1
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Baudo G, Wu S, Massaro M, Liu H, Lee H, Zhang A, Hamilton DJ, Blanco E. Polymer-Functionalized Mitochondrial Transplantation to Fibroblasts Counteracts a Pro-Fibrotic Phenotype. Int J Mol Sci 2023; 24:10913. [PMID: 37446100 PMCID: PMC10342003 DOI: 10.3390/ijms241310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Fibroblast-to-myofibroblast transition (FMT) leads to excessive extracellular matrix (ECM) deposition-a well-known hallmark of fibrotic disease. Transforming growth factor-β (TGF-β) is the primary cytokine driving FMT, and this phenotypic conversion is associated with mitochondrial dysfunction, notably a metabolic reprogramming towards enhanced glycolysis. The objective of this study was to examine whether the establishment of favorable metabolic phenotypes in TGF-β-stimulated fibroblasts could attenuate FMT. The hypothesis was that mitochondrial replenishment of TGF-β-stimulated fibroblasts would counteract a shift towards glycolytic metabolism, consequently offsetting pro-fibrotic processes. Isolated mitochondria, functionalized with a dextran and triphenylphosphonium (TPP) (Dex-TPP) polymer conjugate, were administered to fibroblasts (MRC-5 cells) stimulated with TGF-β, and effects on bioenergetics and fibrotic programming were subsequently examined. Results demonstrate that TGF-β stimulation of fibroblasts led to FMT, which was associated with enhanced glycolysis. Dex-TPP-coated mitochondria (Dex-TPP/Mt) delivery to TGF-β-stimulated fibroblasts abrogated a metabolic shift towards glycolysis and led to a reduction in reactive oxygen species (ROS) generation. Importantly, TGF-β-stimulated fibroblasts treated with Dex-TPP/Mt had lessened expression of FMT markers and ECM proteins, as well as reduced migration and proliferation. Findings highlight the potential of mitochondrial transfer, as well as other strategies involving functional reinforcement of mitochondria, as viable therapeutic modalities in fibrosis.
Collapse
Affiliation(s)
- Gherardo Baudo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Matteo Massaro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hyunho Lee
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
3
|
Wang X, Steinberg T, Dieterle MP, Ramminger I, Husari A, Tomakidi P. FAK Shutdown: Consequences on Epithelial Morphogenesis and Biomarker Expression Involving an Innovative Biomaterial for Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22189774. [PMID: 34575938 PMCID: PMC8470904 DOI: 10.3390/ijms22189774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.
Collapse
Affiliation(s)
- Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Correspondence:
| | - Martin P. Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| |
Collapse
|
4
|
Saraswati S, Lietman CD, Li B, Mathew S, Zent R, Young PP. Small proline-rich repeat 3 is a novel coordinator of PDGFRβ and integrin β1 crosstalk to augment proliferation and matrix synthesis by cardiac fibroblasts. FASEB J 2020; 34:7885-7904. [PMID: 32297675 PMCID: PMC7302973 DOI: 10.1096/fj.201902815r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
Nearly 6 million Americans suffer from heart failure. Increased fibrosis contributes to functional decline of the heart that leads to heart failure. Previously, we identified a mechanosensitive protein, small proline‐rich repeat 3 (SPRR3), in vascular smooth muscle cells of atheromas. In this study, we demonstrate SPRR3 expression in cardiac fibroblasts which is induced in activated fibroblasts following pressure‐induced heart failure. Sprr3 deletion in mice showed preserved cardiac function and reduced interstitial fibrosis in vivo and reduced fibroblast proliferation and collagen expression in vitro. SPRR3 loss resulted in reduced activation of Akt, FAK, ERK, and p38 signaling pathways, which are coordinately regulated by integrins and growth factors. SPRR3 deletion did not impede integrin‐associated functions including cell adhesion, migration, or contraction. SPRR3 loss resulted in reduced activation of PDGFRβ in fibroblasts. This was not due to the reduced PDGFRβ expression levels or decreased binding of the PDGF ligand to PDGFRβ. SPRR3 facilitated the association of integrin β1 with PDGFRβ and subsequently fibroblast proliferation, suggesting a role in PDGFRβ‐Integrin synergy. We postulate that SPRR3 may function as a conduit for the coordinated activation of PDGFRβ by integrin β1, leading to augmentation of fibroblast proliferation and matrix synthesis downstream of biomechanical and growth factor signals.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caressa D Lietman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bin Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,American Red Cross, Biomedical Division, Washington, DC, USA
| |
Collapse
|
5
|
Bassaneze V, Lee RT. Revealing Pathways of Cardiac Regeneration. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002053. [PMID: 30520316 DOI: 10.1161/circgen.117.002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vinícius Bassaneze
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and the Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Richard T Lee
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and the Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| |
Collapse
|
6
|
Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol 2016; 91:52-60. [PMID: 26721596 PMCID: PMC4764462 DOI: 10.1016/j.yjmcc.2015.12.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Eric M Small
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA.
