrypsin is enhanced in the presence of copper-tobramycin. Tobramycin and copper-tobramycin are equally effective anti-pseudomonal antibiotics. CONCLUSIONS AND IMPLICATIONS Anti-inflammatory effects of tobramycin in vivo may relate to the spontaneous formation of a copper-tobramycin complex, implying that copper-tobramycin may be more effective therapy.
Collapse
Affiliation(s)
- M Gziut
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | | | | | | | | |
Collapse
|
33
|
Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D'Souza A, Raia V, Maiuri L, Krause DS, Egan ME, Bruscia EM. Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator. THE JOURNAL OF IMMUNOLOGY 2013; 190:5196-206. [PMID: 23606537 DOI: 10.4049/jimmunol.1201607] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously reported that TLR4 signaling is increased in LPS-stimulated cystic fibrosis (CF) macrophages (MΦs), contributing to the robust production of proinflammatory cytokines. The heme oxygenase-1 (HO-1)/CO pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. In this study, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules enhances CAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations re-established HO-1 and CAV-1 cell surface localization in CF MΦs. Consistent with restoration of HO-1/CAV-1-negative regulation of TLR4 signaling, genetic or pharmacological (CO-releasing molecule 2) induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counterregulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease.
Collapse
Affiliation(s)
- Ping-Xia Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06509, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ryter SW, Choi AMK. Carbon monoxide: present and future indications for a medical gas. Korean J Intern Med 2013; 28:123-40. [PMID: 23525151 PMCID: PMC3604600 DOI: 10.3904/kjim.2013.28.2.123] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/06/2013] [Indexed: 12/30/2022] Open
Abstract
Gaseous molecules continue to hold new promise in molecular medicine as experimental and clinical therapeutics. The low molecular weight gas carbon monoxide (CO), and similar gaseous molecules (e.g., H2S, nitric oxide) have been implicated as potential inhalation therapies in inflammatory diseases. At high concentration, CO represents a toxic inhalation hazard, and is a common component of air pollution. CO is also produced endogenously as a product of heme degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemoglobin, causing hypoxemia and decreased oxygen delivery to tissues at high concentrations. At physiological concentrations, CO may have endogenous roles as a signal transduction molecule in the regulation of neural and vascular function and cellular homeostasis. CO has been demonstrated to act as an effective anti-inflammatory agent in preclinical animal models of inflammation, acute lung injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional experimental indications for this gas include pulmonary fibrosis, pulmonary hypertension, metabolic diseases, and preeclampsia. The development of chemical CO releasing compounds constitutes a novel pharmaceutical approach to CO delivery with demonstrated effectiveness in sepsis models. Current and pending clinical evaluation will determine the usefulness of this gas as a therapeutic in human disease.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
35
|
Abstract
Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation and its potential diagnostic value remain incompletely characterized. Among other candidate 'medicinal gases' with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
36
|
Motterlini R, Haas B, Foresti R. Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs). Med Gas Res 2012; 2:28. [PMID: 23171578 PMCID: PMC3536644 DOI: 10.1186/2045-9912-2-28] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/07/2012] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo compounds capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. CO-RMs containing transition metal carbonyls were initially implemented to mimic the function of heme oxygenase-1 (HMOX1), a stress inducible defensive protein that degrades heme to CO and biliverdin leading to anti-oxidant and anti-inflammatory actions. Ten years after their discovery, the research on the chemistry and biological activities of CO-RMs has greatly intensified indicating that their potential use as CO delivering agents for the treatment of several pathological conditions is feasible. Although CO-RMs are a class of compounds that structurally diverge from traditional organic-like pharmaceuticals, their behaviour in the biological environments is progressively being elucidated revealing interesting features of metal-carbonyl chemistry towards cellular targets. Specifically, the presence of carbonyl groups bound to transition metals such as ruthenium, iron or manganese appears to make CO-RMs unique in their ability to transfer CO intracellularly and amplify the mechanisms of signal transduction mediated by CO. In addition to their well-established vasodilatory activities and protective effects against organ ischemic damage, CO-RMs are emerging for their striking anti-inflammatory properties which may be the result of the multiple activities of metal carbonyls in the control of redox signaling, oxidative stress and cellular respiration. Here, we review evidence on the pharmacological effects of CO-RMs in models of acute and chronic inflammation elaborating on some emerging concepts that may help to explain the chemical reactivity and mechanism(s) of action of this distinctive class of compounds in biological systems.
