1
|
Ayalasomayajula Y, Hesaraghatta A, Dantuluri N, Yassine J, Saleem F, Mansour H, Chayawatto C, Rangarajan N, Rangarajan S, Krishnan S, Panguluri SK. Influence of age and sex on physical, cardiac electrical and functional alterations in progressive hyperoxia treatment: A time course study in a murine model. Exp Gerontol 2024; 191:112435. [PMID: 38636569 PMCID: PMC11495054 DOI: 10.1016/j.exger.2024.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Oxygen supplementation is a widely used treatment for ICU patients. However, it can lead to hyperoxia, which in turn can result in oxidative stress, cardiac remodeling, and even mortality. This paper expands upon previous research conducted by our lab to establish time-dependent cardiac changes under hyperoxia. In this study, both young and aged mice (male and female) underwent 72 h of hyperoxia exposure and were monitored at 24-hour intervals for cardiac electrophysiological and functional parameters using ECG and electrocardiogram data. Our analysis showed that young male mice experienced significant weight loss as well as significant lung edema by 48 h. Although young male mice were highly susceptible to physical changes, they were resistant to early cardiac functional and electrophysiological changes compared to the other groups. Both young and aged female and aged males developed functional impairments by 24 h of hyperoxia exposure. Furthermore, sex and age differences were noted in the onset of electrophysiological changes. While some groups could resist early cardiac remodeling, our data suggests that 72 h of hyperoxia exposure is sufficient to induce significant cardiac remodeling across all age and sex groups. Our data establishes that time-dependent cardiac changes due to oxygen supplementation can have devastating consequences even with short exposure periods. These findings can aid in developing clinical practices for individuals admitted to the ICU by elucidating the impact of aging, sex, and length of stay under mechanical ventilation to limit hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Yashwant Ayalasomayajula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Anagha Hesaraghatta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Neha Dantuluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jenna Yassine
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Chayapatou Chayawatto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Nishank Rangarajan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Sashank Rangarajan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Smrithi Krishnan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
3
|
Saleem F, Mansour H, Vichare R, Ayalasomayajula Y, Yassine J, Hesaraghatta A, Panguluri SK. Influence of Age on Hyperoxia-Induced Cardiac Pathophysiology in Type 1 Diabetes Mellitus (T1DM) Mouse Model. Cells 2023; 12:1457. [PMID: 37296578 PMCID: PMC10252211 DOI: 10.3390/cells12111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Mechanical ventilation often results in hyperoxia, a condition characterized by excess SpO2 levels (>96%). Hyperoxia results in changes in the physiological parameters, severe cardiac remodeling, arrhythmia development, and alteration of cardiac ion channels, all of which can point toward a gradual increase in the risk of developing cardiovascular disease (CVD). This study extends the analysis of our prior work in young Akita mice, which demonstrated that exposure to hyperoxia worsens cardiac outcomes in a type 1 diabetic murine model as compared to wild-type (WT) mice. Age is an independent risk factor, and when present with a major comorbidity, such as type 1 diabetes (T1D), it can further exacerbate cardiac outcomes. Thus, this research subjected aged T1D Akita mice to clinical hyperoxia and analyzed the cardiac outcomes. Overall, aged Akita mice (60 to 68 weeks) had preexisting cardiac challenges compared to young Akita mice. Aged mice were overweight, had an increased cardiac cross-sectional area, and showed prolonged QTc and JT intervals, which are proposed as major risk factors for CVD like intraventricular arrhythmias. Additionally, exposure to hyperoxia resulted in severe cardiac remodeling and a decrease in Kv 4.2 and KChIP2 cardiac potassium channels in these rodents. Based on sex-specific differences, aged male Akita mice had a higher risk of poor cardiac outcomes than aged females. Aged male Akita mice had prolonged RR, QTc, and JT intervals even at baseline normoxic exposure. Moreover, they were not protected against hyperoxic stress through adaptive cardiac hypertrophy, which, at least to some extent, is due to reduced cardiac androgen receptors. This study in aged Akita mice aims to draw attention to the clinically important yet understudied subject of the effect of hyperoxia on cardiac parameters in the presence of preexisting comorbidities. The findings would help revise the provision of care for older T1D patients admitted to ICUs.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Riddhi Vichare
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Yashwant Ayalasomayajula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jenna Yassine
