1
|
Xiao Z, Wei X, Li M, Yang K, Chen R, Su Y, Yu Z, Liang Y, Ge J. Myeloid-specific deletion of Capns1 attenuates myocardial infarction injury via restoring mitochondrial function and inhibiting inflammasome activation. J Mol Cell Cardiol 2023; 183:54-66. [PMID: 37689005 DOI: 10.1016/j.yjmcc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Mitochondrial dysfunction of macrophage-mediated inflammatory response plays a key pathophysiological process in myocardial infarction (MI). Calpains are a well-known family of calcium-dependent cysteine proteases that regulate a variety of processes, including cell adhesion, proliferation, and migration, as well as mitochondrial function and inflammation. CAPNS1, the common regulatory subunit of calpain-1 and 2, is essential for the stabilization and activity of the catalytic subunit. Emerging studies suggest that calpains may serve as key mediators in mitochondria and NLRP3 inflammasome. This study investigated the role of myeloid cell calpains in MI. METHODS MI models were constructed using myeloid-specific Capns1 knockout mice. Cardiac function, cardiac fibrosis, and inflammatory infiltration were investigated. In vitro, bone marrow-derived macrophages (BMDMs) were isolated from mice. Mitochondrial function and NLRP3 activation were assessed in BMDMs under LPS stimulation. ATP5A1 knockdown and Capns1 knock-out mice were subjected to MI to investigate their roles in MI injury. RESULTS Ablation of calpain activities by Capns1 deletion improved the cardiac function, reduced infarct size, and alleviated cardiac fibrosis in mice subjected to MI. Mechanistically, Capns1 knockout reduced the cleavage of ATP5A1 and restored the mitochondria function thus inhibiting the inflammasome activation. ATP5A1 knockdown antagonized the protective effect of Capns1 mKO and aggravated MI injury. CONCLUSION This study demonstrated that Capns1 depletion in macrophages mitigates MI injury via maintaining mitochondrial homeostasis and inactivating the NLRP3 inflammasome signaling pathway. This study may offer novel insights into MI injury treatment.
Collapse
Affiliation(s)
- Zilong Xiao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghui Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Ruizhen Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ziqing Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yixiu Liang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
2
|
Chaturvedi P, Kalani A, Chaturvedi P, Kalani K, Verma VK, Tyagi SC. Exercise mitigates calpain induced Purkinje cell loss in diabetes. Life Sci 2022; 308:120982. [PMID: 36150460 DOI: 10.1016/j.lfs.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Calpain-1 is a ubiquitous calcium dependent cysteine protease and found in cytoplasm as well as mitochondria. We have earlier reported that active calpain-1 is translocated from cytosol to mitochondria and activates MMP9. Calpain-1 activation is detrimental to the heart in several different ways, but there is little evidence that it can degrade Purkinje cell protein (PCP-4) and impair contractility in diabetes. Our hypothesis is that in diabetes, PCP-4 is degraded by calpain-1, causing contractile dysfunction that can be mitigated by exercise. To test this hypothesis, we recruited four groups of mice, 1) db/+ control, 2) db/+ with exercise, 3) db/db, 4) db/db with exercise. The mice were exercised on treadmill for 8 weeks as per American Veterinary Research Guidelines. Adding calcium to isolated cardiomyocytes caused them to lose shape and die. Compared with live myocytes, we observed high calpain-1 levels as well as significantly lower levels of PCP-4 and increased levels of calmodulin and calmodulin kinase II (CaMKII) in dead myocytes. We used the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) plasmid to knock down calpain-1 in HL-1 myocytes which restored the levels of PCP-4 along with calmodulin and CaMKII. In vivo, we found upregulated levels of calpain-1 in db/db mice (diabetic) as compared to db/+ which were mitigated in the exercised mice. Conclusively our data strongly suggests that in diabetes there is high induction of calpain-1 with degrades PCP-4, a protein important for contractility and exercise can mitigate this.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Anuradha Kalani
- Department of Physiology and Biophysics, University of Louisville, KY, USA; Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, U.P., India.
| | - Poonam Chaturvedi
- Department of Physiotherapy, Lovely Professional University, Phagwara, Punjab, India
| | - Komal Kalani
- Department of Chemistry, Biotechnology Sciences and Engineering Building, University of Texas at San Antonio, San Antonio, TX, USA
| | - Vinod K Verma
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, U.P., India
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| |
Collapse
|
3
|
Souza-Neto FV, Islas F, Jiménez-González S, Luaces M, Ramchandani B, Romero-Miranda A, Delgado-Valero B, Roldan-Molina E, Saiz-Pardo M, Cerón-Nieto MÁ, Ortega-Medina L, Martínez-Martínez E, Cachofeiro V. Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11071232. [PMID: 35883722 PMCID: PMC9311874 DOI: 10.3390/antiox11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
We have evaluated cardiac function and fibrosis in infarcted male Wistar rats treated with MitoQ (50 mg/kg/day) or vehicle for 4 weeks. A cohort of patients admitted with a first episode of acute MI were also analyzed with cardiac magnetic resonance and T1 mapping during admission and at a 12-month follow-up. Infarcted animals presented cardiac hypertrophy and a reduction in the left ventricular ejection fraction (LVEF) and E- and A-waves (E/A) ratio when compared to controls. Myocardial infarction (MI) rats also showed cardiac fibrosis and endoplasmic reticulum (ER) stress activation. Binding immunoglobulin protein (BiP) levels, a marker of ER stress, were correlated with collagen I levels. MitoQ reduced oxidative stress and prevented all these changes without affecting the infarct size. The LVEF and E/A ratio in patients with MI were 57.6 ± 7.9% and 0.96 ± 0.34, respectively. No major changes in cardiac function, extracellular volume fraction (ECV), or LV mass were observed at follow-up. Interestingly, the myeloperoxidase (MPO) levels were associated with the ECV in basal conditions. BiP staining and collagen content were also higher in cardiac samples from autopsies of patients who had suffered an MI than in those who had died from other causes. These results show the interactions between mitochondrial oxidative stress and ER stress, which can result in the development of diffuse fibrosis in the context of MI.
Collapse
Affiliation(s)
- Francisco V. Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Fabian Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, 28046 Madrid, Spain;
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Elena Roldan-Molina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
| | - Melchor Saiz-Pardo
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mª Ángeles Cerón-Nieto
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
| | - Luis Ortega-Medina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| |
Collapse
|
4
|
Juibari AD, Rezadoost MH, Soleimani M. The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology 2022; 30:1479-1491. [PMID: 35635676 PMCID: PMC9149670 DOI: 10.1007/s10787-022-01002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is one of the viral diseases that has caused many deaths and financial losses to humans. Using the available information, this virus appears to activate the host cell-death mechanism through Calpain activation. Calpain inhibition can stop its downstream cascade reactions that cause cell death. Given the main roles of Calpain in the entry and pathogenicity of the SARS-CoV-2, its inhibition can be effective in controlling the COVID-19. This review describes how the virus activates Calpain by altering calcium flow. When Calpain was activated, the virus can enter the target cell. Subsequently, many complications of the disease, such as inflammation, cytokine storm and pulmonary fibrosis, are caused by virus-activated Calpain function. Calpain inhibitors appear to be a potential drug to control the disease and prevent death from COVID-19.
Collapse
Affiliation(s)
- Aref Doozandeh Juibari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| |
Collapse
|
5
|
Wu Y, Yang H, Cheng M, Shi J, Zhang W, Liu S, Zhang M. Calpain Inhibitor Calpeptin Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury via Suppressing AIM2 Inflammasome and Upregulating Klotho Protein. Front Med (Lausanne) 2022; 9:811980. [PMID: 35155498 PMCID: PMC8831790 DOI: 10.3389/fmed.2022.811980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Renal ischemia/reperfusion injury is a major contributor of acute kidney injury (AKI), leading to renal cell necrosis, apoptosis, and inflammation. Calpains, a family of Ca2+-dependent cysteine proteases, play a pivotal role in the pathogenesis of renal diseases. Several studies have reported calpain inhibitors showing remarkable reno-protective effects against proteinuria and α-klotho deficiency-induced renal aging symptoms, particularly against glomerulus injury. However, little is known about the role of the calpain inhibitor calpeptin in acute kidney injury. The present study aims to investigate the potential mechanism of downregulation of Calpain 1 and 2 activity by calpeptin in the ischemia/reperfusion (IR)-induced AKI model. Firstly, we observed that the contents of Calpain 1 and 2 were significantly increased in the renal biopsy of clinical AKI patients, especially in the diseased tubules space. To investigate the impacts of calpain activity inhibition, we further pretreated with calpeptin in both the IR mouse model and in the HK-2 cells hypoxia model. We found that the calpain inhibitor calpeptin improved renal functional deterioration, attenuated pathological structure damage, and decreased tubular cell apoptosis in the IR injury-induced AKI mice model. Mechanistically, calpeptin significantly suppressed the AIM2 (absent in melanoma 2) and NLRP3 (NOD-like receptor protein 3) inflammasome signaling pathways and increased Klotho protein levels. Furthermore, immunofluorescence assays demonstrated that the application of calpeptin effectively inhibited Calpain 1 activation and gasdermin D (GSDMD) cleavage in the renal tubules of IR mice. Taken together, our both in vivo and in vitro experiments suggest that calpeptin conveyed reno-protection in AKI might be mediated by the inhibition of AIM2 inflammasome activation and upregulation of Klotho protein. As such, we provide new evidence that Calpain 1 and 2 activation may be closely associated with the pathogenesis of clinical AKI. The calpain-mediated AIM2 inflammasome signaling pathway and distinct interaction between calpain and Klotho may provide a potential novel preventative and therapeutic target for acute kidney injury.