Collapse
Affiliation(s)
- Roberto Motterlini
- INSERM U955, Equipe 3, Faculty of Medicine, University Paris-Est Creteil, Creteil, France.
| | | | | |
Collapse
|
37
|
Murray TS, Okegbe C, Gao Y, Kazmierczak BI, Motterlini R, Dietrich LEP, Bruscia EM. The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation. PLoS One 2012; 7:e35499. [PMID: 22563385 PMCID: PMC3338523 DOI: 10.1371/journal.pone.0035499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/19/2012] [Indexed: 12/16/2022] Open
Abstract
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the Gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections.
Collapse
Affiliation(s)
- Thomas S. Murray
- Departments of Pediatrics, Yale University School of Medicine New Haven, Connecticut, United States of America
- Laboratory Medicine, Yale University School of Medicine New Haven, Connecticut, United States of America
| | - Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Yuan Gao
- Laboratory Medicine, Yale University School of Medicine New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Internal Medicine, Yale University School of Medicine New Haven, Connecticut, United States of America
| | | | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emanuela M. Bruscia
- Departments of Pediatrics, Yale University School of Medicine New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
The brain of the infant and young child is a developing, dynamic, structure subject to functional remodelling under the influence of factors responsible for optimal neuronal development and synaptogenesis. It exhibits age dependent variation in metabolic rate, blood flow, and ability to tolerate oxidative stress. It is also characterized by an exuberance of neurotransmitter activity, particularly in the first few years of life. The dynamic evolution and adaptability of early brain function permits the organization of neuronal networks to be influenced by environmental stimulation, and, to reduce the functional impact of injury. However, these same processes may also exacerbate the harm sustained by the brain following an acquired brain injury (ABI). The developing neurons are susceptible to excitotoxicity, oxidative stress, and, inflammation, often leading to cellular necrosis and apoptosis. Despite being immunologically privileged via the blood brain barrier, the developing brain is susceptible to injury from systemic inflammation through alteration of normally protective cerebrovascular endothelial cell function. Finally, many of the therapeutic agents currently employed in post-ABI hospital care may also compromise ABI outcome via non-intended pharmacological effects. These agents include analgesic, sedative and anti-convulsant medications. This review emphasizes those physiological considerations in the developing brain which may impact the outcome after ABI, including, the cellular mechanisms of neuronal and cerebrovascular endothelial cell injury, ABI outcome and future therapeutic directions.
Collapse
|
39
|
Gullotta F, di Masi A, Ascenzi P. Carbon monoxide: an unusual drug. IUBMB Life 2012; 64:378-86. [PMID: 22431507 DOI: 10.1002/iub.1015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/22/2022]
Abstract
The highly toxic gas carbon monoxide (CO) displays many physiological roles in several organs and tissues. Although many diseases, including cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration, and sleep disorders, have been linked to abnormal endogenous CO metabolism and functions, CO administration has therapeutic potential in inflammation, sepsis, lung injury, cardiovascular diseases, transplantation, and cancer. Here, insights into the CO-based therapy, characterized by the induction or gene transfer of heme oxygenase-1 and either gas or CO-releasing molecule administration, are reviewed.