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Anagha Hesaraghatta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
- Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| |
Collapse
|
4
|
Vichare R, Saleem F, Mansour H, Bojkovic K, Cheng F, Biswal M, Panguluri SK. Impact of age and sex on hyperoxia-induced cardiovascular pathophysiology. Mech Ageing Dev 2022; 208:111727. [PMID: 36075315 DOI: 10.1016/j.mad.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Hyperoxia is characterized by pronounced inflammatory responses, pulmonary cell apoptosis, and adverse cardiac remodeling due to an excess supply of oxygen. Hyperoxic episodes are frequent in mechanically ventilated patients and are associated with in-hospital mortality. This study extends the analysis of prior published research by our group as it investigates the influence of age in male and female rodents exposed to hyperoxic conditions. Age is an independent cardiovascular risk factor, often compounded by variables like obesity, diabetes, and a decline in sex hormones and their receptors. This study simulates clinical hyperoxia by subjecting rodents to > 90 % of oxygen for 72 h and compares the changes in cardiac structural and functional parameters with those exposed to normal air. While in both sexes conduction abnormalities with ageing were discernible, aged females owing to their inherent higher baseline QTc, were at a higher risk of developing arrhythmias as compared to age-matched males. Quantitative real-time RT-PCR and western blot analysis reflected altered expression of cardiac potassium channels, resulting in conduction abnormalities in aged female rodents. Unaffected by age and sex, hyperoxia-treated mice had altered body composition, as evidenced by a considerable reduction in body weight. Interestingly, compensatory hypertrophy observed as a protective mechanism in young males was absent in aged males, whereas protection of hearts from hyperoxia-induced cardiac hypertrophy was absent in aged female mice, both of which may be at least in part due to a reduction in sex steroid receptors and the systemic steroid levels. Finally, statistical analysis revealed that hyperoxia had the greatest impact on most of the cardiac parameters, followed by age and then sex. This data established an imperative finding that can change the provision of care for aged individuals admitted to ICU by elucidating the impact of intrinsic aging on hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Riddhi Vichare
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Katarina Bojkovic
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Manas Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; College of Medicine Internal Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Watson MC, Williams C, Wang RM, Perreault LR, Sullivan KE, Stoppel WL, Black LD. Extracellular matrix and cyclic stretch alter fetal cardiomyocyte proliferation and maturation in a rodent model of heart hypoplasia. Front Cardiovasc Med 2022; 9:993310. [PMID: 36518682 PMCID: PMC9744115 DOI: 10.3389/fcvm.2022.993310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 01/22/2024] Open
Abstract
Introduction Birth defects, particularly those that affect development of the heart, are a leading cause of morbidity and mortality in infants and young children. Babies born with heart hypoplasia (heart hypoplasia) disorders often have a poor prognosis. It remains unclear whether cardiomyocytes from hypoplastic hearts retain the potential to recover growth, although this knowledge would be beneficial for developing therapies for heart hypoplasia disorders. The objective of this study was to determine the proliferation and maturation potential of cardiomyocytes from hypoplastic hearts and whether these behaviors are influenced by biochemical signaling from the extracellular matrix (ECM) and cyclic mechanical stretch. Method Congenital diaphragmatic hernia (CDH)-associated heart hypoplasia was induced in rat fetuses by maternal exposure to nitrofen. Hearts were isolated from embryonic day 21 nitrofen-treated fetuses positive for CDH (CDH+) and from fetuses without nitrofen administration during gestation. Results and discussion CDH+ hearts were smaller and had decreased myocardial proliferation, along with evidence of decreased maturity compared to healthy hearts. In culture, CDH+ cardiomyocytes remained immature and demonstrated increased proliferative capacity compared to their healthy counterparts. Culture on ECM derived from CDH+ hearts led to a significant reduction in proliferation for both CDH+ and healthy cardiomyocytes. Healthy cardiomyocytes were dosed with exogenous nitrofen to examine whether nitrofen may have an aberrant effect on the proliferative ability of cardiomyocyte, yet no significant change in proliferation was observed. When subjected to stretch, CDH+ cardiomyocytes underwent lengthening of sarcomeres while healthy cardiomyocyte sarcomeres were unaffected. Taken together, our results suggest that alterations to environmental cues such as ECM and stretch may be important factors in the pathological progression of heart hypoplasia.
