1
|
Elahimanesh M, Shokri N, Mahdinia E, Mohammadi P, Parvaz N, Najafi M. Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Sci Rep 2024; 14:3424. [PMID: 38341440 PMCID: PMC10858964 DOI: 10.1038/s41598-024-54086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Harbalıoğlu H, Genç Ö, Alıcı G, Quisi A, Yıldırım A. Impact of HAT 2CH 2 Score on the Development of No-Reflow Phenomenon in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2024; 75:44-53. [PMID: 37249481 DOI: 10.1177/00033197231171235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The HAT2CH2 score [Hypertension (1 point), Age > 75 years (1 point), Stroke/Transient ischemic attack (2 points), Chronic obstructive pulmonary disease (1 point), and Heart failure (2 points)] was originally developed to predict the occurrence of new-onset atrial fibrillation. The aim of the present study was to examine whether this score could predict the development of no-reflow phenomenon (NR) in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (pPCI). Patients (n = 1552) with STEMI were consecutively enrolled in this single-center retrospective study. The SYNTAX score (SXscore) and HAT2CH2 score were calculated. The presence of thrombolysis in myocardial infarction (TIMI) score ≤2, without significant residual stenosis and mechanical obstruction, indicated the presence of NR. The HAT2CH2 score was significantly higher in the NR (+) group compared with the NR (-) group [2.29 ± 1.43 vs 1.46 ± 1.24, p < .001]. In multivariable logistic regression analysis, the HAT2CH2 score [OR = 1.585, p < .001] and SXscore [OR = 1.028, p = .017] were found to be independent predictors of NR. Receiver operating characteristic curve analysis showed that the HAT2CH2 score with a cutoff value of >2 determined NR, with 50.2% sensitivity and 79.4% specificity (AUC = .669, p < .001). In conclusion, the HAT2CH2 score may facilitate risk stratification in estimating NR in STEMI patients undergoing pPCI.
Collapse
Affiliation(s)
- Hazar Harbalıoğlu
- Department of Cardiology, Hatay Iskenderun State Hospital, Hatay, Turkey
| | - Ömer Genç
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - Gökhan Alıcı
- University of Health Sciences, Department of Cardiology, Adana City Training & Research Hospital, Adana, Turkey
| | - Alaa Quisi
- Department of Cardiology, Medline Adana Hospital, Adana, Turkey
| | - Abdullah Yıldırım
- University of Health Sciences, Department of Cardiology, Adana City Training & Research Hospital, Adana, Turkey
| |
Collapse
|
3
|
Rusiecka OM, Molica F, Nielsen MS, Tollance A, Morel S, Frieden M, Chanson M, Boengler K, Kwak BR. Mitochondrial pannexin1 controls cardiac sensitivity to ischaemia/reperfusion injury. Cardiovasc Res 2023; 119:2342-2354. [PMID: 37556386 PMCID: PMC10597630 DOI: 10.1093/cvr/cvad120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 08/11/2023] Open
Abstract
AIMS No effective therapy is available in clinics to protect the heart from ischaemia/reperfusion (I/R) injury. Endothelial cells are activated after I/R, which may drive the inflammatory response by releasing ATP through pannexin1 (Panx1) channels. Here, we investigated the role of Panx1 in cardiac I/R. METHODS AND RESULTS Panx1 was found in cardiac endothelial cells, neutrophils, and cardiomyocytes. After in vivo I/R, serum Troponin-I, and infarct size were less pronounced in Panx1-/- mice, but leukocyte infiltration in the infarct area was similar between Panx1-/- and wild-type mice. Serum Troponin-I and infarct size were not different between mice with neutrophil-specific deletion of Panx1 and Panx1fl/fl mice, suggesting that cardioprotection by Panx1 deletion rather involved cardiomyocytes than the inflammatory response. Physiological cardiac function in wild-type and Panx1-/- hearts was similar. The time to onset of contracture and time to maximal contracture were delayed in Panx1-/- hearts, suggesting reduced sensitivity of these hearts to ischaemic injury. Moreover, Panx1-/- hearts showed better recovery of left ventricle developed pressure, cardiac contractility, and relaxation after I/R. Ischaemic preconditioning failed to confer further protection in Panx1-/- hearts. Panx1 was found in subsarcolemmal mitochondria (SSM). SSM in WT or Panx1-/- hearts showed no differences in morphology. The function of the mitochondrial permeability transition pore and production of reactive oxygen species in SSM was not affected, but mitochondrial respiration was reduced in Panx1-/- SSM. Finally, Panx1-/- cardiomyocytes had a decreased mitochondrial membrane potential and an increased mitochondrial ATP content. CONCLUSION Panx1-/- mice display decreased sensitivity to cardiac I/R injury, resulting in smaller infarcts and improved recovery of left ventricular function. This cardioprotective effect of Panx1 deletion seems to involve cardiac mitochondria rather than a reduced inflammatory response. Thus, Panx1 may represent a new target for controlling cardiac reperfusion damage.