Collapse
Affiliation(s)
- Francesca Gullotta
- Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Roma, Italy
| | | | | |
Collapse
|
40
|
Fagone P, Mangano K, Coco M, Perciavalle V, Garotta G, Romao CC, Nicoletti F. Therapeutic potential of carbon monoxide in multiple sclerosis. Clin Exp Immunol 2012; 167:179-87. [PMID: 22235993 DOI: 10.1111/j.1365-2249.2011.04491.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Carbon monoxide (CO) is produced during the catabolism of free haem, catalyzed by haem oxygenase (HO) enzymes, and its physiological roles include vasodilation, neurotransmission, inhibition of platelet aggregation and anti-proliferative effects on smooth muscle. In vivo preclinical studies have shown that exogenously administered quantities of CO may represent an effective treatment for conditions characterized by a dysregulated immune response. The carbon monoxide-releasing molecules (CORMs) represent a group of compounds capable of carrying and liberating controlled quantities of CO in the cellular systems. This review covers the physiological and anti-inflammatory properties of the HO/CO pathway in the central nervous system. It also discusses the effects of CORMs in preclinical models of inflammation. The accumulating data discussed herein support the possibility that CORMs may represent a novel class of drugs with disease-modifying properties in multiple sclerosis.
Collapse
Affiliation(s)
- P Fagone
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Therapeutic potential of heme oxygenase-1/carbon monoxide in lung disease. Int J Hypertens 2012; 2012:859235. [PMID: 22518295 PMCID: PMC3296197 DOI: 10.1155/2012/859235] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase (HO), a catabolic enzyme, provides the rate-limiting step in the oxidative breakdown of heme, to generate carbon monoxide (CO), iron, and biliverdin-IXα. Induction of the inducible form, HO-1, in tissues is generally regarded as a protective mechanism. Over the last decade, considerable progress has been made in defining the therapeutic potential of HO-1 in a number of preclinical models of lung tissue injury and disease. Likewise, tissue-protective effects of CO, when applied at low concentration, have been observed in many of these models. Recent studies have expanded this concept to include chemical CO-releasing molecules (CORMs). Collectively, salutary effects of the HO-1/CO system have been demonstrated in lung inflammation/acute lung injury, lung and vascular transplantation, sepsis, and pulmonary hypertension models. The beneficial effects of HO-1/CO are conveyed in part through the inhibition or modulation of inflammatory, apoptotic, and proliferative processes. Recent advances, however, suggest that the regulation of autophagy and the preservation of mitochondrial homeostasis may serve as additional candidate mechanisms. Further preclinical and clinical trials are needed to ascertain the therapeutic potential of HO-1/CO in human clinical disease.
Collapse
|
42
|
Fagone P, Mangano K, Quattrocchi C, Motterlini R, Di Marco R, Magro G, Penacho N, Romao CC, Nicoletti F. Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin Exp Immunol 2011; 163:368-74. [PMID: 21235533 DOI: 10.1111/j.1365-2249.2010.04303.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have evaluated the effects of the carbon monoxide-releasing molecule CORM-A1 [Na(2) (BH(3) CO(2) ); ALF421] on the development of relapsing-remitting experimental allergic encephalomyelitis (EAE) in SJL mice, an established model of multiple sclerosis (MS). The data show that the prolonged prophylactic administration of CORM-A1 improves the clinical and histopathological signs of EAE, as shown by a reduced cumulative score, shorter duration and a lower cumulative incidence of the disease as well as milder inflammatory infiltrations of the spinal cords. This study suggests that the use of CORM-A1 might represent a novel therapeutic strategy for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- P Fagone
- Department of Biomedical Sciences, School of Medicine, University of Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 14:137-67. [PMID: 20624029 PMCID: PMC2988629 DOI: 10.1089/ars.2010.3153] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mizuguchi S, Capretta A, Suehiro S, Nishiyama N, Luke P, Potter RF, Fraser DD, Cepinskas G. Carbon monoxide-releasing molecule CORM-3 suppresses vascular endothelial cell SOD-1/SOD-2 activity while up-regulating the cell surface levels of SOD-3 in a heparin-dependent manner. Free Radic Biol Med 2010; 49:1534-41. [PMID: 20797432 DOI: 10.1016/j.freeradbiomed.2010.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/06/2010] [Accepted: 08/14/2010] [Indexed: 12/20/2022]
