1
|
Mooradian AD. Cardiomodulatory Effects of Cardiometabolic and Antihyperglycemic Medications: The Roles of Oxidative and Endoplasmic Reticulum Stress. Am J Cardiovasc Drugs 2024:10.1007/s40256-024-00685-x. [PMID: 39392561 DOI: 10.1007/s40256-024-00685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Uncontrolled hyperglycemia in people with diabetes is an established risk of premature cardiovascular disease. Repeated hypoglycemic events are also associated with increased cardiovascular mortality. Both hyperglycemia and hypoglycemia induce cellular stress, notably endoplasmic reticulum (ER) stress, a known promoter of cardiovascular disease. Contemporary anti-hyperglycemic drugs such as glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors simultaneously inhibit oxidative stress and ER stress in human coronary artery endothelial cells. Similarly, other known cardioprotective drugs, such as statins and inhibitors of the renin-angiotensin-aldosterone system (RAAS) share a common pleiotropic effect of reducing cellular stress. Antioxidants reduce oxidative stress but may aggravate ER stress. This dichotomy of antioxidant effects may underline the unfavorable outcomes of clinical trials with antioxidant vitamin use. The aim of this review is to highlight the potential role of cellular stress reduction in cardioprotective effects of contemporary diabetes drugs. Future clinical trials are needed to test the hypothesis that cellular stress is the fundamental culprit in cardiovascular disease.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL, 32209, USA.
| |
Collapse
|
2
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
An Y, Wang X, Guan X, Yuan P, Liu Y, Wei L, Wang F, Qi X. Endoplasmic reticulum stress-mediated cell death in cardiovascular disease. Cell Stress Chaperones 2024; 29:158-174. [PMID: 38295944 PMCID: PMC10939083 DOI: 10.1016/j.cstres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Yuan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Wang
- Department of Vascular Surgery, Hebei General Hospital, Hebei, China
| | - Xin Qi
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
4
|
Pepe G, Cotugno M, Marracino F, Capocci L, Pizzati L, Forte M, Stanzione R, Scarselli P, Di Pardo A, Sciarretta S, Volpe M, Rubattu S, Maglione V. Abnormal expression of sphingolipid-metabolizing enzymes in the heart of spontaneously hypertensive rat models. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159411. [PMID: 37949293 DOI: 10.1016/j.bbalip.2023.159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Sphingolipids exert important roles within the cardiovascular system and related diseases. Perturbed sphingolipid metabolism was previously reported in cerebral and renal tissues of spontaneously hypertensive rats (SHR). Specific defects related to the synthesis of sphingolipids and to the metabolism of Sphingosine-1-Phospahte (S1P) were exclusively identified in the stroke-prone (SHRSP) with the respect to the stroke-resistant (SHRSR) strain. In this study, we explored any existing perturbation in either protein or gene expression of enzymes involved in the sphingolipid pathways in cardiac tissue from both SHRSP and SHRSR strains, compared to the normotensive Wistar Kyoto (WKY) strain. The two hypertensive rat models showed an overall perturbation of the expression of different enzymes involved in the sphingolipid metabolism in the heart. In particular, whereas the expression of the S1P-metabolizing-enzyme, SPHK2, was significantly reduced in both SHR strains, SGPL1 protein levels were decreased only in SHRSP. The protein levels of S1P receptors 1-3 were reduced only in the cardiac tissue of SHRSP, whereas S1PR2 levels were reduced in both SHR strains. The de novo synthesis of sphingolipids was aberrant in the two hypertensive strains. A significant reduction of mRNA expression of the Sgms1 and Smpd3 enzymes, implicated in the metabolism of sphingomyelin, was found in both hypertensive strains. Interestingly, Smpd2, devoted to sphingomyelin degradation, was reduced only in the heart of SHRSP. In conclusion, alterations in the expression of sphingolipid-metabolizing enzymes may be involved in the susceptibility to cardiac damage of hypertensive rat strains. Specific differences detected in the SHRSP, however, deserve further elucidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, (IS), Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy; IRCCS San Raffaele, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, (IS), Italy; Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy.