Collapse
Affiliation(s)
- Olga M Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel Tollance
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
4
|
Te Lintel Hekkert M, Newton G, Chapman K, Aqil R, Downham R, Yan R, Merkus D, Whitlock G, Lane CAL, Cawkill D, Perrior T, Duncker DJ, Schneider MD. Preclinical trial of a MAP4K4 inhibitor to reduce infarct size in the pig: does cardioprotection in human stem cell-derived myocytes predict success in large mammals? Basic Res Cardiol 2021; 116:34. [PMID: 34018053 PMCID: PMC8137473 DOI: 10.1007/s00395-021-00875-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
Reducing infarct size (IS) by interfering with mechanisms for cardiomyocyte death remains an elusive goal. DMX-5804, a selective inhibitor of the stress-activated kinase MAP4K4, suppresses cell death in mouse myocardial infarction (MI), human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), and 3D human engineered heart tissue, whose fidelity to human biology is hoped to strengthen the route to clinical success. Here, DMX-10001, a soluble, rapidly cleaved pro-drug of DMX-5804, was developed for i.v. testing in large-mammal MI. Following pharmacodynamic studies, a randomized, blinded efficacy study was performed in swine subjected to LAD balloon occlusion (60 min) and reperfusion (24 h). Thirty-six animals were enrolled; 12 were excluded by pre-defined criteria, death before infusion, or technical issues. DMX-10001 was begun 20 min before reperfusion (30 min, 60 mg/kg/h; 23.5 h, 17 mg/kg/h). At all times tested, beginning 30 min after the start of infusion, DMX-5804 concentrations exceeded > fivefold the levels that rescued hPSC-CMs and reduced IS in mice after oral dosing with DMX-5804 itself. No significant reduction occurred in IS or no-reflow corrected for the area at ischemic risk, even though DMX-10001 reduced IS, expressed in grams or % of LV mass, by 27%. In summary, a rapidly cleaved pro-drug of DMX-5804 failed to reduce IS in large-mammal MI, despite exceeding the concentrations for proven success in both mice and hPSC-CMs.
Collapse
Affiliation(s)
- Maaike Te Lintel Hekkert
- Department of Cardiology (Thoraxcenter), Erasmus University Medical Center, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | - Daphne Merkus
- Department of Cardiology (Thoraxcenter), Erasmus University Medical Center, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | - Dirk J Duncker
- Department of Cardiology (Thoraxcenter), Erasmus University Medical Center, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
5
|
Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: a Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovasc Drugs Ther 2020; 35:113-123. [PMID: 33079319 DOI: 10.1007/s10557-020-07101-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115). CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.