Collapse
Affiliation(s)
- Matthew C. Watson
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Department of Mechanical Engineering, Tufts University, Medford, MA, United States
| | - Corin Williams
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Raymond M. Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Luke R. Perreault
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Kelly E. Sullivan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Cellular, Molecular, and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
7
|
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential. Inflammation 2022; 45:2124-2141. [PMID: 35641717 PMCID: PMC9154210 DOI: 10.1007/s10753-022-01692-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by progressive lung impairment typically triggered by inflammatory processes. The mortality toll for ARDS/ALI yet remains high because of the poor prognosis, lack of disease-specific inflammation management therapies, and prolonged hospitalizations. The urgency for the development of new effective therapeutic strategies has become acutely evident for patients with coronavirus disease 2019 (COVID-19) who are highly susceptible to ARDS/ALI. We propose that the lack of target specificity in ARDS/ALI of current treatments is one of the reasons for poor patient outcomes. Unlike traditional therapeutics, nanomedicine offers precise drug targeting to inflamed tissues, the capacity to surmount pulmonary barriers, enhanced interactions with lung epithelium, and the potential to reduce off-target and systemic adverse effects. In this article, we focus on the key cellular drivers of inflammation in ARDS/ALI: macrophages. We propose that as macrophages are involved in the etiology of ARDS/ALI and regulate inflammatory cascades, they are a promising target for new therapeutic development. In this review, we offer a survey of multiple nanomedicines that are currently being investigated with promising macrophage targeting potential and strategies for pulmonary delivery. Specifically, we will focus on nanomedicines that have shown engagement with proinflammatory macrophage targets and have the potential to reduce inflammation and reverse tissue damage in ARDS/ALI.
Collapse
|
8
|
Kim KH, Oh Y, Liu J, Dababneh S, Xia Y, Kim RY, Kim DK, Ban K, Husain M, Hui CC, Backx PH. Irx5 and transient outward K + currents contribute to transmural contractile heterogeneities in the mouse ventricle. Am J Physiol Heart Circ Physiol 2022; 322:H725-H741. [PMID: 35245131 DOI: 10.1152/ajpheart.00572.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established that fast transmural gradients of transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of disrupted Ito,f gradient on contractile properties using mouse models of Irx5 knockout (Irx5-KO) for selective Ito,f elevation in the endomyocardium (ENDO) of the left ventricle (LV) and Kcnd2 ablation (KV4.2-KO) for selective Ito,freduction in the EPI. Irx5-KO mice exhibited decreased global LV contractility in association with reductions in cell shortening and Ca2+ transient amplitudes in isolated ENDO but not EPI cardiomyocytes. Moreover, transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e. Kcnd2 and Kcnip2) in the ENDO, but not the EPI. Indeed, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility comparable to KV4.2-KO mice. Our findings demonstrate that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ri Youn Kim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dae-Kyum Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kiwon Ban
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter H Backx
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
9
|
da Silva FS, Aquino de Souza NCS, de Moraes MV, Abreu BJ, de Oliveira MF. CmyoSize: An ImageJ macro for automated analysis of cardiomyocyte size in images of routine histology staining. Ann Anat 2022; 241:151892. [DOI: 10.1016/j.aanat.2022.151892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
|
10
|
The implications of hyperoxia, type 1 diabetes and sex on cardiovascular physiology in mice. Sci Rep 2021; 11:23086. [PMID: 34845324 PMCID: PMC8630164 DOI: 10.1038/s41598-021-02550-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
Oxygen supplementation, although a cornerstone of emergency and cardiovascular medicine, often results in hyperoxia, a condition characterized by excessive tissue oxygen which results in adverse cardiac remodeling and subsequent injurious effects to physiological function. Cardiac remodeling is further influenced by various risk factors, including pre-existing conditions and sex. Thus, the purpose of this experiment was to investigate cardiac remodeling in Type I Diabetic (Akita) mice subjected to hyperoxic treatment. Overall, we demonstrated that Akita mice experience distinct challenges from wild type (WT) mice. Specifically, Akita males at both normoxia and hyperoxia showed significant decreases in body and heart weights, prolonged PR, QRS, and QTc intervals, and reduced %EF and %FS at normoxia compared to WT controls. Moreover, Akita males largely resemble female mice (both WT and Akita) with regards to the parameters studied. Finally, statistical analysis revealed hyperoxia to have the greatest influence on cardiac pathophysiology, followed by sex, and finally genotype. Taken together, our data suggest that Type I diabetic patients may have distinct cardiac pathophysiology under hyperoxia compared to uncomplicated patients, with males being at high risk. These findings can be used to enhance provision of care in ICU patients with Type I diabetes as a comorbid condition.