Collapse
|
6
|
Mediouni S, Mou H, Otsuka Y, Jablonski JA, Adcock RS, Batra L, Chung DH, Rood C, de Vera IMS, Rahaim R, Ullah S, Yu X, Getmanenko YA, Kennedy NM, Wang C, Nguyen TT, Hull M, Chen E, Bannister TD, Baillargeon P, Scampavia L, Farzan M, Valente ST, Spicer TP. Identification of potent small molecule inhibitors of SARS-CoV-2 entry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:8-19. [PMID: 35058179 PMCID: PMC8577999 DOI: 10.1016/j.slasd.2021.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.
Collapse
Affiliation(s)
- Sonia Mediouni
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Huihui Mou
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Yuka Otsuka
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Joseph Anthony Jablonski
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Lalit Batra
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Dong-Hoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Christopher Rood
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ian Mitchelle S de Vera
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ronald Rahaim
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Sultan Ullah
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Xuerong Yu
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Yulia A Getmanenko
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Nicole M Kennedy
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Tu-Trinh Nguyen
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Mitchell Hull
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Emily Chen
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Thomas D Bannister
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Pierre Baillargeon
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Louis Scampavia
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Michael Farzan
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Susana T Valente
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Timothy P Spicer
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
7
|
Oglakci-Ilhan A, Kusat-Ol K, Uzuner K, Uysal O, Sogut I, Yucel F, Kanbak G. Effect of chronic alcohol consumption on myocardial apoptosis in the rat model of isoproterenol-induced myocardial injury and investigation on the cardioprotective role of calpain inhibitor 1. Drug Chem Toxicol 2021; 45:2727-2738. [PMID: 34628987 DOI: 10.1080/01480545.2021.1985910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated the presence of myocardial apoptosis on isoproterenol (ISO)-induced myocardial injury (MI) after long-term high dose alcohol consumption and examined the antiapoptotic role of calpain inhibitor 1. Male Wistar Albino rats (n = 108) were divided into six groups: Control, alcohol (ethanol was given during 30 days for chronic alcohol consumption), MI (150 mg/kg ISO injection at last two days of alcohol consumption), alcohol + MI, alcohol + MI + calpain inhibitor 1 (10 mg/kg inhibitor was injected at 15 min before ISO injections) and Dimethyl Sulfoxide (DMSO) groups. Biochemical, histological, and morphometric methods determined apoptosis levels in the heart tissue of rats. Cytochrome c, caspase 3, and calpain levels were significantly high in alcohol, MI, and alcohol + MI groups. In contrast, mitochondrial cardiolipin content was found to be low in alcohol, MI, and alcohol + MI groups. These parameters were close to the control group in the therapy group. Histological and morphometric data have supported biochemical results. As a result of our biochemical data, myocardial apoptosis was seen in the alcohol, MI, and especially alcohol after MI groups. Calpain inhibitor 1 reduced apoptotic cell death and prevented myocardial tissue injury in these groups. The efficiency of calpain inhibitor was very marked in MI after long-term high dose alcohol consumption.
Collapse
Affiliation(s)
- Aysegul Oglakci-Ilhan
- Department of Medical Services and Techniques, Vocational School of Eldivan Health Services, Çankırı Karatekin University, Çankırı, Turkey
| | - Kevser Kusat-Ol
- Turkish Medicines and Medical Devices Agency, Turkish Health of Ministry, Ankara, Turkey
| | - Kubilay Uzuner
- Department of Physiology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production, Application and Research Center ESTEM, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Ferruh Yucel
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
8
|
Cao Y, Wang Q, Liu C, Wang W, Lai S, Zou H, Tao E, Wang F, Wan L. Capn4 aggravates angiotensin II-induced cardiac hypertrophy by activating the IGF-AKT signaling pathway. J Biochem 2021; 171:53-61. [PMID: 34580724 DOI: 10.1093/jb/mvab100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice, and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signaling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun, and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signaling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Yuanping Cao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Caiyun Liu
- Operating Room, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huaxi Zou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ende Tao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fudong Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
9
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
10
|
Zheng D, Cao T, Zhang LL, Fan GC, Qiu J, Peng TQ. Targeted inhibition of calpain in mitochondria alleviates oxidative stress-induced myocardial injury. Acta Pharmacol Sin 2021; 42:909-920. [PMID: 32968209 PMCID: PMC8149722 DOI: 10.1038/s41401-020-00526-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
The protein levels and activities of calpain-1 and calpain-2 are increased in cardiac mitochondria under pathological conditions including ischemia, diabetes, and sepsis, and transgenic overexpression of mitochondrial-targeted calpain-1 induces dilated heart failure, which underscores an important role of increased calpain in mitochondria in mediating myocardial injury. However, it remains to be determined whether selective inhibition of calpain in mitochondria protects the heart under pathological conditions. In this study, we generated transgenic mice overexpressing mitochondrial-targeted calpastatin in cardiomyocytes. Their hearts were isolated and subjected to global ischemia/reperfusion. Hyperglycemia was induced in the transgenic mice by injections of STZ. We showed that transgenic calpastatin was expressed exclusively in mitochondria isolated from their hearts but not from other organs including skeletal muscle and lung tissues. Transgenic overexpression of mitochondrial-targeted calpastatin significantly attenuated mitochondrial oxidative stress and cell death induced by global ischemia/reperfusion in isolated hearts, and ameliorated mitochondrial oxidative stress, cell death, myocardial remodeling and dysfunction in STZ-treated transgenic mice. The protective effects of mitochondrial-targeted calpastatin were correlated with increased ATP5A1 protein expression and ATP synthase activity in isolated hearts subjected to global ischemia/reperfusion and hearts of STZ-treated transgenic mice. In cultured rat myoblast H9c2 cells, overexpression of mitochondrial-targeted calpastatin maintained the protein levels of ATP5A1 and ATP synthase activity, prevented mitochondrial ROS production and decreased cell death following hypoxia/reoxygenation, whereas upregulation of ATP5A1 or scavenging of mitochondrial ROS by mito-TEMPO abrogated mitochondrial ROS production and decreased cell death. These results confirm the role of calpain in myocardial injury, suggesting that selective inhibition of calpain in myocardial mitochondria by mitochondrial-targeted calpastatin is an effective strategy for alleviating myocardial injury and dysfunction in cardiac pathologies.
Collapse
Affiliation(s)
- Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lu-Lu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun Qiu
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Tian-Qing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton KD, Glover J, Peterson N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F, Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Hazard ES, da Silveira WA, Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T, Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott JJ, Bouatia-Naji N, Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. Sci Transl Med 2020; 11:11/493/eaax0290. [PMID: 31118289 PMCID: PMC7331025 DOI: 10.1126/scitranslmed.aax0290] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.
Collapse
Affiliation(s)
- Katelynn A Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Mengyao Yu
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Diana Fulmer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Lilong Guo
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Kelsey S Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Reece Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Ka'la D Drayton
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Janiece Glover
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Neal Peterson
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Sandra Ramos-Ortiz
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Alex Drohan
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Breiona J Catching
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Rebecca Stairley
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Andy Wessels
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Francesca N Delling
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xavier Jeunemaitre
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Christian Dina
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Ryan L Collins
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Harrison Brand
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rupak Mukherjee
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Awgulewitsch
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Simon Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA.,Faculty of Medicine, Health and Life Sciences School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Willian A da Silveira
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Maire Leyne
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ronen Durst
- Cardiology Division, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Roger R Markwald
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | - Albert Hagege
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Department of Cardiology, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Thierry Le Tourneau
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Peter Kohl
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Eva A Rog-Zielinska
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Patrick T Ellinor
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - David J Milan
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Leducq Foundation, 265 Franklin Street, Suite 1902, Boston, MA, 02110, USA
| | - Jean-Jacques Schott
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Nabila Bouatia-Naji
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
12
|
Taurine Prevented Hypoxia Induced Chicken Cardiomyocyte Apoptosis Through the Inhibition of Mitochondrial Pathway Activated by Calpain-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31468422 DOI: 10.1007/978-981-13-8023-5_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Objective To determine whether taurine has protective effects on chicken myocardial apoptosis induced by hypoxic condition through inhibiting calpain-1 derived mitochondrial apoptotic pathway. Methods Chicken primary embryonic myocardial cells were isolated and cultured at 37 °C under a 5% CO2 atmosphere. Firstly the optimum concentration of taurine or PD150606 was chosen by detecting the cell viability. Chicken cardiomyocytes were cultured in 95% N2-5% CO2 atmosphere for 12 h to produce hypoxic conditions. Before hypoxic treatment, 10 mM taurine and 10 uM PD150606 (a specific calpains inhibitor) were added separately or together. The cell apoptosis was detected by acridine orange/ethidium bromide (AO/EB) double staining. Western blotting was used to determine the protein expressions of calpain-1, cytochrome c, Bcl-2, procaspase-9 and procaspase-3 in the cardiomyocytes. Results Taurine administration effectively attenuated the myocardial apoptosis under hypoxic condition, reduced the calpain-1 protein level. In addition, pre-treated taurine could up-regulate the protein expressions of Bcl-2 and procaspase-3 in hypoxic myocardial cells, down-regulate protein expression levels of cytochrome c and procaspase-9. Moreover, taurine exhibited same inhibition effect as PD150606 on the cell apoptosis and proteins express under hypoxic condition. Conclusions Taurine could attenuate the chicken cardiomyocyte apoptosis impaired by hypoxia through inhibiting calpian-1-derived mitochondrial apoptotic pathway in vitro.