Collapse
|
6
|
Cobo AA, Margallo FMS, Díaz CB, Blázquez VB, Bueno IG, Crisóstomo V. Anesthesia Protocols used to Create Ischemia Reperfusion Myocardial Infarcts in Swine. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:478-487. [PMID: 32709259 DOI: 10.30802/aalas-jaalas-19-000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The porcine ischemia-reperfusion model is one of the most commonly used for cardiology research and for testing interventions for myocardial regeneration. In creating ischemic reperfusion injury, the anesthetic protocol is important for assuring hemodynamic stability of the animal during the induction of the experimental lesion and may affect its postoperative survival. This paper reviews the many drugs and anesthetic protocols used in recent studies involving porcine models of ischemiareperfusion injury. The paper also summarizes the most important characteristics of some commonly used anesthetic drugs. Literature was selected for inclusion in this review if the authors described the anesthetic protocol used and also reported the mortality rate attributed to the creation of the model. This information is an important consideration because the anesthetic protocol can influence hemodynamic stability during the experimental induction of an acute myocardial infarction, thereby impacting the survival rate and affecting the number of animals needed for each study.
Collapse
Affiliation(s)
- Ana Abad Cobo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain;,
| | | | - Claudia Báez Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; CIBERCV, Madrid, Spain
| | | | | | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; CIBERCV, Madrid, Spain
| |
Collapse
|
7
|
姚 玉, 曾 智, 赵 艳, 黎 土, 刘 育, 陈 荣. [Effect of Shexiang Tongxin dripping pills on coronary microcirculation disorder and cardiac dysfunction in a porcine model of myocardial ischemia-reperfusion injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:899-906. [PMID: 32895211 PMCID: PMC7321270 DOI: 10.12122/j.issn.1673-4254.2020.06.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/08/2022]
Abstract
OBJECTIVE To investigate the mechanism by which Shexiang Tongxin dripping pills (STDP) improves coronary microcirculation disorder (CMD) and cardiac dysfunction in a porcine model of myocardial ischemia-reperfusion injury. METHODS Fourteen minipigs were randomly selected for interventional balloon occlusion of the middle left anterior descending branch to induce CMD, and another 7 pigs received sham operation. The pig models of CMD were randomized equally into the model group and STDP-treated group. All the animals were fed with common feed for 8 weeks, and in STDP-treated group, the pigs were given STDP at the daily dose of 3 mg/kg (mixed with feed) for 8 weeks. Before and at the 8th week after the operation, the pigs underwent coronary angiography and echocardiography to determine the vessel lumen diameter and TIMI frame count (CTFC). The pathologies of the myocardium and the microvessels were examined with HE staining at the 8th week. Western blotting was used to detect the expression of silencing information regulator (Sirt1), peroxidase proliferator-activated receptor-γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptor α (PPARα), extracellular signal-regulated kinase1/2 (ERKI/2), Toll-like receptor 4 (TLR4), and uncoupling protein 2 (UCP2) in myocardial tissue. RESULTS Before and at the 8th week after the operation, the diameter of the anterior descending vessel in the 3 groups did not differ significantly (P > 0.05). At the 8th week, the number of CTFC frames in the model group increased significantly compared with that in the sham-operated group, but was obviously lowered by treatment with STDP (P < 0.05). Myocardial ischemia-reperfusion injury significantly increased the interventricular septal thickness at end-diastole, left ventricular end-diastole dimension, end-diastole volume, interventricular septal thickness at end-systole and left ventricular mass at 8 weeks after the modeling (P < 0.05), but such changes were significantly alleviated by treatment with STDP (P < 0.05). STDP treatment markedly alleviated myocardial microvascular congestion, thrombosis and peripheral inflammatory cell infiltration induced by myocardial ischemia-reperfusion, but atrophy of the myocardial muscle fiber remained distinct. STDP obviously suppressed the down-regulation of Sirt1, PGC-1α, and PPARα and the up-regulation of ERK1/ 2, TLR4, and UCP2 in the myocardial tissues induced by myocardial ischemia-reperfusion injury. CONCLUSIONS STDP has anti-inflammatory effects and regulates energy metabolism in the myocardium through modulating Sirt1, PGC-1α, PPARα, ERKI/2, TLR4, and UCP2 to improve CMD and cardiac dysfunction after myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- 玉斯 姚