Collapse
|
11
|
Rodgers JL, Vanthenapalli S, Panguluri SK. Electrical remodeling and cardiotoxicity precedes structural and functional remodeling of mouse hearts under hyperoxia treatment. J Cell Physiol 2021; 236:4482-4495. [PMID: 33230829 DOI: 10.1002/jcp.30165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023]
Abstract
Clinical reports suggest a high incidence of ICU mortality with the use of hyperoxia during mechanical ventilation in patients. Our laboratory is pioneer in studying effect of hyperoxia on cardiac pathophysiology. In this study for the first time, we are reporting the sequence of cardiac pathophysiological events in mice under hyperoxic conditions in time-dependent manner. C57BL/6J male mice, aged 8-10 weeks, were treated with either normal air or >90% oxygen for 24, 48, and 72 h. Following normal air or hyperoxia treatment, physical, biochemical, functional, electrical, and molecular parameters were analyzed. Our data showed that significant reduction of body weight observed as early as 24 h hyperoxia treatment, whereas, no significant changes in heart weight until 72 h. Although we do not see any fibrosis in these hearts, but observed significant increase in cardiomyocyte size with hyperoxia treatment in time-dependent manner. Our data also demonstrated that arrhythmias were present in mice at 24 h hyperoxia, and worsened comparatively after 48 and 72 h. Echocardiogram data confirmed cardiac dysfunction in time-dependent manner. Dysregulation of ion channels such as Kv4.2 and KChIP2; and serum cardiac markers confirmed that hyperoxia-induced effects worsen with each time point. From these observations, it is evident that electrical remodeling precedes structural remodeling, both of which gets worse with length of hyperoxia exposure, therefore shorter periods of hyperoxia exposure is always beneficial for better outcome in ICU/critical care units.
Collapse
Affiliation(s)
- Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Sahit Vanthenapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
12
|
Cardiovascular Risks Associated with Gender and Aging. J Cardiovasc Dev Dis 2019; 6:jcdd6020019. [PMID: 31035613 PMCID: PMC6616540 DOI: 10.3390/jcdd6020019] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
The aging and elderly population are particularly susceptible to cardiovascular disease. Age is an independent risk factor for cardiovascular disease (CVD) in adults, but these risks are compounded by additional factors, including frailty, obesity, and diabetes. These factors are known to complicate and enhance cardiac risk factors that are associated with the onset of advanced age. Sex is another potential risk factor in aging adults, given that older females are reported to be at a greater risk for CVD than age-matched men. However, in both men and women, the risks associated with CVD increase with age, and these correspond to an overall decline in sex hormones, primarily of estrogen and testosterone. Despite this, hormone replacement therapies are largely shown to not improve outcomes in older patients and may also increase the risks of cardiac events in older adults. This review discusses current findings regarding the impacts of age and gender on heart disease.
Collapse
|
13
|
Rodgers JL, Iyer D, Rodgers LE, Vanthenapalli S, Panguluri SK. Impact of hyperoxia on cardiac pathophysiology. J Cell Physiol 2019; 234:12595-12603. [PMID: 30652312 DOI: 10.1002/jcp.28136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Mechanical ventilation with high oxygen therapy (hyperoxia) is widely implemented in critical care and ICU settings. Although supplemental oxygen is beneficial to treat hypoxia, its use is also associated with poor outcomes and high mortality in patients. Lung injury due to hyperoxia exposure has been well-documented in patients, including in adults and neonates. Thus, lung injury due to hyperoxia has been extensively researched in both preclinical and clinical studies. However, hyperoxia has also been shown to be associated with hemodynamic changes in patients in ICU, including reductions in heart rate, stroke volume, and cardiac output. In addition, certain experimental studies report that hyperoxia exposure in neonates results in cardiac dysfunction in later adult life. Despite this, until recently, the impact of hyperoxia within the heart has not been well studied, or reported, specifically in adult experimental models. To close this significant gap, our lab has sought to clarify hyperoxia-induced cardiac pathophysiology in adult murine models. This review discusses the current findings regarding the cardiovascular impact of hyperoxia exposure.