Collapse
|
13
|
Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci 2019; 233:116631. [PMID: 31278945 DOI: 10.1016/j.lfs.2019.116631] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
AIMS Prior to reperfusion, Calpains remain inactive due to the acidic pH and elevated ionic strength in the ischemic myocardium; but Calpain is activated during myocardial reperfusion. The underlying mechanism of Calpain activation in the ischemia-reperfusion (I/R) is yet to be determined. Therefore, the present study aims to investigate the mechanism of Calpain in I/R-induced mice. MAIN METHODS In order to detect the function of Calpain and the NLRP3/ASC/Caspase-1 axis in cardiomyocyte pyroptosis, endoplasmic reticulum (ER) stress and myocardial function, the cardiomyocytes were treated with hypoxia-reoxygenation (H/R), and NLRP3 were silenced, Calpain was overexpressed and Caspase-1 inhibitors were used to determine cardiomyocyte pyroptosis. The results obtained from the cell experiments were then verified with an animal experiment in I/R mice. KEY FINDINGS There was an overexpression in Calpain, ASC, NLRP3, GRP78 and C/EBP homologous protein (CHOP) in cardiomyocytes following H/R. A significant increase was witnessed in lactic acid dehydrogenase (LDH) activity, cardiomyocyte pyroptosis rate, Calpain activity, reactive oxygen species (ROS) concentration, as well as activation of ER stress in cardiomyocytes after H/R. However, opposing results were observed in H/R cardiomyocytes that received siRNA Calpain, siRNA NLRP3 or Caspase-1 inhibitor treatment. Overall, the results obtained from the animal experiment were consistent with the results from the cell experiment. SIGNIFICANCE The silencing of Calpain suppresses the activation of the NLRP3/ASC/Caspase-1 axis, thus inhibiting ER stress in mice and improving myocardial dysfunction induced by I/R, providing a novel therapeutic pathway for I/R.
Collapse
|
14
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Zuo S, Kong D, Wang C, Liu J, Wang Y, Wan Q, Yan S, Zhang J, Tang J, Zhang Q, Lyu L, Li X, Shan Z, Qian L, Shen Y, Yu Y. CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol Med 2019; 10:emmm.201708237. [PMID: 29335338 PMCID: PMC5840549 DOI: 10.15252/emmm.201708237] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apoptotic death of cardiac myocytes is associated with ischemic heart disease and chemotherapy‐induced cardiomyopathy. Chemoattractant receptor‐homologous molecule expressed on T helper type 2 cells (CRTH2) is highly expressed in the heart. However, its specific role in ischemic cardiomyopathy is not fully understood. Here, we demonstrated that CRTH2 disruption markedly improved cardiac recovery in mice postmyocardial infarction and doxorubicin challenge by suppressing cardiomyocyte apoptosis. Mechanistically, CRTH2 activation specifically facilitated endoplasmic reticulum (ER) stress‐induced cardiomyocyte apoptosis via caspase‐12‐dependent pathway. Blockage of m‐calpain prevented CRTH2‐mediated cardiomyocyte apoptosis under ER stress by suppressing caspase‐12 activity. CRTH2 was coupled with Gαq to elicit intracellular Ca2+ flux and activated m‐calpain/caspase‐12 cascade in cardiomyocytes. Knockdown of caspase‐4, an alternative to caspase‐12 in humans, markedly alleviated CRHT2 activation‐induced apoptosis in human cardiomyocyte response to anoxia. Our findings revealed an unexpected role of CRTH2 in promoting ER stress‐induced cardiomyocyte apoptosis, suggesting that CRTH2 inhibition has therapeutic potential for ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Shengkai Zuo
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenyao Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyou Wan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luheng Lyu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Biology, University of Miami College of Arts and Science, Miami, FL, USA
| | - Xin Li
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou Guangdong, China
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yujun Shen
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China .,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Abstract
The calpain activity in cells can be experimentally manipulated in vitro by calpain inhibitors, and various types of calpain inhibitors such as peptide aldehydes and α-mercapto-acrylic acid derivatives are widely used as a valuable tool to elucidate the physiological and pathological roles of calpain. Here I describe the experimental procedures with calpain inhibitors, with human neutrophils being primarily used in this experiment. It should be noted that potent calpain inhibitors not only inhibit the calpain activity but also stimulate cell functions via direct activation of human formyl peptide receptors and/or other G protein-coupled receptors depending on the inhibitors used.
Collapse
|
17
|
Ferguson AE, Mukkada VA, Fulkerson PC. Pediatric Eosinophilic Esophagitis Endotypes: Are We Closer to Predicting Treatment Response? Clin Rev Allergy Immunol 2018; 55:43-55. [PMID: 29270819 DOI: 10.1007/s12016-017-8658-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food antigen-driven gastrointestinal disease that is characterized by esophageal eosinophilia. Currently, there are no Food and Drug Administration (FDA)-approved treatments for EoE, but the two most commonly prescribed therapies include topical corticosteroids and food elimination diets. Clinical trials have revealed a significant proportion of cases that are resistant to topical corticosteroids, and although we define EoE as a food antigen-driven disease, not all patients with EoE respond to elimination diets or even elemental diets. The varied response to treatments highlights the heterogeneity of EoE and the need for new treatment strategies. Despite the clinical differences in treatment response, predicting the outcome remains difficult since factors including age, histologic severity at diagnosis, atopic history, and anthropometrics are not predictive of treatment response. In our practice at an academic pediatric referral center, we observe distinct clinical EoE phenotypes, including cases with atopy, connective tissue disorders, or responsiveness to a proton pump inhibitor. Similar to the work in progress with asthma, stratification of patients with EoE by clinical phenotypes and/or molecular endotypes will likely assist with therapy selection and prediction of natural history. Molecular analysis with gene expression panels also shows promise in helping us classify patients based on molecular endotypes. In additional to the clinical and molecular classifications, more accurate histologic diagnostic criteria for EoE may help us tease out small differences between patient cohorts. Despite the leaps in knowledge over the past decade regarding EoE pathogenesis, it remains a challenge to predict the response to treatment. Future studies focused on molecular, genetic, and immunologic analyses of larger patient cohorts are needed to assist in identifying EoE phenotypes and endotypes as we attempt to improve patient outcomes in pediatric EoE.
Collapse
Affiliation(s)
- Anna E Ferguson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vince A Mukkada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML7028, Cincinnati, OH, 45229, USA.
| |
Collapse
|
18
|
Li S, Ma J, Li JB, Lacefield JC, Jones DL, Peng TQ, Wei M. Over-expression of calpastatin attenuates myocardial injury following myocardial infarction by inhibiting endoplasmic reticulum stress. J Thorac Dis 2018; 10:5283-5297. [PMID: 30416776 DOI: 10.21037/jtd.2018.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Ischemic heart injury activates calpains and endoplasmic reticulum (ER) stress in cardiomyocytes. This study investigated whether over-expression of calpastatin, an endogenous calpain inhibitor, protects the heart against myocardial infarction (MI) by inhibiting ER stress. Methods Mice over-expressing calpastatin (Tg-CAST) and littermate wild type (WT) mice were divided into four groups: WT-sham, Tg-CAST-sham, WT-MI, and Tg-CAST-MI, respectively. WT-sham and Tg-CAST-sham mice showed similar cardiac function at baseline. MI for 7 days impaired cardiac function in WT-MI mice, which was ameliorated in Tg-CAST-MI mice. Results Tg-CAST-MI mice exhibited significantly decreased diameter of the left ventricular cavity, scar area, and cardiac cell death compared to WT-MI mice. WT-MI mice had higher cardiac expression of C/EBP homologous protein (CHOP) and BIP, indicators of ER stress, compared to WT-sham mice, indicative of MI-induced ER stress. This increase was abolished in Tg-CAST-MI hearts. Furthermore, administration of tauroursodeoxycholic acid, an inhibitor of ER stress, reduced MI-induced expression of CHOP and BIP, scar area, and myocardial dysfunction. In an in vitro model of oxidative stress, H2O2 stimulation of H9c2 cardiomyoblasts induced calpain activation, CHOP expression, and cell death, all of which were prevented by the calpain inhibitor PD150606, as well as CHOP silencing. Conclusions Over-expression of calpastatin ameliorates MI-induced myocardial injury in mice. These protective effects of calpastatin are partially achieved through suppression of the ER stress/CHOP pathway.