- />广东药科大学附属第一医院心血管内科,广东 广州 510000First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 智桓 曾
- />广东药科大学附属第一医院心血管内科,广东 广州 510000First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 艳群 赵
- />广东药科大学附属第一医院心血管内科,广东 广州 510000First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 土娣 黎
- />广东药科大学附属第一医院心血管内科,广东 广州 510000First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 育宏 刘
- />广东药科大学附属第一医院心血管内科,广东 广州 510000First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 荣 陈
- />广东药科大学附属第一医院心血管内科,广东 广州 510000First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
8
|
Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M. Heart-Type Fatty Acid-Binding Protein (H-FABP) and its Role as a Biomarker in Heart Failure: What Do We Know So Far? J Clin Med 2020; 9:E164. [PMID: 31936148 PMCID: PMC7019786 DOI: 10.3390/jcm9010164] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heart failure (HF) remains one of the leading causes of death to date despite extensive research funding. Various studies are conducted every year in an attempt to improve diagnostic accuracy and therapy monitoring. The small cytoplasmic heart-type fatty acid-binding protein (H-FABP) has been studied in a variety of disease entities. Here, we provide a review of the available literature on H-FABP and its possible applications in HF. Methods: Literature research using PubMed Central was conducted. To select possible studies for inclusion, the authors screened all available studies by title and, if suitable, by abstract. Relevant manuscripts were read in full text. RESULTS In total, 23 studies regarding H-FABP in HF were included in this review. CONCLUSION While, algorithms already exist in the area of risk stratification for acute pulmonary embolism, there is still no consensus for the routine use of H-FABP in daily clinical practice in HF. At present, the strongest evidence exists for risk evaluation of adverse cardiac events. Other future applications of H-FABP may include early detection of ischemia, worsening of renal failure, and long-term treatment planning.
Collapse
Affiliation(s)
- Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Peter Jirak
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Martha Gschwandtner
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, 8020 Graz, Austria;
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michael Haslinger
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Kristen Kopp
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Clemens Seelmaier
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Christina Granitz
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Uta C. Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| |
Collapse
|
9
|
Ziegler M, Hohmann JD, Searle AK, Abraham MK, Nandurkar HH, Wang X, Peter K. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J 2019; 39:111-116. [PMID: 28472483 DOI: 10.1093/eurheartj/ehx218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/11/2017] [Indexed: 01/21/2023] Open
Abstract
Aims CD39 is a cell membrane NTPase with anti-inflammatory and anti-platelet effects. However, its clinical use is limited by its bleeding side effect. With the goal of harnessing its therapeutic potential while avoiding haemostatic problems, we designed a fusion protein consisting of the extracellular domain of CD39 and a single-chain antibody (Targ-CD39) that specifically binds to activated glycoprotein (GP)IIb/IIIa and thus to activated platelets. Through this enrichment at activated platelets, the required systemic dose is below the dose impairing haemostasis. Methods and results Using an ischaemia/reperfusion mouse model (left anterior descending artery ligated for 1 h) we achieved remarkable protection of the reperfused tissue with Targ-CD39 compared with Non-targ-CD39 (mutated, non-binding version of Targ-CD39) and PBS control. Targ-CD39 restored ejection fraction and fractional shortening to a level indistinguishable from pre-injury status, while controls showed functional deterioration. Employing advanced clinically relevant methods of ultrasound analysis, we observed that both radial and longitudinal strain and strain rate showed infarct-typical changes of myocardial deformation in controls, but not in Targ-CD39 treated mice. Histological assessment confirmed strong reduction of infarct size and increase in neovascularization. Furthermore, attenuation of post-ischaemic inflammation was seen in cytokine profiling. Conclusion Overall, we demonstrate that Targ-CD39 holds promise for treatment of myocardial infarction.