| |
Collapse
|
7
|
Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol Cell Biochem 2016; 413:127-35. [PMID: 26724950 DOI: 10.1007/s11010-015-2646-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Vascular endothelial growth factor (VEGF)-D is a crucial mediator of angiogenesis. Following myocardial infarction (MI), cardiac VEGF-D and VEGF receptor (VEGFR)-3 are significantly upregulated. In addition to endothelial cells, myofibroblasts at the site of MI highly express VEGFR-3, implicating the involvement of VEGF-D in cardiac fibrogenesis that promotes repair and remodeling. The aim of the current study was to further explore the critical role of VEGF-D in fibrogenic response in myofibroblasts. Myofibroblast proliferation, migration, collagen synthesis, and degradation were investigated in cultured cardiac myofibroblasts subjected to VEGF-D with/without VEGFR antagonist or ERK inhibitor. Vehicle-treated cells served as controls. Myofibroblast proliferation and migration were detected by BrdU assay and Boyden Chamber method, respectively. Expression of type I collagen, metalloproteinase (MMP)-2/-9, tissue inhibitor of MMP (TIMP)-1/-2, and ERK phosphorylation were evaluated by Western blot analyses. Our results revealed that compared to controls, (1) VEGF-D significantly increased myofibroblast proliferation and migration; (2) VEGF-D significantly upregulated type I collagen synthesis in a dose- and time-dependent manner; (3) VEGFR antagonist abolished VEGF-D-induced myofibroblast proliferation and type I collagen release; (4) VEGF-D stimulated MMP-2/-9 and TIMP-1/-2 synthesis; (5) VEGF-D activated ERK phosphorylation; and (6) ERK inhibitor abolished VEGF-D-induced myofibroblast proliferation and type I collagen synthesis. Our in vitro studies have demonstrated that VEGF-D serves as a crucial profibrogenic mediator by stimulating myofibroblast growth, migration and collagen synthesis. Further studies are underway to determine the role of VEGF-D in fibrous tissue formation during cardiac repair following MI.
Collapse
|
8
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
9
|
Zhang P, Feng S, Bai H, Zeng P, Chen F, Wu C, Peng Y, Zhang Q, Zhang Q, Ye Q, Xue Q, Xu X, Song E, Song Y. Polychlorinated biphenyl quinone induces endothelial barrier dysregulation by setting the cross talk between VE-cadherin, focal adhesion, and MAPK signaling. Am J Physiol Heart Circ Physiol 2015; 308:H1205-14. [PMID: 25770237 DOI: 10.1152/ajpheart.00005.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/09/2015] [Indexed: 12/12/2022]
Abstract
Environmental hazardous material polychlorinated biphenyl (PCB) exposure is associated with vascular endothelial dysfunction, which may increase the risk of cardiovascular diseases and cancer metastasis. Our previous studies illustrated the cytotoxic, antiproliferative, and genotoxic effects of a synthetic, quinone-type, highly reactive metabolite of PCB, 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone (PCB29-pQ). Here, we used it as the model compound to investigate its effects on vascular endothelial integrity and permeability. We demonstrated that noncytotoxic doses of PCB29-pQ induced vascular endothelial (VE)-cadherin junction disassembly by increasing the phosphorylation of VE-cadherin at Y658. We also found that focal adhesion assembly was required for PCB29-pQ-induced junction breakdown. Focal adhesion site-associated actin stress fibers may serve as holding points for cytoskeletal tension to regulate the cellular contractility. PCB29-pQ exposure promoted the association of actin stress fibers with paxillin-containing focal adhesion sites and enlarged the size/number of focal adhesions. In addition, PCB29-pQ treatment induced phosphorylation of paxillin at Y118. By using pharmacological inhibition, we further demonstrated that p38 activation was necessary for paxillin phosphorylation, whereas extracellular signal-regulated kinases-1/2 activation regulated VE-cadherin phosphorylation. In conclusion, these results indicated that PCB29-pQ stimulates endothelial hyperpermeability by mediating VE-cadherin disassembly, junction breakdown, and focal adhesion formation. Intervention strategies targeting focal adhesion and MAPK signaling could be used as therapeutic approaches for preventing adverse cardiovascular health effects induced by environmental toxicants such as PCBs.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania
| | - Shan Feng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Huiyuan Bai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Panying Zeng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Feng Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Chengxiang Wu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Yi Peng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qin Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qiuyao Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qichao Ye
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Qiang Xue
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Xiaoyu Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; and
| |
Collapse
|
10
|
Su Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase. J Surg Res 2014; 189:222-31. [PMID: 24703506 DOI: 10.1016/j.jss.2014.02.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/29/2013] [Accepted: 02/27/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell migration and adhesion are essential in intestinal epithelial wound healing and recovery from injury. Focal adhesion kinase (FAK) plays an important role in cell-extracellular matrix signal transduction. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes intestinal epithelial cell (IEC) migration and adhesion in vitro. The present study was designed to determine whether FAK is involved in HB-EGF-induced IEC migration and adhesion. MATERIALS AND METHODS A scrape wound healing model of rat IECs was used to examine the effect of HB-EGF on FAK-dependent cell migration in vitro. Immunofluorescence and Western blot analyses were performed to evaluate the effect of HB-EGF on the expression of phosphorylated FAK (p-FAK). Cell adhesion assays were performed to determine the role of FAK in HB-EGF-induced cell adhesion on fibronectin (FN). RESULTS HB-EGF significantly increased healing after scrape wounding, an effect that was reversed in the presence of an FAK inhibitor 14 (both with P < 0.05). HB-EGF increased p-FAK expression and induced p-FAK redistribution and actin reorganization in migrating rat IECs. Cell adhesion and spreading on FN were significantly increased by HB-EGF (P < 0.05). FAK inhibitor 14 significantly inhibited both intrinsic and HB-EGF-induced cell adhesion and spreading on FN (both with P < 0.05). CONCLUSIONS FAK phosphorylation and FAK-mediated signal transduction play essential roles in HB-EGF-mediated IEC migration and adhesion.
Collapse
Affiliation(s)
- Yanwei Su
- Department of Cardiovascular and Respiratory Medicine, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Pediatric Surgery, Nationwide Children's Hospital, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Gail E Besner
- Department of Pediatric Surgery, Nationwide Children's Hospital, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
11
|
Zhao T, Zhao W, Meng W, Liu C, Chen Y, Sun Y. Vascular endothelial growth factor-C: its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol 2014; 306:H789-96. [PMID: 24464750 DOI: 10.1152/ajpheart.00559.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF)-C is a key mediator of lymphangiogenesis. Our recent study shows that VEGF-C/VEGF receptors (VEGFR)-3 are significantly increased in the infarcted rat myocardium, where VEGFR-3 is expressed not only in lymph ducts but also in myofibroblasts, indicating that VEGF-C has an unrevealed role in fibrogenesis during cardiac repair. The current study is to explore the regulation and molecular mechanisms of VEGF-C in fibrogenesis. The potential regulation of VEGF-C on myofibroblast differentiation/growth/migration, collagen degradation/synthesis, and transforming growth factor (TGF)-β and ERK pathways was detected in cultured cardiac myofibroblasts. Our results showed that VEGF-C significantly increased myofibroblast proliferation, migration, and type I/III collagen production. Matrix metalloproteinase (MMP)-2 and -9 were significantly elevated in the medium of VEGF-C-treated cells, coincident with increased tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Furthermore, VEGF-C activated the TGF-β1 pathway and ERK phosphorylation, which was significantly suppressed by TGF-β or ERK blockade. This is the first study indicating that in addition to lymphangiogenesis, VEGF-C is also involved in fibrogenesis through stimulation of myofibroblast proliferation, migration, and collagen synthesis, via activation of the TGF-β1 and ERK pathways.