Collapse
Affiliation(s)
- Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Drishya Iyer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Lydia E Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Sahit Vanthenapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|
14
|
Rodgers JL, Rodgers LE, Tian Z, Allen‐Gipson D, Panguluri SK. Sex differences in murine cardiac pathophysiology with hyperoxia exposure. J Cell Physiol 2018; 234:1491-1501. [DOI: 10.1002/jcp.27010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jennifer L. Rodgers
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| | - Lydia E. Rodgers
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| | - Zhi Tian
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| | - Diane Allen‐Gipson
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
- Division of Allergy and Immunology, Department of Internal Medicine College of Medicine, University of South Florida Tampa Florida
| | - Siva K. Panguluri
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| |
Collapse
|
15
|
Vysotskaya Z, Chidipi B, Rodgers JL, Tang X, Samal E, Kolliputi N, Mohapatra S, Bennett ES, Panguluri SK. Elevated potassium outward currents in hyperoxia treated atrial cardiomyocytes. J Cell Physiol 2017; 233:4317-4326. [PMID: 29139549 DOI: 10.1002/jcp.26263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Supplementation of 100% oxygen is a very common intervention in intensive care units (ICU) and critical care centers for patients with dysfunctional lung and lung disorders. Although there is advantage in delivering sufficient levels of oxygen, hyperoxia is reported to be directly associated with increasing in-hospital deaths. Our previous studies reported ventricular and electrical remodeling in hyperoxia treated mouse hearts, and in this article, for the first time, we are investigating the effects of hyperoxia on atrial electrophysiology using whole-cell patch-clamp electrophysiology experiments along with assessment of Kv1.5, Kv4.2, and KChIP2 transcripts and protein profiles using real-time quantitative RT-PCR and Western blotting. Our data showed that induction of hyperoxia for 3 days in mice showed larger outward potassium currents with shorter action potential durations (APD). This increase in current densities is due to significant increase in ultrarapid delayed rectifier outward K+ currents (IKur ) and rapidly activating, rapidly inactivating transient outward K+ current (Ito ) densities. We also observed a significant increase in both transcripts and protein levels of Kv1.5 and KChIP2 in hyperoxia treated atrial cardiomyocytes, whereas no significant change was observed in Kv4.2 transcripts or protein. The data presented here further support our previous findings that hyperoxia induces not only ventricular remodeling, but also atrial electrical remodeling.
Collapse
Affiliation(s)
- Zhanna Vysotskaya
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Bojjibabu Chidipi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Xiaolan Tang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Eva Samal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Subhra Mohapatra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Eric S Bennett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|
16
|
Rodgers JL, Samal E, Mohapatra S, Panguluri SK. Hyperoxia-induced cardiotoxicity and ventricular remodeling in type-II diabetes mice. Heart Vessels 2017; 33:561-572. [PMID: 29209776 DOI: 10.1007/s00380-017-1100-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
Hyperoxia, or supplemental oxygen, is regularly used in the clinical setting for critically ill patients in ICU. However, several recent studies have demonstrated the negative impact of this treatment in patients in critical care, including increased rates of lung and cardiac injury, as well as increased mortality. The purpose of this study was to determine the predisposition for arrhythmias and electrical remodeling in a type 2 diabetic mouse model (db/db), as a result of hyperoxia treatment. For this, db/db and their heterozygous controls were treated with hyperoxia (> 90% oxygen) or normoxia (normal air) for 72-h. Immediately following hyperoxia or normoxia treatments, mice underwent surface ECG. Excised left ventricles were used to assess ion channel expression, including for Kv1.4, Kv1.5, Kv4.2, and KChIP2. Serum cardiac markers were also measured, including cardiac troponin I and lactate dehydrogenase. Our results showed that db/db mice have increased sensitivity to arrhythmia. Normoxia-treated db/db mice displayed features of arrhythmia, including QTc and JT prolongation, as well as QRS prolongation. A significant increase in QRS prolongation was also observed in hyperoxia-treated db/db mice, when compared to hyperoxia-treated heterozygous control mice. Db/db mice were also shown to exhibit ion channel dysregulation, as demonstrated by down-regulation in Kv1.5, Kv4.2, and KChIP2 under hyperoxia conditions. From these results, we conclude that: (1) diabetic mice showed distinct pathophysiology, when compared to heterozygous controls, both in normoxia and hyperoxia conditions. (2) Diabetic mice were more susceptible to arrhythmia at normal air conditions; this effect was exacerbated at hyperoxia conditions. (3) Unlike in heterozygous controls, diabetic mice did not demonstrate cardiac hypertrophy as a result of hyperoxia. (4) Ion channel remodeling was also observed in db/db mice under hyperoxia condition similar to its heterozygous controls.