| | | |
Collapse
|
5
|
Zhu J, Shao A, Wang C, Zeng C, Wang H. Inhibition of endoplasmic reticulum stress restores the balance of renal RAS components and lowers blood pressure in the spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2202367. [PMID: 37144334 DOI: 10.1080/10641963.2023.2202367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, Shanghai Hospital Wanzhou District, Chongqing, China
| | - Anjing Shao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Wang
- Department of Surgery, Third People's Hospital, Kaizhou District, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, Chongqing Cancer Hospital, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Liu H, Li Y, Li M, Xie L, Li F, Pan R, Pei F. Follistatin-like 1 protects endothelial function in the spontaneously hypertensive rat by inhibition of endoplasmic reticulum stress through AMPK-dependent mechanism. Clin Exp Hypertens 2023; 45:2277654. [PMID: 37963199 DOI: 10.1080/10641963.2023.2277654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Endothelial dysfunction is a critical initiating factor in the development of hypertension and related complications. Follistatin-like 1 (FSTL1) can promote endothelial cell function and stimulates revascularization in response to ischemic insult. However, it is unclear whether FSTL1 has an effect on ameliorating endothelial dysfunction in spontaneously hypertensive rats (SHRs). METHODS Wistar Kyoto (WKY) and SHRs were treated with a tail vein injection of vehicle (1 mL/day) or recombinant FSTL1 (100 μg/kg body weight/day) for 4 weeks. Blood pressure was measured by tail-cuff plethysmograph, and vascular reactivity in mesenteric arteries was measured using wire myography. RESULTS We found that treatment with FSTL1 reversed impaired endothelium-dependent relaxation (EDR) in mesenteric arteries and lowered blood pressure of SHRs. Decreased AMP-activated protein kinase (AMPK) phosphorylation, elevated endoplasmic reticulum (ER) stress markers, increased reactive oxygen species (ROS), and reduction of nitric oxide (NO) production in mesenteric arteries of SHRs were also reversed by FSTL1 treatment. Ex vivo treatment with FSTL1 improved the impaired EDR in mesenteric arteries from SHRs and reversed tunicamycin (ER stress inducer)-induced ER stress and the impairment of EDR in mesenteric arteries from WKY rats. The effects of FSTL1 were abolished by cotreatment of compound C (AMPK inhibitor). CONCLUSIONS These results suggest that FSTL1 prevents endothelial dysfunction in mesenteric arteries of SHRs through inhibiting ER stress and ROS and increasing NO production via activation of AMPK signaling.
Collapse
Affiliation(s)
- Hanwen Liu
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Yanwen Li
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Maogang Li
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Linghai Xie
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Feng Li
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Runmei Pan
- Operating room, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Mohamed R, Sullivan JC. Sustained activation of 12/15 lipoxygenase (12/15 LOX) contributes to impaired renal recovery post ischemic injury in male SHR compared to females. Mol Med 2023; 29:163. [PMID: 38049738 PMCID: PMC10696802 DOI: 10.1186/s10020-023-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) due to ischemia-reperfusion (IR) is a serious and frequent complication in clinical settings, and mortality rates remain high. There are well established sex differences in renal IR, with males exhibiting greater injury following an ischemic insult compared to females. We recently reported that males have impaired renal recovery from ischemic injury vs. females. However, the mechanisms mediating sex differences in renal recovery from IR injury remain poorly understood. Elevated 12/15 lipoxygenase (LOX) activity has been reported to contribute to the progression of numerous kidney diseases. The goal of the current study was to test the hypothesis that enhanced activation of 12/15 LOX contributes to impaired recovery post-IR in males vs. females. METHODS 13-week-old male and female spontaneously hypertensive rats (SHR) were randomized to sham or 30-minute warm bilateral IR surgery. Additional male and female SHR were randomized to treatment with vehicle or the specific 12/15 LOX inhibitor ML355 1 h prior to sham/IR surgery, and every other day following up to 7-days post-IR. Blood was collected from all rats 1-and 7-days post-IR. Kidneys were harvested 7-days post-IR and processed for biochemical, histological, and Western blot analysis. 12/15 LOX metabolites 12 and 15 HETE were measured in kidney samples by liquid chromatography-mass spectrometry (LC/MS). RESULTS Male SHR exhibited delayed recovery of renal function post-IR vs. male sham and female IR rats. Delayed recovery in males was associated with activation of renal 12/15 LOX, increased renal 12-HETE, enhanced endoplasmic reticulum (ER) stress, lipid peroxidation, renal cell death and inflammation compared to females 7-days post-IR. Treatment of male SHR with ML355 lowered levels of 12-HETE and resulted in reduced renal lipid peroxidation, ER stress, tubular cell death and inflammation 7-days post-IR with enhanced recovery of renal function compared to vehicle-treated IR male rats. ML355 treatment did not alter IR-induced increases in plasma creatinine in females, however, tubular injury and cell death were attenuated in ML355 treated females compared to vehicle-treated rats 7 days post-IR. CONCLUSION Our data demonstrate that sustained activation 12/15 LOX contributes to impaired renal recovery post ischemic injury in male and female SHR, although males are more susceptible on this mechanism than females.