Collapse
Affiliation(s)
- Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | | | | | | | | | | |
Collapse
|
12
|
Dostal DE, Feng H, Nizamutdinov D, Golden HB, Afroze SH, Dostal JD, Jacob JC, Foster DM, Tong C, Glaser S, Gerilechaogetu F. Mechanosensing and Regulation of Cardiac Function. ACTA ACUST UNITED AC 2014; 5:314. [PMID: 25485172 PMCID: PMC4255974 DOI: 10.4172/2155-9880.1000314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of mechanical force as an important regulator of structure and function of mammalian cells, tissues, and organs has recently been recognized. However, mechanical overload is a pathogenesis or comorbidity existing in a variety of heart diseases, such as hypertension, aortic regurgitation and myocardial infarction. Physical stimuli sensed by cells are transmitted through intracellular signal transduction pathways resulting in altered physiological responses or pathological conditions. Emerging evidence from experimental studies indicate that β1-integrin and the angiotensin II type I (AT1) receptor play critical roles as mechanosensors in the regulation of heart contraction, growth and leading to heart failure. Integrin link the extracellular matrix and the intracellular cytoskeleton to initiate the mechanical signalling, whereas, the AT1 receptor could be activated by mechanical stress through an angiotensin-II-independent mechanism. Recent studies show that both Integrin and AT1 receptor and their downstream signalling factors including MAPKs, AKT, FAK, ILK and GTPase regulate heart function in cardiac myocytes. In this review we describe the role of mechanical sensors residing within the plasma membrane, mechanical sensor induced downstream signalling factors and its potential roles in cardiac contraction and growth.
Collapse
Affiliation(s)
- David E Dostal
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Hao Feng
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Damir Nizamutdinov
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Honey B Golden
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Syeda H Afroze
- Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Joseph D Dostal
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - John C Jacob
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Donald M Foster
- Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Carl Tong
- Systems Biology and Translational Medicine, the Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Shannon Glaser
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Fnu Gerilechaogetu
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| |
Collapse
|
13
|
Cathelicidin antimicrobial peptide inhibits fibroblast migration via P2X7 receptor signaling. Biochem Biophys Res Commun 2013; 437:609-14. [DOI: 10.1016/j.bbrc.2013.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 11/23/2022]
|
14
|
Zhao T, Zhao W, Chen Y, Li VS, Meng W, Sun Y. Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2013; 304:H1719-26. [PMID: 23585135 DOI: 10.1152/ajpheart.00130.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Platelet-derived growth factor (PDGF)-D is a newly recognized member of the PDGF family with its role just now being understood. Our previous study shows that PDGF-D and its receptors (PDGFR-β) are significantly increased in the infarcted heart, where PDGFR-β is primarily expressed by fibroblasts, indicating the involvement of PDGF-D in the development of cardiac fibrosis. In continuing with these findings, the current study explored the molecular basis of PDGF-D on fibrogenesis. Rat cardiac fibroblasts were isolated and treated with PDGF-D (200 ng/ml medium). The potential regulation of PDGF-D on fibroblast growth, phenotype change, collagen turnover, and the transforming growth factor (TGF)-β pathway were explored. We found: 1) PDGF-D significantly elevated cardiac fibroblast proliferation, myofibroblast (myoFb) differentiation, and type I collagen secretion; 2) matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 protein levels were significantly elevated in PDGF-D-treated cells, which were coincident with increased expressions of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2; 3) PDGF-D significantly enhanced TGF-β1 synthesis, which was eliminated by TGF-β blockade with small-interfering RNA (siRNA); 4) the stimulatory role of PDGF-D on fibroblast proliferation and collagen synthesis was abolished by TGF-β blockade; and 5) TGF-β siRNA treatment significantly suppressed PDGF-D synthesis in fibroblasts. These observations indicate that PDGF-D promotes fibrogenesis through multiple mechanisms. Coelevations of TIMPs and MMPs counterbalance collagen degradation. The profibrogenic role of PDGF-D is mediated through activation of the TGF-β1 pathway. TGF-β1 exerts positive feedback on PDGF-D synthesis. These findings suggest the potential therapeutic effect of PDGFR blockade on interstitial fibrosis in the infarcted heart.