Collapse
Affiliation(s)
- Jennifer Leigh Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC-30, Tampa, FL, 33612, USA
| | - Eva Samal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC-30, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
Lichardusova L, Tatarkova Z, Calkovska A, Mokra D, Engler I, Racay P, Lehotsky J, Kaplan P. Proteomic analysis of mitochondrial proteins in the guinea pig heart following long-term normobaric hyperoxia. Mol Cell Biochem 2017; 434:61-73. [PMID: 28432557 DOI: 10.1007/s11010-017-3037-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
Normobaric hyperoxia is applied for the treatment of a wide variety of diseases and clinical conditions related to ischemia or hypoxia, but it can increase the risk of tissue damage and its efficiency is controversial. In the present study, we analyzed cardiac mitochondrial proteome derived from guinea pigs after 60 h exposure to 100% molecular oxygen (NBO) or O2 enriched with oxygen cation (NBO+). Two-dimensional gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry identified twenty-two different proteins (among them ten nonmitochondrial) that were overexpressed in NBO and/or NBO+ group. Identified proteins were mainly involved in cellular energy metabolism (tricarboxylic acid cycle, oxidative phosphorylation, glycolysis), cardioprotection against stress, control of mitochondrial function, muscle contraction, and oxygen transport. These findings support the viewpoint that hyperoxia is associated with cellular stress and suggest complex adaptive responses which probably contribute to maintain or improve intracellular ATP levels and contractile function of cardiomyocytes. In addition, the results suggest that hyperoxia-induced cellular stress may be partially attenuated by utilization of NBO+ treatment.
Collapse
Affiliation(s)
- Lucia Lichardusova
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Ivan Engler
- Department of Physiology, PJ Safarik University, Faculty of Medicine, Kosice, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia.
| |
Collapse
|
18
|
Tur J, Chapalamadugu KC, Katnik C, Cuevas J, Bhatnagar A, Tipparaju SM. Kvβ1.1 (AKR6A8) senses pyridine nucleotide changes in the mouse heart and modulates cardiac electrical activity. Am J Physiol Heart Circ Physiol 2016; 312:H571-H583. [PMID: 27986658 PMCID: PMC5402009 DOI: 10.1152/ajpheart.00281.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022]
Abstract
The present study investigates the physiological role of Kvβ1 subunit for sensing pyridine nucleotide (NADH/NAD+) changes in the heart. We used Kvβ1.1 knockout (KO) or wild-type (WT) mice and established that Kvβ1.1 preferentially binds with Kv4.2 and senses the pyridine nucleotide changes in the heart. The cellular action potential duration (APD) obtained from WT cardiomyocytes showed longer APDs with lactate perfusion, which increases intracellular NADH levels, while the APDs remained unaltered in the Kvβ1.1 KO. Ex vivo monophasic action potentials showed a similar response, in which the APDs were prolonged in WT mouse hearts with lactate perfusion; however, the Kvβ1.1 KO mouse hearts did not show APD changes upon lactate perfusion. COS-7 cells coexpressing Kv4.2 and Kvβ1.1 were used for whole cell patch-clamp recordings to evaluate changes caused by NADH (lactate). These data reveal that Kvβ1.1 is required in the mediated inactivation of Kv4.2 currents, when NADH (lactate) levels are increased. In vivo, isoproterenol infusion led to increased NADH in the heart along with QTc prolongation in wild-type mice; regardless of the approach, our data show that Kvβ1.1 recognizes NADH changes and modulates Kv4.2 currents affecting AP and QTc durations. Overall, this study uses multiple levels of investigation, including the heterologous overexpression system, cardiomyocyte, ex vivo, and ECG, and clearly depicts that Kvβ1.1 is an obligatory sensor of NADH/NAD changes in vivo, with a physiological role in the heart.NEW & NOTEWORTHY Cardiac electrical activity is mediated by ion channels, and Kv4.2 plays a significant role, along with its binding partner, the Kvβ1.1 subunit. In the present study, we identify Kvβ1.1 as a sensor of pyridine nucleotide changes and as a modulator of Kv4.2 gating, action potential duration, and ECG in the mouse heart.