Collapse
Affiliation(s)
- Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - James C Lacefield
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Douglas L Jones
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Tian-Qing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Poncelas M, Inserte J, Aluja D, Hernando V, Vilardosa U, Garcia-Dorado D. Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc Res 2018; 113:950-961. [PMID: 28460013 DOI: 10.1093/cvr/cvx073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
Calpains activate during myocardial ischemia-reperfusion and contribute to reperfusion injury. Studies in transgenic animals with altered calpain/calpastatin system subjected to permanent ischemia suggest that calpains are also involved in post-infarction remodelling and heart failure. Aims To determine whether delayed oral administration of the calpain inhibitor SNJ-1945 reduces adverse myocardial remodelling and dysfunction following transient coronary occlusion. Methods and results Male Sprague-Dawley rats were subjected to 30 min of ischemia followed by 21 days of reperfusion and received the calpain inhibitor SNJ-1945 intraperitoneally at the onset of reperfusion (Acute group), orally starting after 24 h of reperfusion and for 14 days (Chronic group), or the combination of both treatments. Calpain-1 and calpain-2 protein content increased and correlated with higher calpain activity in control hearts. Administration of SNJ-1945 attenuated calpain activation, and reduced scar expansion, ventricular dilation and dysfunction in both acute and chronic groups. Acute treatment reduced infarct size in hearts reperfused for 24 h and inflammation measured after 3 days. Delayed, chronic oral administration of SNJ-1945 attenuated inflammation, cardiomyocyte hypertrophy and collagen infiltration in the non-infarcted myocardium at 21 days in correlation with increased levels of IĸB and reduced NF-ĸB activation. In cultured fibroblasts, SNJ-1945 attenuated TGF-β1-induced fibroblast activation. Conclusions Our data demonstrate for the first time that long-term calpain inhibition is possible with delayed oral treatment, attenuates adverse post-infarction remodelling, likely through prevention of NF-ĸB activation, and may be a promising therapeutic intervention to prevent adverse remodelling and heart failure in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Marcos Poncelas
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Javier Inserte
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
- CIBERCV, Spain
| | - David Aluja
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Victor Hernando
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Ursula Vilardosa
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - David Garcia-Dorado
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
- CIBERCV, Spain
| |
Collapse
|
20
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
21
|
Song LJ, Xiang F, Ye H, Huang H, Yang J, Yu F, Xiong L, Xu JJ, Greer PA, Shi HZ, Xin JB, Su Y, Ma WL. Inhibition of angiotensin II and calpain attenuates pleural fibrosis. Pulm Pharmacol Ther 2017; 48:46-52. [PMID: 29107090 DOI: 10.1016/j.pupt.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Pleural fibrosis is associated with various inflammatory processes such as tuberculous pleurisy and bacterial empyema. There is currently no ideal therapeutic to attenuate pleural fibrosis. Some pro-fibrogenic mediators induce fibrosis through inflammatory processes, suggesting that blockage of these mediators might prevent pleural fibrosis. The MeT-5A human pleural mesothelial cell line (PMC) was used in this study as an in vitro model of fibrosis; and intra-pleural injection of bleomycin with carbon particles was used as an in vivo mouse model of pleural fibrosis. Calpain knockout mice, calpain inhibitor (calpeptin), and angiotensin (Ang) II type 1 receptor (AT1R) antagonist (losartan) were evaluated in prevention of experimental pleural fibrosis. We found that bleomycin and carbon particles induced calpain activation in cultured PMCs. This in vitro response was associated with increased collagen-I synthesis, and was blocked by calpain inhibitor or AT1R antagonist. Calpain genetic or treatment with calpeptin or losartan prevented pleural fibrosis in a mouse model induced by bleomycin and carbon particles. Our findings indicate that Ang II signaling and calpain activation induce collagen-I synthesis and contribute to fibrotic alterations in pleural fibrosis. Inhibition of Ang II and calpain might therefore be a novel strategy in treatment of pleural fibrosis.
Collapse
Affiliation(s)
- Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Hai Huang
- Department of Internal Medicine, Wuhan Institute of Tuberculosis Prevention and Control, Wuhan 430030, China
| | - Jie Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan-Juan Xu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peter A Greer
- Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China.
| |
Collapse
|
22
|
Freitas ACS, Figueiredo MJ, Campos EC, Soave DF, Ramos SG, Tanowitz HB, Celes MRN. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition. PLoS One 2016; 11:e0166839. [PMID: 27880847 PMCID: PMC5120800 DOI: 10.1371/journal.pone.0166839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/05/2016] [Indexed: 11/18/2022] Open
Abstract
Cardiac dysfunction caused by the impairment of myocardial contractility has been recognized as an important factor contributing to the high mortality in sepsis. Calpain activation in the heart takes place in response to increased intracellular calcium influx resulting in proteolysis of structural and contractile proteins with subsequent myocardial dysfunction. The purpose of the present study was to test the hypothesis that increased levels of calpain in the septic heart leads to disruption of structural and contractile proteins and that administration of calpain inhibitor-1 (N-acetyl-leucinyl-leucinyl-norleucinal (ALLN)) after sepsis induced by cecal ligation and puncture prevents cardiac protein degradation. We also tested the hypothesis that calpain plays a role in the modulation of protein synthesis/degradation through the activation of proteasome-dependent proteolysis and inhibition of the mTOR pathway. Severe sepsis significantly increased heart calpain-1 levels and promoted ubiquitin and Pa28β over-expression with a reduction in the mTOR levels. In addition, sepsis reduced the expression of structural proteins dystrophin and β-dystroglycan as well as the contractile proteins actin and myosin. ALLN administration prevented sepsis-induced increases in calpain and ubiquitin levels in the heart, which resulted in decreased of structural and contractile proteins degradation and basal mTOR expression levels were re-established. Our results support the concept that increased calpain concentrations may be part of an important mechanism of sepsis-induced cardiac muscle proteolysis.
Collapse
Affiliation(s)
- Ana Caroline Silva Freitas
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Jose Figueiredo
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Erica Carolina Campos
- Department of Physiotherapy, Faculty of Physical Education, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Danilo Figueiredo Soave
- Department of Histology, Embryology and Cellular Biology, Federal University of Goias, Goias, Brazil
| | - Simone Gusmao Ramos
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Herbert B. Tanowitz
- Departments of Pathology and medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United States of America
| | - Mara Rúbia N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goias, Brazil
- * E-mail: ,
| |
Collapse
|
23
|
Wan F, Letavernier E, Le Saux CJ, Houssaini A, Abid S, Czibik G, Sawaki D, Marcos E, Dubois-Rande JL, Baud L, Adnot S, Derumeaux G, Gellen B. Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation. Am J Physiol Heart Circ Physiol 2015; 309:H1883-93. [PMID: 26453333 DOI: 10.1152/ajpheart.00594.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/03/2015] [Indexed: 12/15/2022]
Abstract
The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment.
Collapse
Affiliation(s)
- Feng Wan
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Emmanuel Letavernier
- Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Tenon Hospital, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75020, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unités Mixtes de Recherche Scientifique 1155, Paris, France; and
| | - Claude Jourdan Le Saux
- Department of Medicine/Cardiology Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Amal Houssaini
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Shariq Abid
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Gabor Czibik
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Daigo Sawaki
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Elisabeth Marcos
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Jean-Luc Dubois-Rande
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; Département Hospitalo-Universitairé Ageing Thorax-Vessels Blood (DHU A-TVB), Department of Physiology, AP-HP, Henri Mondor Hospital, Créteil, France; DHU A-TVB, Department of Cardiology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Laurent Baud
- Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Tenon Hospital, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75020, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unités Mixtes de Recherche Scientifique 1155, Paris, France; and
| | - Serge Adnot
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; Département Hospitalo-Universitairé Ageing Thorax-Vessels Blood (DHU A-TVB), Department of Physiology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Geneviève Derumeaux
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; Département Hospitalo-Universitairé Ageing Thorax-Vessels Blood (DHU A-TVB), Department of Physiology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Barnabas Gellen
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; DHU A-TVB, Department of Cardiology, AP-HP, Henri Mondor Hospital, Créteil, France; Department of Cardiology, Poitiers University Hospital, F-86000, Poitiers, France
| |
Collapse
|
24
|
Wan TT, Li XF, Sun YM, Li YB, Su Y. Role of the calpain on the development of diabetes mellitus and its chronic complications. Biomed Pharmacother 2015; 74:187-90. [PMID: 26349983 DOI: 10.1016/j.biopha.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus (DM) is associated with acute and chronic complications that cause major morbidity and significant mortality. Calpains, a family of Ca(2+)-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. Calpain is a ubiquitous calcium-sensitive protease that is essential for normal physiologic function. However, alterations in calcium homeostasis lead to pathologic activation of calpain in diabetes mellitus. Since not much is known on the relationship between calpain and diabetes mellitus, this review outlines the contribution of calpain to chronic complications of diabetes mellitus, such as diabetic cardiomyopathy, diabetic nephropathy and diabetic retinopathy.