Collapse
Affiliation(s)
- Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol 2012; 23:981-6. [PMID: 23036529 DOI: 10.1016/j.semcdb.2012.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that mechanical forces can significantly impact the biologic response to injury. Integrated mechanical and chemical signaling networks have been discovered that enable physical cues to regulate disease processes such as pathologic scar formation. Distinct molecular mechanisms control how tensional forces influence wound healing and fibrosis. Conceptual frameworks to understand cutaneous repair have expanded beyond traditional cell-cytokine models to include dynamic interactions driven by mechanical force and the extracellular matrix. Strategies to manipulate these biomechanical signaling networks have tremendous therapeutic potential to reduce scar formation and promote skin regeneration.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
16
|
Balasubramanian S, Quinones L, Kasiganesan H, Zhang Y, Pleasant DL, Sundararaj KP, Zile MR, Bradshaw AD, Kuppuswamy D. β3 integrin in cardiac fibroblast is critical for extracellular matrix accumulation during pressure overload hypertrophy in mouse. PLoS One 2012; 7:e45076. [PMID: 22984613 PMCID: PMC3440340 DOI: 10.1371/journal.pone.0045076] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 08/16/2012] [Indexed: 12/22/2022] Open
Abstract
The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3-/-) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3-/- mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3-/- mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3-/- mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3-/- mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3-/- cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3-/- cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Sundaravadivel Balasubramanian
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lakeya Quinones
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harinath Kasiganesan
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yuhua Zhang
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dorea L. Pleasant
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kamala P. Sundararaj
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael R. Zile
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Amy D. Bradshaw
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Dhandapani Kuppuswamy
- Cardiology Division, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Häuselmann SP, Rosc-Schlüter BI, Lorenz V, Plaisance I, Brink M, Pfister O, Kuster GM. β1-Integrin is up-regulated via Rac1-dependent reactive oxygen species as part of the hypertrophic cardiomyocyte response. Free Radic Biol Med 2011; 51:609-18. [PMID: 21620958 DOI: 10.1016/j.freeradbiomed.2011.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/21/2022]
Abstract
β(1)-Integrin mediates cardiomyocyte growth and survival and its proper regulation is essential for the structural and functional integrity of the heart. β(1)-Integrin expression is enhanced in hypertrophy, but the mechanism and significance of its up-regulation are unknown. Because reactive oxygen species (ROS) are important mediators of myocardial remodeling we examined their role in regulated β(1)-integrin expression. Hypertrophy was induced in neonatal cardiomyocytes by endothelin-1 (ET-1), which activated the regulatory NADPH oxidase subunit Rac1, evoked ROS, and enhanced fetal gene expression and cardiomyocyte size. ET-1 also enhanced cell adhesion and FAK phosphorylation and inhibited oxidative stress-induced cardiomyocyte apoptosis. Further, ET-1 increased β(1)-integrin mRNA and protein expression via Rac1-ROS-dependent MEK/ERK and EGF receptor-PI3K/Akt activation as shown by adenoviral dominant-negative Rac1 or overexpression of copper/zinc-superoxide dismutase. The relevance of regulated β(1)-integrin expression was examined in cardiomyocytes, in which targeting siRNA impeded the ET-1-induced β(1)-integrin up-regulation. In these cells, ET-1-induced cell adhesion, FAK phosphorylation, and hypertrophic response were significantly blunted, whereas its antiapoptotic effect was predominantly unchanged, suggesting at least partial dissociation of prohypertrophic and prosurvival signaling elicited by ET-1. In conclusion, β(1)-integrin up-regulation in response to ET-1 is mediated via Rac1-ROS-dependent activation of prohypertrophic pathways and is mandatory for ET-1-induced FAK activation, cell adhesion, and hypertrophic response.