Abstract
The role of CO in the modulation of antioxidant enzyme function has not been investigated, yet. In this study we assessed the effects and potential mechanisms of the ruthenium-based water-soluble CO-releasing molecule CORM-3 in the modulation of superoxide dismutase (SOD) activity/binding in vascular endothelial cells (HUVECs). To this end, HUVECs were treated with CORM-3 (100 μM) and assessed for total SOD activity in cell lysates (cell-associated SOD activity) and cell culture supernatants (soluble SOD). In parallel, release/binding of extracellular SOD (SOD-3) in the absence or presence of heparin (1-10 IU/ml), a key factor regulating SOD-3 cell-surface binding, was investigated. In addition, the effects of CORM-3 on the modulation of purified SOD-1 and SOD-2 activity in a cell-free system were also assessed. The results obtained indicate that CORM-3 effectively suppresses the activity of both purified SOD-1 and SOD-2. These findings were accompanied by CORM-3-dependent attenuation of total cell-associated SOD activity (without affecting SOD-1/SOD-2 protein expression) and a subsequent increase in ROS production (DHR123 oxidation) in HUVECs. In parallel, a concomitant increase in soluble-SOD activity (due to increased SOD-3 release from the cell surface) was observed in the cell culture supernatants. However, in the presence of heparin, total cell-associated SOD activity was significantly increased by CORM-3, because of increased binding of SOD-3 to HUVECs. Taken together these findings indicate for the first time that CORM-3 modulates both the activity of intracellular SOD (i.e., SOD-1 and SOD-2) and the binding of extracellular SOD (SOD-3) to the cell surface.
Collapse
Affiliation(s)
- Shinjiro Mizuguchi
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada N6A 4G4
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010. [PMID: 20624029 DOI: 10.1089/ars.2010.31532988629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010; 9:728-43. [PMID: 20811383 DOI: 10.1038/nrd3228] [Citation(s) in RCA: 1167] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Carbon monoxide liberated from CO-releasing molecule (CORM-2) attenuates ischemia/reperfusion (I/R)-induced inflammation in the small intestine. Inflammation 2010; 33:92-100. [PMID: 19842024 DOI: 10.1007/s10753-009-9162-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CORM-released CO has been shown to be beneficial in resolution of acute inflammation. The acute phase of intestinal ischemia-reperfusion (I/R) injury is characterized by oxidative stress-related inflammation and leukocyte recruitment. In this study, we assessed the effects and potential mechanisms of CORM-2-released CO in modulation of inflammatory response in the small intestine following I/R-challenge. To this end mice (C57Bl/6) small intestine were challenged with ischemia by occluding superior mesenteric artery (SMA) for 45 min. CORM-2 (8 mg/kg; i.v.) was administered immediately before SMA occlusion. Sham operated mice were injected with vehicle (0.25% DMSO). Inflammatory response in the small intestine (jejunum) was assessed 4 h following reperfusion by measuring tissue levels of TNF-alpha protein (ELISA), adhesion molecules E-selectin and ICAM-1 (Western blot), NF-kappaB activation (EMSA), along with PMN tissue accumulation (MPO assay) and leukocyte rolling/adhesion in the microcirculation of jejunum (intravital microscopy). The obtained results indicate that tissue levels of TNF-alpha, E-selectin and ICAM-1 protein expression, activation of NF-kappaB, and subsequent accumulation of PMN were elevated in I/R-challenged jejunum. The above changes were significantly attenuated in CORM-2-treated mice. Taken together these findings indicate that CORM-2-released CO confers anti-inflammatory effects by interfering with NF-kappaB activation and subsequent up-regulation of vascular pro-adhesive phenotype in I/R-challenged small intestine.
Collapse
|
48
|
Ganta VC, Alexander JS. Focus on carbon monoxide: a modulator of neutrophil oxidants and elastase spatial localization? Am J Physiol Heart Circ Physiol 2009; 297:H902-4. [PMID: 19592608 DOI: 10.1152/ajpheart.00587.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|