Collapse
Affiliation(s)
- Ting-Ting Wan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiu-Fen Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yan-Ming Sun
- Department of Cardiology, the First Clinical Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yan-Bo Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Su
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
25
|
Shintani-Ishida K, Yoshida KI. Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia-reperfusion. Int J Cardiol 2015; 197:26-32. [PMID: 26113472 DOI: 10.1016/j.ijcard.2015.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/14/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES Opening of the mitochondrial permeability transition pore (mPTP) is involved in ischemia-reperfusion injury. Isoforms of Ca(2+)-activated cysteine proteases, calpains, are implicated in the development of myocardial infarction in ischemia-reperfusion. Growing evidence has revealed the presence of calpains in the mitochondria. We aimed to characterize mitochondrial calpains in the rat heart and to investigate the roles of calpains in mPTP opening after ischemia-reperfusion. METHODS AND RESULTS Western blotting analysis showed the expression of μ-calpain, m-calpain and calpain 10 in mitochondria isolated from male Sprague-Dawley rats, but casein zymography detected only m-calpain activity. Subcellular fractionation of mitochondria demonstrated the distribution of m-calpain to the matrix fraction. Addition of >500μM of Ca(2+) to isolated mitochondria induced mitochondrial swelling, reflecting mPTP opening, and calpain activation. Ca(2+)-induced mitochondrial swelling was inhibited partially by the calpain inhibitor calpeptin. These results support a partial contribution of calpain in the opening of the mPTP. The addition of Ca(2+) to the mitochondria induced inactivation of complex I of the electron transport chain, and cleavage of the ND6 complex I subunit, which were inhibited by calpeptin. Mitochondria isolated from rat hearts that underwent 30min of coronary occlusion followed by 30min of reperfusion showed activation of mitochondrial calpains, ND6 cleavage, complex I inactivation, and mPTP opening, which were inhibited by pretreatment with calpain inhibitor 1. CONCLUSIONS We demonstrated for the first time the presence of mitochondrial matrix m-calpain, and its contribution to complex I inactivation and mPTP opening after postischemic reperfusion in the rat heart.
Collapse
Affiliation(s)
- Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medicine, the University of Tokyo, Japan.
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, the University of Tokyo, Japan
| |
Collapse
|
26
|
Ye T, Wang Q, Zhang Y, Song X, Yang D, Li D, Li D, Su L, Yang Y, Ma S. Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling. PLoS One 2015; 10:e0120178. [PMID: 25786109 PMCID: PMC4364764 DOI: 10.1371/journal.pone.0120178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Calpain is activated following myocardial infarction and ablation of calpastatin (CAST), an endogenous inhibitor of calpains, promotes left ventricular remodeling after myocardial infarction (MI). The present study aimed to investigate the effect of transgenic over-expression of CAST on the post-infarction myocardial remodeling process. Method We established transgenic mice (TG) ubiquitously over-expressing human CAST protein and produced MI in TG mice and C57BL/6J wild-type (WT) littermates. Results The CAST protein expression was profoundly upregulated in the myocardial tissue of TG mice compared with WT littermates (P < 0.01). Overexpression of CAST significantly reduced the infarct size (P < 0.01) and blunted MI-induced interventricular hypertrophy, global myocardial fibrosis and collagen I and collagen III deposition, hypotension and hemodynamic disturbances at 21 days after MI. Moreover, the MI-induced up-regulation and activation of calpains were obviously attenuated in CAST TG mice. MI-induced down-regulation of CAST was partially reversed in TG mice. Additionally, the MI-caused imbalance of matrix metalloproteinases and their inhibitors was improved in TG mice. Conclusions Transgenic over-expression of CAST inhibits calpain activation and attenuates post-infarction myocardial remodeling.
Collapse
Affiliation(s)
- Tingqiao Ye
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Xiaofeng Song
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Dan Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Linan Su
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
- * E-mail: (YY); (SM)
| | - Shuangtao Ma
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
- * E-mail: (YY); (SM)
| |
Collapse
|
27
|
Zheng D, Wang G, Li S, Fan GC, Peng T. Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:882-92. [PMID: 25660447 DOI: 10.1016/j.bbadis.2015.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 12/24/2022]
Abstract
Both calpain activation and endoplasmic reticulum (ER) stress are implicated in ischemic heart injury. However, the role of calpain in ER stress remains largely elusive. This study investigated whether calpain activation causes ER stress, thereby mediating cardiomyocyte apoptosis in an in vitro model of hypoxia/re-oxygenation (H/R). In neonatal mouse cardiomyocytes and rat cardiomyocyte-like H9c2 cells, up-regulation of calpain-1 sufficiently induced ER stress, c-Jun N-terminal protein kinase1/2 (JNK1/2) activation and apoptosis. Inhibition of ER stress or JNK1/2 prevented apoptosis induced by calpain-1. In an in vitro model of H/R-induced injury in cardiomyocytes, H/R was induced by a 24-hour hypoxia followed by a 24-hour re-oxygenation. H/R activated calpain-1, induced ER stress and JNK1/2 activation, and triggered apoptosis. Inhibition of calpain and ER stress blocked JNK1/2 activation and prevented H/R-induced apoptosis. Furthermore, blockade of JNK1/2 signaling inhibited apoptosis following H/R. The role of calpain in ER stress was also demonstrated in an in vivo model of ischemia/reperfusion using transgenic mice over-expressing calpastatin. In summary, calpain-1 induces ER stress and JNK1/2 activation, thereby mediating apoptosis in cardiomyocytes. Accordingly, inhibition of calpain prevents ER stress, JNK1/2 activation and apoptosis in H/R-induced cardiomyocytes. Thus, ER stress/JNK1/2 activation may represent an important mechanism linking calpain-1 to ischemic injury.
Collapse
Affiliation(s)
- Dong Zheng
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China; Critical Illness Research, Lawson Health Research Institute, Canada; Department of Medicine, University of Western Ontario, London, Ontario N6A 4G5, Canada; Institute of Cardiovascular Science, Soochow University, Suzhou 215008, China
| | - Grace Wang
- Department of Pathology, University of Western Ontario, London, Ontario N6A 4G5, Canada
| | - Shuai Li
- Critical Illness Research, Lawson Health Research Institute, Canada; Department of Medicine, University of Western Ontario, London, Ontario N6A 4G5, Canada; Department of Pathology, University of Western Ontario, London, Ontario N6A 4G5, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati 45267, OH, USA
| | - Tianqing Peng
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China; Critical Illness Research, Lawson Health Research Institute, Canada; Department of Medicine, University of Western Ontario, London, Ontario N6A 4G5, Canada; Department of Pathology, University of Western Ontario, London, Ontario N6A 4G5, Canada; Institute of Cardiovascular Science, Soochow University, Suzhou 215008, China.
| |
Collapse
|
28
|
Neuhof C, Neuhof H. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 2014; 6:638-652. [PMID: 25068024 PMCID: PMC4110612 DOI: 10.4330/wjc.v6.i7.638] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction.
Collapse
|
29
|
Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Sakata Y, Suzuki JI, Saido TC, Komuro I. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem 2014; 289:19408-19. [PMID: 24891510 DOI: 10.1074/jbc.m114.567206] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Enzymatic proteolysis by calpains, Ca(2+)-dependent intracellular cysteine proteases, has been implicated in pathological processes such as cellular degeneration or death. Here, we investigated the role of calpain activation in the hearts subjected to myocardial infarction. We produced myocardial infarction in Cast(-/-) mice deficient for calpastatin, the specific endogenous inhibitory protein for calpains, and Cast(+/+) mice. The activity of cardiac calpains in Cast(+/+) mice was not elevated within 1 day but showed a gradual elevation after 7 days following myocardial infarction, which was further pronounced in Cast(-/-) mice. Although the prevalence of cardiomyocyte death was indistinguishable between Cast(-/-) and Cast(+/+) mice, Cast(-/-) mice exhibited profound contractile dysfunction and chamber dilatation and showed a significant reduction in survival rate after myocardial infarction as compared with Cast(+/+) mice. Notably, immunofluorescence revealed that at 28 days after myocardial infarction, calpains were activated in cardiomyocytes exclusively at the border zone and that Cast(-/-) mice showed higher intensity and a broader extent of calpain activation at the border zone than Cast(+/+) mice. In the border zone of Cast(-/-) mice, pronounced activation of calpains was associated with a decrease in N-cadherin expression and up-regulation of molecular markers for cardiac hypertrophy and fibrosis. In cultured rat neonatal cardiomyocytes, calpain activation by treatment with ionomycin induced cleavage of N-cadherin and decreased expression levels of β-catenin and connexin 43, which was attenuated by calpain inhibitor. These results thus demonstrate that activation of calpains disassembles cell-cell adhesion at intercalated discs by degrading N-cadherin and thereby promotes left ventricular remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Yoko Kudo-Sakamoto
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroshi Akazawa
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kaoru Ito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Masamichi Yano
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Chizuru Yabumoto
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Atsuhiko T Naito
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toru Oka
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan, and
| | - Yasushi Sakata
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Issei Komuro
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan,
| |
Collapse
|
30
|
Fan X, Zhang Q, You C, Qian Y, Gao J, Liu P, Chen H, Song H, Chen Y, Chen K, Zhou Y. Proteolysis of the human DNA polymerase delta smallest subunit p12 by μ-calpain in calcium-triggered apoptotic HeLa cells. PLoS One 2014; 9:e93642. [PMID: 24691096 PMCID: PMC3972206 DOI: 10.1371/journal.pone.0093642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Degradation of p12 subunit of human DNA polymerase delta (Pol δ) that results in an interconversion between Pol δ4 and Pol δ3 forms plays a significant role in response to replication stress or genotoxic agents triggered DNA damage. Also, the p12 is readily degraded by human calpain in vitro. However, little has been done for the investigation of its degree of participation in any of the more common apoptosis. Here, we first report that the p12 subunit is a substrate of μ-calpain. In calcium-triggered apoptotic HeLa cells, the p12 is degraded at 12 hours post-induction (hpi), restored thereafter by 24 hpi, and then depleted again after 36 hpi in a time-dependent manner while the other three subunits are not affected. It suggests a dual function of Pol δ by its interconversion between Pol δ4 and Pol δ3 that is involved in a novel unknown apoptosis mechanism. The proteolysis of p12 could be efficiently blocked by both calpain inhibitor ALLN and proteasome inhibitor MG132. In vitro pull down and co-immunoprecipitation assays show that the μ-calpain binds to p12 through the interaction of μ-calpain with Pol δ other three subunits, not p12 itself, and PCNA, implying that the proteolysis of p12 by μ-calpain might be through a Pol δ4/PCNA complex. The p12 cleavage sites by μ-calpain are further determined as the location within a 16-amino acids peptide 28-43 by in vitro cleavage assays. Thus, the p12/Pol δ is a target as a nuclear substrate of μ-calpain in a calcium-triggered apoptosis and appears to be a potential marker in the study of the chemotherapy of cancer therapies.