Collapse
Affiliation(s)
- Stéphanie P Häuselmann
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Shen X, Xi G, Radhakrishnan Y, Clemmons DR. Recruitment of Pyk2 to SHPS-1 signaling complex is required for IGF-I-dependent mitogenic signaling in vascular smooth muscle cells. Cell Mol Life Sci 2010; 67:3893-903. [PMID: 20521079 PMCID: PMC11115943 DOI: 10.1007/s00018-010-0411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 10/25/2022]
Abstract
In vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I. Following Src/Pyk2 association, Src phosphorylates Pyk2 on Tyr881 providing a binding site for Grb2. Cells expressing Pyk2/Y881F showed decreased Grb2 recruitment to SHPS-1 and impaired Shc/Grb2 association. This change led to reduced Erk1/2 (MAP kinase) activation and cell proliferation in response to IGF-I. Our results show that, following its recruitment to the SHPS-1 signaling complex, Pyk2 localizes Grb2 in close proximity to Shc thereby facilitating Shc/Grb2 association which leads to Erk1/2 activation in response to IGF-I. Thus, Pyk2 recruitment to SHPS-1 plays an important role in regulating the IGF-I-stimulated mitogenic response.
Collapse
Affiliation(s)
- Xinchun Shen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Gang Xi
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Yashwanth Radhakrishnan
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - David R. Clemmons
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
- Division of Endocrinology, University of North Carolina at Chapel Hill, CB# 7170, 8024 Burnett-Womack, Chapel Hill, NC 27599-7170 USA
| |
Collapse
|
19
|
Dalla Costa AP, Clemente CFMZ, Carvalho HF, Carvalheira JB, Nadruz W, Franchini KG. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res 2009; 86:421-31. [PMID: 20038548 DOI: 10.1093/cvr/cvp416] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Cardiac fibroblasts are activated by mechanical stress, but the underlying mechanisms involved remain poorly understood. In this study, we investigated whether focal adhesion kinase (FAK) plays a role in the activation of cardiac fibroblasts in response to cyclic stretch. METHODS AND RESULTS Neonatal (NF-P3/80--third passage, 80% confluence) and adult (AF-P1/80--first passage, 80% confluence) rat cardiac fibroblasts were exposed to cyclic stretch (biaxial, 1 Hz), which enhanced FAK phosphorylation at Tyr397. Proliferation (anti-5-bromo-2'-deoxyuridine and anti-Ki67 nuclear labelling), differentiation into myofibroblasts (expression of alpha-smooth muscle actin--alpha-SMA), and the activity of matrix metalloproteinase-2 were equally enhanced in stretched NF-P3/80 and AF-P1/80. Treatment with the integrin inhibitor RGD peptide impaired FAK phosphorylation and increased apoptosis (TUNEL) in non-stretched and stretched NF-P3/80, whereas FAK silencing induced by small interfering RNA modestly enhanced apoptosis only in stretched cells. RGD peptide or FAK silencing suppressed the activation of NF-P3/80 invoked by cyclic stretch. In addition, NF-P3/80 depleted of FAK were defective in AKT Ser473, TSC-2 Thr1462, and S6 kinase Thr389 phosphorylation induced by cyclic stretch. The activation of NF-P3/80 invoked by cyclic stretch was prevented by pre-treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin, whereas supplementation with the amino acid, leucine, activated S6K and rescued the stretch-induced activation of NF-P3/80 depleted of FAK. CONCLUSIONS These findings demonstrate a critical role for the mTOR complex, downstream from FAK, in mediating the activation of cardiac fibroblasts in response to mechanical stress.
Collapse
Affiliation(s)
- Ana Paula Dalla Costa
- Department of Internal Medicine, School of Medicine and Department of Cell Biology, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells, and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. Although a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review, we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart.
Collapse
Affiliation(s)
- Colby A. Souders
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Stephanie L.K. Bowers
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Troy A. Baudino
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| |
Collapse
|
21
|
Rennison JH, Van Wagoner DR. Impact of dietary fatty acids on cardiac arrhythmogenesis. Circ Arrhythm Electrophysiol 2009; 2:460-9. [PMID: 19808503 DOI: 10.1161/circep.109.880773] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julie H Rennison
- Department of Molecular Cardiology, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|