Collapse
Affiliation(s)
- Jared Tur
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Christopher Katnik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida;
| |
Collapse
|
19
|
Tur J, Chapalamadugu KC, Padawer T, Badole SL, Kilfoil PJ, Bhatnagar A, Tipparaju SM. Deletion of Kvβ1.1 subunit leads to electrical and haemodynamic changes causing cardiac hypertrophy in female murine hearts. Exp Physiol 2016; 101:494-508. [PMID: 27038296 DOI: 10.1113/ep085405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? The goal of this study was to evaluate sex differences and the role of the potassium channel β1 (Kvβ1) subunit in the heart. What is the main finding and its importance? Genetic ablation of Kvβ1.1 in females led to cardiac hypertrophy characterized by increased heart size, prolonged monophasic action potentials, elevated blood pressure and increased myosin heavy chain α (MHCα) expression. In contrast, male mice showed only electrical changes. Kvβ1.1 binds the MHCα isoform at the protein level, and small interfering RNA targeted knockdown of Kvβ1.1 upregulated MHCα. Cardiovascular disease is the leading cause of death and debility in women in the USA, and cardiac arrhythmias are a major concern. Voltage-gated potassium (Kv) channels along with the binding partners; Kvβ subunits are major regulators of the action potential (AP) shape and duration (APD). The regulation of Kv channels by the Kvβ1 subunit is unknown in female hearts. In the present study, we hypothesized that the Kvβ1 subunit is an important regulator of female cardiac physiology. To test this hypothesis, we ablated (knocked out; KO) the KCNAB1 isoform 1 (Kvβ1.1) subunit in mice and evaluated cardiac function and electrical activity by using ECG, monophasic action potential recordings and echocardiography. Our results showed that the female Kvβ1.1 KO mice developed cardiac hypertrophy, and the hearts were structurally different, with enlargement and increased area. The electrical derangements caused by Kvβ1.1 KO in female mice included long QTc and QRS intervals along with increased APD (APD20-90% repolarization). The male Kvβ1.1 KO mice did not develop cardiac hypertrophy, but they showed long QTc and prolonged APD. Molecular analysis showed that several genes that support cardiac hypertrophy were significantly altered in Kvβ1.1 KO female hearts. In particular, myosin heavy chain α expression was significantly elevated in Kvβ1.1 KO mouse heart. Using a small interfering RNA strategy, we identified that knockdown of Kvβ1 increases myosin heavy chain α expression in H9C2 cells. Collectively, changes in molecular and cell signalling pathways clearly point towards a distinct electrical and structural remodelling consistent with cardiac hypertrophy in the Kvβ1.1 KO female mice.
Collapse
Affiliation(s)
- Jared Tur
- Department of Pharmaceutical Sciences, College of Pharmacy, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Timothy Padawer
- Department of Pharmaceutical Sciences, College of Pharmacy, Tampa, FL, USA
| | - Sachin L Badole
- Department of Pharmaceutical Sciences, College of Pharmacy, Tampa, FL, USA
| | - Peter J Kilfoil
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
20
|
Chapalamadugu KC, Panguluri SK, Bennett ES, Kolliputi N, Tipparaju SM. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation. Toxicol Appl Pharmacol 2014; 282:100-7. [PMID: 25447406 DOI: 10.1016/j.taap.2014.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD90; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD & NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias.