Collapse
Affiliation(s)
- Xiaoting Fan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chao You
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yuanxia Qian
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huifang Song
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yan Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yajing Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Ca2+-sensing receptor cleavage by calpain partially accounts for altered vascular reactivity in mice fed a high-fat diet. J Cardiovasc Pharmacol 2013; 61:528-35. [PMID: 23429586 DOI: 10.1097/fjc.0b013e31828d0fa3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ca-sensing receptor (CaSR) is expressed in endothelial and smooth muscle cells, but its role in regulating vascular reactivity is unclear, as are the effects of disease on CaSR function and expression. We studied vascular reactivity in aortic segments from healthy and diabetic mice, combined with in vitro proteolysis studies and Western blot analyses of CaSR expression in tissue samples. In endothelium-intact aortic rings, extracellular Ca elicited a nitric oxide-dependent relaxation that was attenuated by the CaSR antagonist, NPS2390. The calcimimetic, calindol, induced the endothelium-independent relaxation of aortic segments that was also sensitive to NPS2390. The antagonist failed to affect responses to acetylcholine or U46619 but attenuated contractions to phenylephrine and potassium. In mice fed a Western-type diet, phenylephrine-induced contractions and calindol-induced relaxations were markedly attenuated, and CaSR expression was decreased. The latter phenomenon could be attributed to the activation of the Ca-dependent protease, µ-calpain, and the subsequent proteolytic cleavage of the CaSR. CaSR activation in smooth muscle cells modulates vascular responsiveness to Ca-elevating agonists. These effects are blunted during metabolic stress because of the limited proteolysis of the CaSR by calpain. The loss of the CaSR function may predispose to the macrovascular late complications associated with diabetes.
Collapse
|
32
|
Sarkar S, Goldgar S, Byler S, Rosenthal S, Heerboth S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics 2013; 5:87-94. [PMID: 23414323 DOI: 10.2217/epi.12.68] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetic regulation in eukaryotic and mammalian systems is a complex and emerging field of study. While histone modifications create an open chromatin conformation allowing for gene transcription, CpG methylation adds a further dimension to the expression of specific genes in developmental pathways and carcinogenesis. In this review, we will highlight DNA methylation as one of the distinct mechanisms for gene silencing and try to provide insight into the role of epigenetics in cancer progenitor cell formation and carcinogenesis. We will also introduce the concept of a dynamic methylation-demethylation system and the potential for the existence of a demethylating enzyme in this process. Finally, we will explain how re-expression of epigenetically silenced tumor suppressor genes could be exploited to develop effective drug therapies. In particular, we will consider how a combination therapy that includes epigenetic drugs could possibly kill cancer progenitor cells and reduce the chance of relapse following chemotherapy.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
33
|
Xiao T, Zhang Y, Wang Y, Xu Y, Yu Z, Shen X. Activation of an apoptotic signal transduction pathway involved in the upregulation of calpain and apoptosis-inducing factor in aldosterone-induced primary cultured cardiomyocytes. Food Chem Toxicol 2012; 53:364-70. [PMID: 23266505 DOI: 10.1016/j.fct.2012.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/12/2023]
Abstract
In this study, aldosterone (ALD)-induced apoptosis of cardiomyocyte was evaluated based on the previous studies, and the roles of calpain signaling were clarified. Primary cultured rat cardiomyocytes were injured by ALD (0.01-10 μM) for varying time periods. Then, the effects of ethylene glycol tetraacetic acid (EGTA) (0.5 mM), calpeptin (2.5 μM), and spironoclactone (10 μM) were evaluated on cardiomyocytes activated by ALD. Cardiomyocytes that were injured by ALD were assayed by the MTT and LDH leakage ratio. Apoptosis was evaluated by a TUNEL assay, annexin V/PI staining, and caspase-3 activity. The expression of cleavage of Bid (tBid), calpain and apoptosis-inducing factor (AIF) was evaluated by western blot analysis. ALD increased calpain expression and caspase-3 activity and promoted Bid cleavage. It also induced the release of AIF from mitochondria into the cytosol. The upregulation of calpain, tBid and caspase-3 activity were further inhibited by treatment with EGTA in the presence of ALD. Additionally, AIF levels in the cytosol decreased due to EGTA but not due to calpeptin. This was also accompanied by a significant decrease in apoptosis. Furthermore, treatment with spironoclactone not only attenuated the pro-apoptotic effect of ALD but reversed the ALD-induced increase of calpain and AIF levels.
Collapse
Affiliation(s)
- Tingting Xiao
- Research Division of Pharmacology, Guiyang Medical University, No. 9 Beiing Road, Guiyang 550004, China
| | | | | | | | | | | |
Collapse
|
34
|
Different roles for contracture and calpain in calcium paradox-induced heart injury. PLoS One 2012; 7:e52270. [PMID: 23284963 PMCID: PMC3527529 DOI: 10.1371/journal.pone.0052270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
The Ca(2+) paradox represents a good model to study Ca(2+) overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca(2+) paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca(2+) paradox was elicited by perfusing isolated rat hearts with Ca(2+)-free KH media for 3 min or 5 min followed by 30 min of Ca(2+) repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca(2+) repletion. Ca(2+) repletion of the once 3-min Ca(2+) depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na(+)/Ca(2+) exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca(2+) for 5 min had the same effects on injury as the 3-min Ca(2+) depletion, except that the LVEDP in the 5-min Ca(2+) depletion group was lower than the level in the 3-min Ca(2+) depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca(2+) depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca(2+) repletion-induced increase in calpain activity in 3 min or 5 min Ca(2+) depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca(2+) paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca(2+) paradox.
Collapse
|
35
|
Bi SH, Jin ZX, Zhang JY, Chen T, Zhang SL, Yang Y, Duan WX, Yi DH, Zhou JJ, Ren J. Calpain inhibitor MDL 28170 protects against the Ca2+ paradox in rat hearts. Clin Exp Pharmacol Physiol 2012; 39:385-92. [PMID: 22356295 DOI: 10.1111/j.1440-1681.2012.05683.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The calcium paradox represents an important model in which to study myocardial injuries due to intracellular Ca(2+) overload. In a previous study, calpain was transiently activated in Ca(2+) -paradoxic hearts. The aim of the present study was to determine the role of calpain in myocardial dysfunction in hearts subjected to the Ca(2+) paradox and to elucidate the underlying mechanisms. Rat hearts were isolated, Langendorff perfused and subjected to the Ca(2+) paradox, which was induced by 3 min Ca(2+) depletion followed by 30 min Ca(2+) repletion, in the presence or absence of the calpain inhibitor 10 umol/L MDL 28170. Cardiac function was evaluated. Furthermore, cell death and the degradation of troponin I (TnI) were assessed and calpain activity was determined by measurement of the α-fodrin fragment and confocal image analysis. Upon Ca(2+) repletion, the hearts immediately deteriorated, exhibiting a marked depression in cardiac function and an enlarged myocardial injury area. This was accompanied by significant increases in lactate dehydrogenase, mitochondrial release of cytochrome c, the apoptotic index and degraded TnI. These changes were significantly inhibited by MDL 28170, with the exception of TnI degradation. Compared with the control group, Ca(2+) -paradoxic hearts showed a marked increase in cleaved 150 kDa fragments resulting from specific calpain-mediated proteolysis of α-fodrin. This effect was attenuated by MDL 28170. Confocal image analysis revealed the translocation of both μ- and m-calpain to the sarcolemmal membrane in Ca(2+) -paradoxic hearts, indicating increased activity of both isoforms. The results suggest that the Ca(2+) paradox promotes calpain activity, leading to necrosis, apoptosis and myocardial dysfunction.