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Jan David Hohmann
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Amy Kate Searle
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Meike-Kristin Abraham
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Harshal H Nandurkar
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia.,Australian Centre for Blood Diseases, Central Clinical School, Alfred Hospital, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
10
|
The prognostic significance of heart-type fatty acid binding protein in patients with stable coronary heart disease. Sci Rep 2018; 8:14410. [PMID: 30258183 PMCID: PMC6158177 DOI: 10.1038/s41598-018-32210-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022] Open
Abstract
To investigate the prognostic value of heart-type fatty acid binding protein (H-FABP) in patients with stable coronary heart disease (SCHD). A total of 1,071 patients with SCHD were prospectively enrolled in this Taiwan multicenter registry study, followed for 24 months. The cut-off value of H-FABP, 4.143 ng/mL, was determined using receiver operating characteristic curves. The primary cardiovascular (CV) outcome was composite CV events, defined as cardiovascular or cerebrovascular death, myocardial infarction (MI), stroke, angina related-hospitalization, PAOD-related hospitalization and heart failure. Secondary outcomes included CV or cerebrovascular death, nonfatal MI, nonfatal stroke, and acute heart failure-related hospitalization. We found that the high H-FABP group had more than a two-fold higher rate of primary CV outcomes than the low H-FABP group (32.36% vs. 15.78%, p < 0.001). Eleven patients (4.82%) of the high H-FABP group died during the 24 months of follow-up, compared to only one patient (0.12%) in the low H-FABP group. The acute heart failure-related hospitalization rate was also significantly higher in the high H-FABP group (3.5% vs. 0.95%, p < 0.005). The results remained significant after adjusting for baseline covariates. In conclusion, H-FABP was an independent predictor for CV outcomes in the patients with SCHD, mainly in CV death and acute heart failure-related hospitalization.
Collapse
|
11
|
Mirna M, Wernly B, Paar V, Jung C, Jirak P, Figulla HR, Kretzschmar D, Franz M, Hoppe UC, Lichtenauer M, Lauten A. Multi-biomarker analysis in patients after transcatheter aortic valve implantation (TAVI). Biomarkers 2018; 23:773-780. [PMID: 30041555 DOI: 10.1080/1354750x.2018.1499127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In this study we sought to examine whether transcatheter aortic valve implantation (TAVI) is followed by a change in the plasma levels of novel cardiovascular biomarkers. METHODS We collected blood samples of 79 patients with severe aortic valve stenosis undergoing TAVI before and at 7 days, 1 month, 3 months and 6 months post TAVI and analyzed the plasma concentrations of GDF-15, H-FABP, fetuin-A, galectin 3, sST2 and suPAR by means of ELISA. RESULTS There was a significant increase in the concentration of fetuin-A (median: 52.44 mg/ml to 113.2 mg/ml, p < 0.001) and a significant decrease of H-FABP after TAVI (median: 4.835 ng/ml to 2.534 ng/ml, p < 0.001). The concentrations of suPAR and sST2 showed an initial increase (suPAR median: 2755 pg/ml 3489 pg/ml, p < 0.001; sST2 median: 5832 pg/ml to 7137 pq/ml, p < 0.001) and subsequently decreased significantly. CONCLUSION We hypothesize that the decrease of H-FABP and the increase of fetuin-A could be due to a hemodynamic improvement after valve replacement. The initial increase of suPAR could indicate an inflammatory stimulus and the significant increase in sST2 could be due to the mechanical strain caused by implantation of the valve.