Collapse
Affiliation(s)
- Riyaz Mohamed
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912, United States.
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912, United States
| |
Collapse
|
8
|
Lin S, Long H, Hou L, Zhang M, Ting J, Lin H, Zheng P, Lei W, Yin K, Zhao G. Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1767. [PMID: 36420580 DOI: 10.1002/wrna.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/20/2023]
Abstract
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiang Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Weixing Lei
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
9
|
Mooradian AD, Haas MJ. Endoplasmic reticulum stress: A common pharmacologic target of cardioprotective drugs. Eur J Pharmacol 2022; 931:175221. [PMID: 35998751 DOI: 10.1016/j.ejphar.2022.175221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Despite the advances made in cardiovascular disease prevention, there is still substantial residual risk of adverse cardiovascular events. Contemporary evidence suggests that additional reduction in cardiovascular disease risk can be achieved through amelioration of cellular stresses, notably inflammatory stress and endoplasmic reticulum (ER) stress. Only two clinical trials with anti-inflammatory agents have supported the role of inflammatory stress in cardiovascular risk. However, there are no clinical trials with selective ER stress modifiers to test the hypothesis that reducing ER stress can reduce cardiovascular disease. Nevertheless, the ER stress hypothesis is supported by recent pharmacologic studies revealing that currently available cardioprotective drugs share a common property of reducing ER stress. These drug classes include angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, mineralocorticoid receptor blockers, β-adrenergic receptor blockers, statins, and select antiglycemic agents namely, metformin, glucagon like peptide 1 receptor agonists and sodium glucose cotransporter 2 inhibitors. Although these drugs ameliorate common risk factors for cardiovascular disease, such as hypertension, hypercholesterolemia and hyperglycemia, their cardioprotective effects may be partially independent of their principal effects on cardiovascular risk factors. Clinical trials with selective ER stress modifiers are needed to test the hypothesis that reducing ER stress can reduce cardiovascular disease.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL, USA.
| | - Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
10
|
Yang J, Hao J, Lin Y, Guo Y, Liao K, Yang M, Cheng H, Yang M, Chen K. Profile and Functional Prediction of Plasma Exosome-Derived CircRNAs From Acute Ischemic Stroke Patients. Front Genet 2022; 13:810974. [PMID: 35360855 PMCID: PMC8963851 DOI: 10.3389/fgene.2022.810974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is one of the major causes of death and long-term disability, of which acute ischemic stroke (AIS) is the most common type. Although circular RNA (circRNA) expression profiles of AIS patients have been reported to be significantly altered in blood and peripheral blood mononuclear cells, the role of exosome-containing circRNAs after AIS is still unknown. Plasma exosomes from 10 AIS patients and 10 controls were isolated, and through microarray and bioinformatics analysis, the profile and putative function of circRNAs in the plasma exosomes were studied. A total of 198 circRNAs were differentially quantified (|log2 fold change| ≥ 1.00, p < 0.05) between AIS patients and controls. The levels of 12 candidate circRNAs were verified by qRT-PCR, and the quantities of 10 of these circRNAs were consistent with the data of microarray. The functions of host genes of differentially quantified circRNAs, including RNA and protein process, focal adhesion, and leukocyte transendothelial migration, were associated with the development of AIS. As a miRNA sponge, differentially quantified circRNAs had the potential to regulate pathways related to AIS, like PI3K-Akt, AMPK, and chemokine pathways. Of 198 differentially quantified circRNAs, 96 circRNAs possessing a strong translational ability could affect cellular structure and activity, like focal adhesion, tight junction, and endocytosis. Most differentially quantified circRNAs were predicted to bind to EIF4A3 and AGO2—two RNA-binding proteins (RBPs)—and to play a role in AIS. Moreover, four of ten circRNAs with verified levels by qRT-PCR (hsa_circ_0112036, hsa_circ_0066867, hsa_circ_0093708, and hsa_circ_0041685) were predicted to participate in processes of AIS, including PI3K-Akt, AMPK, and chemokine pathways as well as endocytosis, and to be potentially useful as diagnostic biomarkers for AIS. In conclusion, plasma exosome-derived circRNAs were significantly differentially quantified between AIS patients and controls and participated in the occurrence and progression of AIS by sponging miRNA/RBPs or translating into proteins, indicating that circRNAs from plasma exosomes could be crucial molecules in the pathogenesis of AIS and promising candidates as diagnostic biomarkers and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yapeng Lin
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yijia Guo
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Ke Liao
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hang Cheng
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, China
- *Correspondence: Kejie Chen,
| |
Collapse
|
11
|
Luo H, Lan C, Fan C, Gong X, Chen C, Yu C, Wang J, Luo X, Hu C, Jose PA, Xu Z, Zeng C. Down-regulation of AMPK/PPARδ signalling promotes endoplasmic reticulum stress-induced endothelial dysfunction in adult rat offspring exposed to maternal diabetes. Cardiovasc Res 2021; 118:2304-2316. [PMID: 34415333 PMCID: PMC9890455 DOI: 10.1093/cvr/cvab280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 01/29/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS Exposure to maternal diabetes is associated with increased prevalence of hypertension in the offspring. The mechanisms underlying the prenatal programming of hypertension remain unclear. Because endoplasmic reticulum (ER) stress plays a key role in vascular endothelial dysfunction in hypertension, we investigated whether aberrant ER stress causes endothelial dysfunction and high blood pressure in the offspring of dams with diabetes. METHODS AND RESULTS Pregnant Sprague-Dawley rats were intraperitoneally injected with streptozotocin (35 mg/kg) or citrate buffer at Day 0 of gestation. Compared with control mother offspring (CMO), the diabetic mother offspring (DMO) had higher blood pressure and impaired endothelium-dependent relaxation in mesenteric arteries, accompanied by decreased AMPK phosphorylation and PPARδ expression, increased ER stress markers, and reactive oxygen species (ROS) levels. The inhibition of ER stress reversed these aberrant changes in DMO. Ex vivo treatment of mesenteric arteries with an AMPK agonist (A769662) or a PPARδ agonist (GW1516) improved the impaired EDR in DMO and reversed the tunicamycin-induced ER stress, ROS production, and EDR impairment in mesenteric arteries from CMO. The effects of A769662 were abolished by co-treatment with GSK0660 (PPARδ antagonist), whereas the effects of GW1516 were unaffected by Compound C (AMPK inhibitor). CONCLUSION These results suggest an abnormal foetal programming of vascular endothelial function in offspring of rats with maternal diabetes that is associated with increased ER stress, which can be ascribed to down-regulation of AMPK/PPARδ signalling cascade.