Collapse
Affiliation(s)
- Sheng-Hui Bi
- Department of Cardiovascular Surgery, Xijing Hospital, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Müller AL, Freed D, Dhalla NS. Activation of proteases and changes in Na+-K+-ATPase subunits in hearts subjected to ischemia-reperfusion. J Appl Physiol (1985) 2012; 114:351-60. [PMID: 23221958 DOI: 10.1152/japplphysiol.01239.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that ischemia-reperfusion (I/R) injury is associated with cardiac dysfunction and changes in sarcolemmal Na(+)-K(+)-ATPase subunits and activity. This study was undertaken to evaluate the role of proteases in these alterations by subjecting rat hearts to different times of global ischemia, as well as reperfusion after 45 min of ischemia. Decreases in Na(+)-K(+)-ATPase activity at 30-60 min of global ischemia were accompanied by augmented activities of both calpain and matrix metalloproteinases (MMPs) and depressed protein content of β(1)- and β(2)-subunits, without changes in α(1)- and α(2)-subunits of the enzyme. Compared with control values, the activities of both calpain and MMP-2 were increased, whereas the activity and protein content for all subunits of Na(+)-K(+)-ATPase were decreased upon reperfusion for 5-40 min, except that α(1)- and α(2)-subunit content was not depressed in 5 min I/R hearts. MDL28170, a calpain inhibitor, was more effective in attenuating the I/R-induced alterations in cardiac contracture, Na(+)-K(+)-ATPase activity, and α(2)-subunit than doxycycline, an MMP inhibitor. Incubation of control sarcolemma preparation with calpain, unlike MMP-2, depressed Na(+)-K(+)-ATPase activity and decreased α(1)-, α(2)-, and β(2)-subunits, without changes in the β(1)-subunit. These results support the view that activation of both calpain and MMP-2 are involved in depressing Na(+)-K(+)-ATPase activity and degradation of its subunits directly or indirectly in hearts subjected to I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, and Departments of Physiology and University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
37
|
Protective effects of adenosine on the diabetic myocardium against ischemia–reperfusion injury: Role of calpain. Med Hypotheses 2012; 79:462-4. [DOI: 10.1016/j.mehy.2012.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/12/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022]
|
38
|
Müller AL, Freed D, Hryshko L, Dhalla NS. Implications of protease activation in cardiac dysfunction and development of genetic cardiomyopathy in hamsters. Can J Physiol Pharmacol 2012; 90:995-1004. [DOI: 10.1139/y2012-034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has become evident that protein degradation by proteolytic enzymes, known as proteases, is partly responsible for cardiovascular dysfunction in various types of heart disease. Both extracellular and intracellular alterations in proteolytic activities are invariably seen in heart failure associated with hypertrophic cardiomyopathy, dilated cardiomyopathy, hypertensive cardiomyopathy, diabetic cardiomyopathy, and ischemic cardiomyopathy. Genetic cardiomyopathy displayed in different strains of hamsters provides a useful model for studying heart failure due to either cardiac hypertrophy or cardiac dilation. Alterations in the function of several myocardial organelles such as sarcolemma, sarcoplasmic reticulum, myofibrils, mitochondria, as well as extracellular matrix have been shown to be due to subcellular remodeling as a consequence of changes in gene expression and protein content in failing hearts from cardiomyopathic hamsters. In view of the increased activities of various proteases, including calpains and matrix metalloproteinases in the hearts of genetically determined hamsters, it is proposed that the activation of different proteases may also represent an important determinant of subcellular remodeling and cardiac dysfunction associated with genetic cardiomyopathy.
Collapse
Affiliation(s)
- Alison L. Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Darren Freed
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Departments of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Larry Hryshko
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
39
|
Ma J, Wei M, Wang Q, Li J, Wang H, Liu W, Lacefield JC, Greer PA, Karmazyn M, Fan GC, Peng T. Deficiency of Capn4 gene inhibits nuclear factor-κB (NF-κB) protein signaling/inflammation and reduces remodeling after myocardial infarction. J Biol Chem 2012; 287:27480-9. [PMID: 22753411 DOI: 10.1074/jbc.m112.358929] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calpain has been implicated in acute myocardial injury after myocardial infarction (MI). However, the causal relationship between calpain and post-MI myocardial remodeling has not been fully understood. This study examined whether deletion of Capn4, essential for calpain-1 and calpain-2 activities, reduces myocardial remodeling and dysfunction following MI, and if yes, whether these effects of Capn4 deletion are associated with NF-κB signaling and inflammatory responses in the MI heart. A novel mouse model with cardiomyocyte-specific deletion of Capn4 (Capn4-ko) was employed. MI was induced by left coronary artery ligation. Deficiency of Capn4 dramatically reduced the protein levels and activities of calpain-1 and calpain-2 in the Capn4-ko heart. In vivo cardiac function was relatively improved in Capn4-ko mice at 7 and 30 days after MI when compared with their wild-type littermates. Deletion of Capn4 reduced apoptosis, limited infarct expansion, prevented left ventricle dilation, and reduced mortality in Capn4-ko mice. Furthermore, cardiomyocyte cross-sectional areas and myocardial collagen deposition were significantly attenuated in Capn4-ko mice, which were accompanied by down-regulation of hypertrophic genes and profibrotic genes. These effects of Capn4 knock-out correlated with restoration of IκB protein and inhibition of NF-κB activation, leading to suppression of proinflammatory cytokine expression and inflammatory cell infiltration in the Capn4-ko heart after MI. In conclusion, deficiency of Capn4 reduces adverse myocardial remodeling and myocardial dysfunction after MI. These effects of Capn4 deletion may be mediated through prevention of IκB degradation and NF-κB activation, resulting in inhibition of inflammatory responses.
Collapse
Affiliation(s)
- Jian Ma
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario N6A 4G5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ali MAM, Stepanko A, Fan X, Holt A, Schulz R. Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 2012; 423:1-5. [PMID: 22575511 DOI: 10.1016/j.bbrc.2012.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinase (MMP)-2 is a zinc-dependent endopeptidase which, alongside its known extracellular actions, plays fundamental roles in oxidative stress-induced injury to the heart. Intracellular cleavage targets of MMP-2 selectively mediating this injury include the sarcomeric proteins troponin I, myosin light chain-1 and titin; some of these are also targeted by calpains. In myocardial ischemia and reperfusion injury, inhibitors of MMP-2 and some calpain inhibitors were shown to improve the recovery of contractile function. We hypothesized that the protective effects of calpain inhibitors may be due in part to their ability to inhibit MMP-2. Four calpain inhibitors (calpain inhibitor III, ALLM, ALLN, and PD-150606) were tested for their ability to inhibit MMP-2 in comparison to the selective MMP inhibitor ONO-4817. At 100 μM, all calpain inhibitors, except ALLM, showed significant inhibition of MMP-2 gelatinolytic activity. When assessed by the troponin I proteolysis assay, both ALLN and PD-150606, but neither ALLM nor calpain inhibitor III (at 20 μM), significantly inhibited MMP-2 activity. Using a fluorogenic MMP substrate peptide OmniMMP in a kinetic assay the rank order of IC(50) values against MMP-2 were: PD-150606<ALLN<calpain inhibitor III <<< ALLM. These experiments show that the calpain inhibitors PD-150606 and ALLN have significant additional pharmacological activity as MMP-2 inhibitors. This suggests that the protective effect of some calpain inhibitors is due in part to their ability to inhibit MMP activity.
Collapse
Affiliation(s)
- Mohammad A M Ali
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
41
|
Randriamboavonjy V, Fleming I. All cut up! The consequences of calpain activation on platelet function. Vascul Pharmacol 2012; 56:210-5. [DOI: 10.1016/j.vph.2012.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/15/2012] [Accepted: 02/16/2012] [Indexed: 11/29/2022]
|
42
|
Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res 2012; 96:38-45. [DOI: 10.1093/cvr/cvs099] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
44
|
Li Y, Ma J, Zhu H, Singh M, Hill D, Greer PA, Arnold JM, Abel ED, Peng T. Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 2011; 60:2985-94. [PMID: 21911754 PMCID: PMC3198063 DOI: 10.2337/db10-1333] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Recently we have shown that calpain-1 activation contributes to cardiomyocyte apoptosis induced by hyperglycemia. This study was undertaken to investigate whether targeted disruption of calpain would reduce myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. RESEARCH DESIGN AND METHODS Diabetes in mice was induced by injection of streptozotocin (STZ), and OVE26 mice were also used as a type 1 diabetic model. The function of calpain was genetically manipulated by cardiomyocyte-specific knockout Capn4 in mice and the use of calpastatin transgenic mice. Myocardial hypertrophy and fibrosis were investigated 2 and 5 months after STZ injection or in OVE26 diabetic mice at the age of 5 months. Cultured isolated adult mouse cardiac fibroblast cells were also investigated under high glucose conditions. RESULTS Calpain activity, cardiomyocyte cross-sectional areas, and myocardial collagen deposition were significantly increased in both STZ-induced and OVE26 diabetic hearts, and these were accompanied by elevated expression of hypertrophic and fibrotic collagen genes. Deficiency of Capn4 or overexpression of calpastatin reduced myocardial hypertrophy and fibrosis in both diabetic models, leading to the improvement of myocardial function. These effects were associated with a normalization of the nuclear factor of activated T-cell nuclear factor-κB and matrix metalloproteinase (MMP) activities in diabetic hearts. In cultured cardiac fibroblasts, high glucose-induced proliferation and MMP activities were prevented by calpain inhibition. CONCLUSIONS Myocardial hypertrophy and fibrosis in diabetic mice are attenuated by reduction of calpain function. Thus targeted inhibition of calpain represents a potential novel therapeutic strategy for reversing diabetic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins/biosynthesis
- Calcium-Binding Proteins/genetics
- Calpain/antagonists & inhibitors
- Calpain/genetics
- Calpain/metabolism
- Cardiomyopathy, Hypertrophic/drug therapy
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cell Proliferation
- Cells, Cultured
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Heart/drug effects
- Heart/physiopathology
- Hyperglycemia/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Targeted Therapy
- Myocardium/cytology
- Myocardium/metabolism
- Myocardium/pathology
- Streptozocin/toxicity
Collapse
Affiliation(s)
- Ying Li
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jian Ma
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Huaqing Zhu
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Manpreet Singh
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - David Hill
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Peter A. Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - J. Malcolm Arnold
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - E. Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
- Corresponding author: Tianqing Peng,
| |
Collapse
|
45
|
Stimulation of human formyl peptide receptors by calpain inhibitors: homology modeling of receptors and ligand docking simulation. Arch Biochem Biophys 2011; 516:121-7. [PMID: 22005393 DOI: 10.1016/j.abb.2011.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
Calpain inhibitors, including peptide aldehydes (N-acetyl-Leu-Leu-Nle-CHO and N-acetyl-Leu-Leu-Met-CHO) and α-mercapto-acrylic acid derivatives (PD150606 and PD151746), have been shown to stimulate phagocyte functions via activation of human formyl peptide receptor (hFPR) and/or hFPR-like 1 (hFPRL1). Using the homology modeling of the receptors and the ligand docking simulation, here we show that these calpain inhibitors could bind to the putative N-formyl-Met-Leu-Phe (fMLF) binding site on hFPR and/or hFPRL1. The studies with HEK-293 cells stably expressing hFPR or hFPRL1 showed that the concentrations of calpain inhibitors required to induce an increase in cytoplasmic free Ca(2+) ([Ca(2+)](i)) was much higher (>100 folds) than those of fMLF and Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm). HEK-293 cells expressing hFPR or hFPRL1 with the mutated fMLF binding site never exhibited the [Ca(2+)](i) response to calpain inhibitors. When the optimal concentrations of each stimulus were used, pretreatment of cells with fMLF or WKYMVm abolished an increase in [Ca(2+)](i) induced by calpain inhibitors as well as the same stimulus, whereas pretreatment of cells with calpain inhibitors significantly suppressed, but never abolished, the [Ca(2+)](i) response induced by fMLF or WKYMVm, suggesting that the binding affinity of the inhibitors to the putative fMLF binding site may be lower than that of fMLF or WKYMVm.