Collapse
Affiliation(s)
- Moritz Mirna
- a Clinic of Internal Medicine II, Department of Cardiology , Paracelsus Medical University of Salzburg , Salzburg , Austria
| | - Bernhard Wernly
- a Clinic of Internal Medicine II, Department of Cardiology , Paracelsus Medical University of Salzburg , Salzburg , Austria
| | - Vera Paar
- a Clinic of Internal Medicine II, Department of Cardiology , Paracelsus Medical University of Salzburg , Salzburg , Austria
| | - Christian Jung
- b Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty , University Duesseldorf , Duesseldorf , Germany
| | - Peter Jirak
- a Clinic of Internal Medicine II, Department of Cardiology , Paracelsus Medical University of Salzburg , Salzburg , Austria
| | - Hans-Reiner Figulla
- c Universitätsherzzentrum Thüringen , Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena , Jena , Germany
| | - Daniel Kretzschmar
- c Universitätsherzzentrum Thüringen , Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena , Jena , Germany
| | - Marcus Franz
- c Universitätsherzzentrum Thüringen , Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena , Jena , Germany
| | - Uta C Hoppe
- a Clinic of Internal Medicine II, Department of Cardiology , Paracelsus Medical University of Salzburg , Salzburg , Austria
| | - Michael Lichtenauer
- a Clinic of Internal Medicine II, Department of Cardiology , Paracelsus Medical University of Salzburg , Salzburg , Austria
| | - Alexander Lauten
- d Department of Cardiology , Charité - Universitaetsmedizin Berlin , Berlin , Germany.,e Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) , Berlin , Standort Berlin , Germany
| |
Collapse
|
12
|
Moore JK, Chen J, Pan H, Gaut JP, Jain S, Wickline SA. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy. Magn Reson Med 2017; 79:3144-3153. [PMID: 29148253 DOI: 10.1002/mrm.26985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. METHODS A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. RESULTS The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. CONCLUSIONS Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after acute kidney injury, designed to interdict renal tubular damage. Magn Reson Med 79:3144-3153, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jeremy K Moore
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junjie Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph P Gaut
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel A Wickline
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Department of Cardiovascular Science, University of South Florida, Tampa, Florida, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Uitterdijk A, Groenendijk BCW, Gorsse-Bakker C, Panasewicz A, Sneep S, Tempel D, van de Kamp EH, Merkus D, van der Giessen WJ, Duncker DJ. Time course of VCAM-1 expression in reperfused myocardial infarction in swine and its relation to retention of intracoronary administered bone marrow-derived mononuclear cells. PLoS One 2017. [PMID: 28628621 PMCID: PMC5476248 DOI: 10.1371/journal.pone.0178779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Intracoronary infusion of autologous bone marrow-derived mononuclear cells (BMMNC), after acute myocardial infarction (AMI), has been shown to improve myocardial function. However, therapeutic efficacy is limited, possibly because cell retention rates are low, suggesting that optimization of cell retention might increase therapeutic efficacy. Since retention of injected BMMNC is observed only within infarcted, but not remote, myocardium, we hypothesized that adhesion molecules on activated endothelium following reperfusion are essential. Consequently, we investigated the role of vascular cell adhesion molecule 1 (VCAM-1) in BMMNC retention in swine undergoing reperfused AMI produced by 120 min of percutaneous left circumflex coronary occlusion. Methods and results VCAM-1 expression in the infarct and remote region was quantified at 1, 3, 7, 14, and 35 days, post-reperfusion (n≥6 swine per group). Since expression levels were significantly higher at 3 days (2.41±0.62%) than at 7 days (0.98±0.28%; p<0.05), we compared the degree of cell retention at those time points in a follow-up study, in which an average of 43·106 autologous BMMNCs were infused intracoronary at 3, or 7 days, post-reperfusion (n = 6 swine per group) and retention was histologically quantified one hour after intracoronary infusion of autologous BMMNCs. Although VCAM-1 expression correlated with retention of BMMNC within each time point, overall BMMNC retention was similar at day 3 and day 7 (2.3±1.3% vs. 3.1±1.4%, p = 0.72). This was not due to the composition of infused bone marrow cell fractions (analyzed with flow cytometry; n = 5 per group), as cell composition of the infused BMMNC fractions was similar. Conclusion These findings suggest that VCAM-1 expression influences to a small degree, but is not the principal determinant of, BMMNC retention.