Collapse
Affiliation(s)
| | | | | | - Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cheng Yu
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China,Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Pharmacology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA,Department of Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zaicheng Xu
- Corresponding author. Tel: +86 23 68757801; fax: +86 23 68757801, E-mail: (C.Z.); (Z.X.)
| | - Chunyu Zeng
- Corresponding author. Tel: +86 23 68757801; fax: +86 23 68757801, E-mail: (C.Z.); (Z.X.)
| |
Collapse
|
12
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
13
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
14
|
Zhang Q, Wang T, Jin J, Shi X, Huang A, Ma Z, Li J, Wang S, Z. Ma R, Fang Q. Rcn3 Suppression Was Responsible for Partial Relief of Emphysema as Shown by Specific Type II Alveolar Epithelial Cell Rcn3 CKO Mouse Model. Int J Chron Obstruct Pulmon Dis 2021; 16:147-158. [PMID: 33531801 PMCID: PMC7847372 DOI: 10.2147/copd.s272711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), characterized by irreversible airflow limitation, is a highly prevalent lung disease worldwide and imposes increasing disease burdens globally. Emphysema is one of the primary pathological features contributing to the irreversible decline of pulmonary function in COPD patients, but the pathogenetic mechanisms remain unclear. Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein localized in the secretory pathway of living cells. Rcn3 in type II alveolar epithelial cell (AECIIs) has been reported to play a critical role in regulating perinatal lung development and bleomycin-induced lung injury-repair processes. We hypothesized that Rcn3 deficiency is associated with the development of emphysema during COPD, which is associated with the dysfunction of injury-repair modulated by alveolar epithelial cells. MATERIALS AND METHODS We examined Rcn3 expression in lung specimens from COPD patients and non-COPD control patients undergoing lung lobectomy or pneumonectomy. Two mouse models of emphysema were established by cigarette smoke (CS) exposure and intratracheal instillation of porcine pancreatic elastase (PPE). Rcn3 expression was detected in the lung tissues from these mice. Furthermore, conditional knockout (CKO) mice with Rcn3 deletion specific to AECIIs were used to explore the role of Rcn3 in PPE-induced emphysema progression. Rcn3 protein expression in lung tissues was evaluated by Western blot and immunohistochemistry. Rcn3 mRNA expression in lung tissues was detected by qPCR. RESULTS Rcn3 expression was significantly increased in the lung specimens from COPD patients versus non-COPD patients and the level of Rcn3 increase was associated with the degree of emphysema. Rcn3 expression were also significantly up-regulated in both CS-induced and PPE-induced emphysematous mouse lungs. Moreover, the selective ablation of Rcn3 in AECIIs significantly alleviated severity of the mouse emphysema in response to intratracheal installation of PPE. CONCLUSION Our data, for the first time, indicated that suppression of Rcn3 expression in AECIIs has a beneficial effect on PPE-induced emphysema.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Tong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Xiaoqian Shi
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Aiben Huang
- Beijing Shijitan Hospital, Capital Medical University, Beijing100038, People’s Republic of China
| | - Zhenru Ma
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| | - Jiujie Li
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Shiyu Wang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Runlin Z. Ma
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Qiuhong Fang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, People’s Republic of China
| |
Collapse
|
15
|
Cicalese S, Okuno K, Eguchi S. Detection of Protein Aggregation and Proteotoxicity Induced by Angiotensin II in Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2021; 77:43-48. [PMID: 33079831 DOI: 10.1097/fjc.0000000000000934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022]
Abstract