Collapse
Affiliation(s)
- Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Eric S Bennett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
21
|
Littlejohns B, Heesom K, Angelini GD, Suleiman MS. The effect of disease on human cardiac protein expression profiles in paired samples from right and left ventricles. Clin Proteomics 2014; 11:34. [PMID: 25249829 PMCID: PMC4158351 DOI: 10.1186/1559-0275-11-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac diseases (e.g. coronary and valve) are associated with ventricular cellular remodeling. However, ventricular biopsies from left and right ventricles from patients with different pathologies are rare and thus little is known about disease-induced cellular remodeling in both sides of the heart and between different diseases. We hypothesized that the protein expression profiles between right and left ventricles of patients with aortic valve stenosis (AVS) and patients with coronary artery disease (CAD) are different and that the protein profile is different between the two diseases. Left and right ventricular biopsies were collected from patients with either CAD or AVS. The biopsies were processed for proteomic analysis using isobaric tandem mass tagging and analyzed by reverse phase nano-LC-MS/MS. Western blot for selected proteins showed strong correlation with proteomic analysis. RESULTS Proteomic analysis between ventricles of the same disease (intra-disease) and between ventricles of different diseases (inter-disease) identified more than 500 proteins detected in all relevant ventricular biopsies. Comparison between ventricles and disease state was focused on proteins with relatively high fold (±1.2 fold difference) and significant (P < 0.05) differences. Intra-disease protein expression differences between left and right ventricles were largely structural for AVS patients and largely signaling/metabolism for CAD. Proteins commonly associated with hypertrophy were also different in the AVS group but with lower fold difference. Inter-disease differences between left ventricles of AVS and CAD were detected in 9 proteins. However, inter-disease differences between the right ventricles of CAD and AVS patients were associated with differences in 73 proteins. The majority of proteins which had a significant difference in one ventricle compared to the other pathology also had a similar trend in the adjacent ventricle. CONCLUSIONS This work demonstrates for the first time that left and right ventricles have a different proteome and that the difference is dependent on the type of disease. Inter-disease differential expression was more prominent for right ventricles. The finding that a protein change in one ventricle was often associated with a similar trend in the adjacent ventricle for a large number of proteins suggests cross-talk proteome remodeling between adjacent ventricles.
Collapse
Affiliation(s)
- Ben Littlejohns
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| | - Kate Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| | - M-Saadeh Suleiman
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Gómez-Hurtado N, Fernández-Velasco M, Fernández-Alfonso MS, Boscá L, Delgado C. Prolonged leptin treatment increases transient outward K⁺ current via upregulation of Kv4.2 and Kv4.3 channel subunits in adult rat ventricular myocytes. Pflugers Arch 2014; 466:903-14. [PMID: 24046152 DOI: 10.1007/s00424-013-1348-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023]
Abstract
Circulating leptin levels are elevated in obesity and hyperleptinaemia has been postulated to be an independent risk factor for the development of cardiovascular diseases. Although many studies have been published on the mechanisms involved in the effects of leptin on cardiac function and pathological remodeling, scarce information is currently available analyzing the influence of prolonged leptin treatment on ionic cardiac channels remodeling in adult ventricular myocytes. Enzymatically isolated adult rat ventricular myocytes were treated with leptin or vehicle for 48h. Real-Time RT-PCR were used to analyze mRNA expression of Kir2.1, Cav1.2, Cav 3.1, Kv4.2 and Kv4.3 α-subunits and KChIP2 auxiliary subunit. The fast transient outward potassium channels (Itof) α-subunits Kv4.2, Kv4.3 and KChIP2 were analyzed by Western-blot. The fast transient outward potassium current and the action potentials were recorded in isolated myocytes by the whole-cell patch-clamp technique. Leptin treatment induced an up-regulation of Kv4.2, Kv4.3 and KChIP2 subunits mRNA expression. However, transcriptional levels of Kir2.1, Cav1.2, or Cav3.1 α-subunit channels were unmodified by leptin. Protein expression levels of Kv4.2, Kv4.3 and KChIP2 subunits were also increased by leptin. The electrophysiological study showed that leptin increases the fast transient outward potassium current amplitudes and densities shortening action potential duration. In addition, leptin activated Akt signaling in cardiomyocytes and this mechanism was involved in the effect of leptin on Itof channels. In conclusión, leptin increases both the expression and function of Itof channels in adult ventricular myocytes and this mechanism involves Akt signaling. Altogether these data suggest that leptin could exert beneficial or detrimental effects depending on the initial ventricular myocyte repolarizing reserve.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Cells, Cultured
- Heart Ventricles/cytology
- Heart Ventricles/metabolism
- Kv Channel-Interacting Proteins/genetics
- Kv Channel-Interacting Proteins/metabolism
- Leptin/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Potassium/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Shal Potassium Channels/genetics
- Shal Potassium Channels/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Nieves Gómez-Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|