Collapse
Affiliation(s)
- André Uitterdijk
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Anna Panasewicz
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Stefan Sneep
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dennie Tempel
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Dirk J. Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Yetgin T, Uitterdijk A, Te Lintel Hekkert M, Merkus D, Krabbendam-Peters I, van Beusekom HMM, Falotico R, Serruys PW, Manintveld OC, van Geuns RJM, Zijlstra F, Duncker DJ. Limitation of Infarct Size and No-Reflow by Intracoronary Adenosine Depends Critically on Dose and Duration. JACC Cardiovasc Interv 2016; 8:1990-1999. [PMID: 26738671 DOI: 10.1016/j.jcin.2015.08.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute myocardial infarction using clinical bolus and experimental high-dose infusion regimens. BACKGROUND Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical and clinical settings. METHODS Swine (54 ± 1 kg) were subjected to a 45-min mid-left anterior descending artery occlusion followed by 2 h of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n = 5) or saline (n = 10) was administered at reperfusion. In protocol B, an intracoronary infusion of 50 μg/kg/min adenosine (n = 15) or saline (n = 21) was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period. RESULTS In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 ± 3% of the area-at-risk in control swine to 46 ± 4% (p = 0.02), and no-reflow from 49 ± 6% of the infarct area to 26 ± 6% (p = 0.03). CONCLUSIONS During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an adjuvant therapy during early reperfusion.
Collapse
Affiliation(s)
- Tuncay Yetgin
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - André Uitterdijk
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maaike Te Lintel Hekkert
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daphne Merkus
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ilona Krabbendam-Peters
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Heleen M M van Beusekom
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Patrick W Serruys
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert-Jan M van Geuns
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands.
| |
Collapse
|
15
|
UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. J Transl Med 2016; 96:168-76. [PMID: 26658451 DOI: 10.1038/labinvest.2015.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Modulation of Wnt/Frizzled signaling with UM206 reduced infarct expansion and prevented heart failure development in mice, an effect that was accompanied by increased myofibroblast presence in the infarct, suggesting that Wnt/Frizzled signaling has a key role in cardiac remodeling following myocardial infarction (MI). This study investigated the effects of modulation of Wnt/Frizzled signaling with UM206 in a swine model of reperfused MI. For this purpose, seven swine with MI were treated with continuous infusion of UM206 for 5 weeks. Six control swine were treated with vehicle. Another eight swine were sham-operated. Cardiac function was determined by echo in awake swine. Infarct mass was estimated at baseline by heart-specific fatty acid-binding protein ELISA and at follow-up using planimetry. Components of Wnt/Frizzled signaling, myofibroblast presence, and extracellular matrix were measured at follow-up with qPCR and/or histology. Results show that UM206 treatment resulted in a significant decrease in infarct mass compared with baseline (-41±10%), whereas infarct mass remained stable in the Control-MI group (+3±17%). Progressive dilation of the left ventricle occurred in the Control-MI group between 3 and 5 weeks after MI, while adverse remodeling was halted in the UM206-treated group. mRNA expression for Frizzled-4 and the Frizzled co-receptor LRP5 was increased in UM206-treated swine as compared with Control-MI swine. Myofibroblast presence was significantly lower in infarcted tissue of the UM206-treated animals (1.53±0.43% vs 3.38±0.61%) at 5 weeks follow-up. This study demonstrates that UM206 treatment attenuates adverse remodeling in a swine model of reperfused MI, indicating that Wnt/Frizzled signaling is a promising target to improve infarct healing and limit post-MI remodeling.