Collapse
|
46
|
Fujita H, Kato T, Watanabe N, Takahashi T, Kitagawa S. Calpain inhibitors stimulate phagocyte functions via activation of human formyl peptide receptors. Arch Biochem Biophys 2011; 513:51-60. [DOI: 10.1016/j.abb.2011.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 11/30/2022]
|
47
|
Wing SS, Lecker SH, Jagoe RT. Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks. Crit Rev Clin Lab Sci 2011; 48:49-70. [PMID: 21699435 DOI: 10.3109/10408363.2011.586171] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Improvements in health in the past decades have resulted in increased numbers of the elderly in both developed and developing regions of the world. Advances in therapy have also increased the prevalence of patients with chronic and degenerative diseases. Muscle wasting, a feature of most chronic diseases, is prominent in the elderly and contributes to both morbidity and mortality. A major research goal has been to identify the proteolytic system(s) that is responsible for the degradation of proteins that occurs in muscle atrophy. Findings over the past 20 years have clearly confirmed an important role of the ubiquitin proteasome system in mediating muscle proteolysis, particularly that of myofibrillar proteins. However, recent observations have provided evidence that autophagy, calpains and caspases also contribute to the turnover of muscle proteins in catabolic states, and furthermore, that these diverse proteolytic systems interact with each other at various levels. Importantly, a number of intracellular signaling pathways such as the IGF1/AKT, myostatin/Smad, PGC1, cytokine/NFκB, and AMPK pathways are now known to interact and can regulate some of these proteolytic systems in a coordinated manner. A number of loss of function studies have identified promising therapeutic approaches to the prevention and treatment of wasting. However, additional biomarkers and other approaches to improve early identification of patients who would benefit from such treatment need to be developed. The current data suggests a network of interacting proteolytic and signaling pathways in muscle. Future studies are needed to improve understanding of the nature and control of these interactions and how they work to preserve muscle function under various states of growth and atrophy.
Collapse
Affiliation(s)
- Simon S Wing
- Departments of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
48
|
Abstract
The calpains are a conserved family of cysteine proteinases that catalyse the controlled proteolysis of many specific substrates. Calpain activity is implicated in several fundamental physiological processes, including cytoskeletal remodelling, cellular signalling, apoptosis and cell survival. Calpain expression is altered during tumorigenesis, and the proteolysis of numerous substrates, such as inhibitors of nuclear factor-κB (IκB), focal adhesion proteins (including, focal adhesion kinase and talin) and proto-oncogenes (for example, MYC), has been implicated in tumour pathogenesis. Recent evidence indicates that the increased expression of certain family members might influence the response to cancer therapies, providing justification for the development of novel calpain inhibitors.
Collapse
Affiliation(s)
- Sarah J Storr
- University of Nottingham, School of Molecular Medical Sciences, Nottingham NG5 1PB, UK
| | | | | | | | | |
Collapse
|
49
|
Hardy B, Raiter A. Peptide-binding heat shock protein GRP78 protects cardiomyocytes from hypoxia-induced apoptosis. J Mol Med (Berl) 2010; 88:1157-67. [PMID: 20664993 DOI: 10.1007/s00109-010-0657-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia is a severe stress condition that causes extensive biochemical changes triggering cardiac cell death. The 78-kDa glucose-regulated protein (GRP78), a heat shock protein present in all cells and a widely used marker of endoplasmic reticulum stress, functions in controlling the structural maturation of nascent glycoproteins. However, GRP78 was also found to be expressed on the cell surface of several cells such as endothelial cells, macrophages, and tumor cells where it functions as a receptor for a variety of ligands in signaling pathways. Recently, we have identified peptides from two different sources that specifically bind GRP78 protein. We have shown that binding of these peptides to endothelial cell surface GRP78 resulted in angiogenesis. In this study, we first established the presence of cell surface GRP78 on cardiac myocytes. Analysis of cardiomyocytes under hypoxia determined the significant increase in cell surface GRP78 in addition to gene expression and total protein. Apoptosis that was significantly increased in cardiomyocytes under hypoxic conditions was inhibited by the presence of the peptide-binding GRP78 during hypoxia. Inhibition of apoptosis was mediated by the binding of the peptide to cardiomyocytes cell surface GRP78 resulting in blocking caspase-3/7 activation. Silencing GRP78 RNA that reduced GRP78 receptor abrogated the peptide activity. Apoptosis of cardiac cells induced by myocardial infarction in a mouse model was also significantly inhibited by the administration of the peptide to mouse hearts. Our findings may make ADoPep1 a useful therapeutic tool for relieving of ischemia.
Collapse
Affiliation(s)
- Britta Hardy
- The Laboratory of Cellular and Vascular Immunology, Felsenstein Medical Research Center, Tel-Aviv University Sackler School of Medicine, Rabin Medical Center, Beilinson Campus, Petach-Tikva, 49100, Israel.
| | | |
Collapse
|
50
|
Activation of apoptotic pathways in experimental acute afterload-induced right ventricular failure. Crit Care Med 2010; 38:1405-13. [PMID: 20431484 DOI: 10.1097/ccm.0b013e3181de8bd3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The pathobiology of persistent right ventricular failure observed after an acute increase in right ventricular afterload remains incompletely understood. We hypothesized that persistent right ventricular dysfunction might be related to activation of apoptotic pathways. DESIGN Prospective, randomized, controlled animal study. SETTING University research laboratory. SUBJECTS Mongrel dogs. INTERVENTIONS Fourteen anesthetized dogs were randomized to a transient 90-min pulmonary artery constriction operation to induce persistent right ventricular failure or to a sham operation followed 30 mins later by hemodynamic measurements and sampling of cardiac tissue. MEASUREMENTS AND MAIN RESULTS We evaluated effective arterial elastance to estimate right ventricular afterload and end-systolic elastance to estimate right ventricular contractility. Transient increase in pulmonary artery pressure persistently increased effective arterial elastance from 0.75 +/- 0.08 to 1.37 +/- 0.18 mm Hg/mL and decreased end-systolic elastance from 1.06 +/- 0.09 to 0.49 +/- 0.09 mm Hg/mL, end-systolic elastance/effective arterial elastance from 1.44 +/- 0.06 to 0.34 +/- 0.03, and cardiac output from 3.78 +/- 0.16 to 1.46 +/- 0.10 L/min, indicating right ventricular failure. At the pathobiologic level, we assessed apoptosis by real-time quantitative polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay, and immunohistochemistry. As compared with the sham-operated group, and with the left ventricle in animals with persistent right ventricular failure, there were decreased right ventricular and septal expressions of Bcl-2 with no changes in expressions of Bax, resulting in an increased Bax/Bcl-2 ratio. Right ventricular and septal Bcl-XL, and right ventricular Bcl-w gene expressions were decreased as compared with the sham-operated group, whereas Bak gene expression did not change. There were activations of right ventricular caspases-8 and -9 and of right ventricular and septal caspase-3. Diffuse right ventricular and septal apoptosis was confirmed by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. There were also increased right ventricular and septal protein expressions of tumor necrosis factor-alpha. CONCLUSIONS Acute afterload-induced persistent right ventricular failure appears to be related to an early activation of apoptotic pathways and to a local overexpression of tumor necrosis factor-alpha, a proinflammatory cytokine.
Collapse
|