Collapse
|
16
|
Uitterdijk A, Yetgin T, te Lintel Hekkert M, Sneep S, Krabbendam-Peters I, van Beusekom HMM, Fischer TM, Cornelussen RN, Manintveld OC, Merkus D, Duncker DJ. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res Cardiol 2015; 110:508. [PMID: 26306761 PMCID: PMC4549380 DOI: 10.1007/s00395-015-0508-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 12/26/2022]
Abstract
Vagal nerve stimulation (VNS) started prior to, or during, ischemia has been shown to reduce infarct size. Here, we investigated the effect of VNS when started just prior to, and continued during early, reperfusion on infarct size and no-reflow and studied the underlying mechanisms. For this purpose, swine (13 VNS, 10 sham) underwent 45 min mid-LAD occlusion followed by 120 min of reperfusion. VNS was started 5 min prior to reperfusion and continued until 15 min of reperfusion. Area at risk, area of no-reflow (% of infarct area) and infarct size (% of area at risk), circulating cytokines, and regional myocardial leukocyte influx were assessed after 120 min of reperfusion. VNS significantly reduced infarct size from 67 ± 2 % in sham to 54 ± 5 % and area of no-reflow from 54 ± 6 % in sham to 32 ± 6 %. These effects were accompanied by reductions in neutrophil (~40 %) and macrophage (~60 %) infiltration in the infarct area (all p < 0.05), whereas systemic circulating plasma levels of TNFα and IL6 were not affected. The degree of cardioprotection could not be explained by the VNS-induced bradycardia or the VNS-induced decrease in the double product of heart rate and left ventricular systolic pressure. In the presence of NO-synthase inhibitor LNNA, VNS no longer attenuated infarct size and area of no-reflow, which was paralleled by similarly unaffected regional leukocyte infiltration. In conclusion, VNS is a promising novel adjunctive therapy that limits reperfusion injury in a large animal model of acute myocardial infarction.
Collapse
Affiliation(s)
- André Uitterdijk
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Uitterdijk A, Springeling T, van Kranenburg M, van Duin RWB, Krabbendam-Peters I, Gorsse-Bakker C, Sneep S, van Haeren R, Verrijk R, van Geuns RJM, van der Giessen WJ, Markkula T, Duncker DJ, van Beusekom HMM. VEGF165Amicrosphere therapy for myocardial infarction suppresses acute cytokine release and increases microvascular density but does not improve cardiac function. Am J Physiol Heart Circ Physiol 2015; 309:H396-406. [DOI: 10.1152/ajpheart.00698.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/26/2015] [Indexed: 01/03/2023]
Abstract
Angiogenesis induced by growth factor-releasing microspheres can be an off-the-shelf and immediate alternative to stem cell therapy for acute myocardial infarction (AMI), independent of stem cell yield and comorbidity-induced dysfunction. Reliable and prolonged local delivery of intact proteins such as VEGF is, however, notoriously difficult. Our objective was to create a platform for local angiogenesis in human-sized hearts, using polyethylene-glycol/polybutylene-terephthalate (PEG-PBT) microsphere-based VEGF165Adelivery. PEG-PBT microspheres were biocompatible, distribution was size dependent, and a regimen of 10 × 10615-μm microspheres at 0.5 × 106/min did not induce cardiac necrosis. Efficacy, studied in a porcine model of AMI with reperfusion rather than chronic ischemia used for most reported VEGF studies, shows that microspheres were retained for at least 35 days. Acute VEGF165Arelease attenuated early cytokine release upon reperfusion and produced a dose-dependent increase in microvascular density at 5 wk following AMI. However, it did not improve major variables for global cardiac function, left ventricular dimensions, infarct size, or scar composition (collagen and myocyte content). Taken together, controlled VEGF165Adelivery is safe, attenuates early cytokine release, and leads to a dose-dependent increase in microvascular density in the infarct zone but does not translate into changes in global or regional cardiac function and scar composition.
Collapse
Affiliation(s)
- André Uitterdijk
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tirza Springeling
- Department of Cardiology and Radiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matthijs van Kranenburg
- Department of Cardiology and Radiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Richard W. B. van Duin
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ilona Krabbendam-Peters
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charlotte Gorsse-Bakker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stefan Sneep
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rorry van Haeren
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Robert-Jan M. van Geuns
- Department of Cardiology and Radiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem J. van der Giessen
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen M. M. van Beusekom
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|