ABSTRACT Disruption of protein quality control occurs with aging and cardiovascular pathologies including arterial stiffness and hypertension. Angiotensin II (Ang II) is believed to induce endoplasmic reticulum stress in vascular smooth muscle cells (VSMCs), thus contributing to vascular remodeling and dysfunction. However, whether Ang II increases formation of protein aggregates and mediates proteotoxicity in VSMCs remain obscure. Accordingly, this study aimed to establish a quantitative method of protein aggregate detection induced by Ang II and to investigate their potential involvement in inflammatory and senescence responses. Proteostat staining showed increased aggregate numbers per cell on Ang II exposure. Immunoblot analysis further showed an increase in preamyloid oligomer presence in a detergent insoluble protein fraction purified from VSMCs stimulated with Ang II. Moreover, these responses were attenuated by treatment with chemical chaperone, 4-phenylbutyrate. 4-phenylbutyrate further blocked Ang II-induced senescence associated β-galactosidase activity and THP-1 monocyte adhesion in VSMCs. These data suggest that Ang II induces proteotoxicity in VSMCs which likely contributes to aging and inflammation in the vasculature.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Cell Adhesion/drug effects
- Cellular Senescence/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Humans
- Male
- Monocytes/drug effects
- Monocytes/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Protein Aggregates
- Protein Aggregation, Pathological
- Rats, Sprague-Dawley
- THP-1 Cells
- Rats
Collapse
Affiliation(s)
- Stephanie Cicalese
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | | |
Collapse
|
16
|
da Costa TSR, Masson GS, Eichler RADS, Silva JCDS, Lacchini S, Michelini LC. Training-Induced Deactivation of the AT 1 Receptor Pathway Drives Autonomic Control and Heart Remodeling During the Transition From the Pre- to Hypertensive Phase in Spontaneously Hypertensive Rats. Circ J 2020; 84:1294-1303. [PMID: 32522899 DOI: 10.1253/circj.cj-19-1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effects of hypertension and exercise training (T) on the sequential interplay between renin-angiotensin system (RAS), autonomic control and heart remodeling during the development of hypertension in spontaneously hypertensive rats (SHR), was evaluated. METHODS AND RESULTS Time course changes of these parameters were recorded in 4-week-old SHR submitted to a T or sedentary (S) protocol. Wistar Kyoto rats served as controls. Hemodynamic recordings were obtained in conscious rats at experimental weeks 0, 1, 2, 4, and 8. The left ventricle (LV) was collected to evaluate RAS gene and protein expression, cardiomyocytes' hypertrophy and collagen accumulation. Pre-hypertensive SHR exhibited augmented AT1R gene expression; at 5 weeks, they presented with elevated pressure, increased LV angiotensinogen and ACE mRNA expression, followed by sympathoexcitation (from the 8thweek onwards). Marked AT1R protein content, myocytes's hypertrophy, collagen deposition and increased pressure variability were observed in 12-week-old sedentary SHR. In addition to attenuating all these effects, T activated Mas receptor expression augmented parasympathetic modulation of the heart, and delayed the onset and reduced the magnitude, but did not block the development of genetic hypertension. CONCLUSIONS The close temporal relationship between changes in the LV ACE-Ang II-AT1R axis, autonomic control and cardiac remodeling at both the establishment of hypertension and during exercise training reveals the essential role played by the AT1R pathway in driving cardiac remodeling and autonomic modulation during the transition from the pre- to hypertensive phase.
Collapse
Affiliation(s)
| | - Gustavo Santos Masson
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo
| | | | | | - Silvia Lacchini
- Department of Anatomy, Biomedical Sciences Institute, University of Sao Paulo
| | | |
Collapse
|
17
|
Mao Y, Wang C, Tian X, Huang Y, Zhang Y, Wu H, Yang S, Xu K, Liu Y, Zhang W, Gu X, Ma Z. Endoplasmic Reticulum Stress Contributes to Nociception via Neuroinflammation in a Murine Bone Cancer Pain Model. Anesthesiology 2020; 132:357-372. [PMID: 31939851 DOI: 10.1097/aln.0000000000003078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prolonged endoplasmic reticulum stress has been identified in various diseases. Inflammatory mediators, which have been shown to induce endoplasmic reticulum stress in several studies, have been suggested to serve as the important modulators in pain development. In this study, the authors hypothesized that the endoplasmic reticulum stress triggered by inflammatory mediators contributed to pain development. METHODS The authors used a male mouse model of bone cancer pain. The control mice were intrathecally injected with tumor necrosis factor-α (TNF-α) and lipopolysaccharide, the bone cancer pain mice were intrathecally injected with the endoplasmic reticulum stress inhibitors 4-PBA and GSK2606414. The nociceptive behaviors, endoplasmic reticulum stress markers, and inflammatory mediators were assessed. RESULTS Increased expression of the p-RNA-dependent protein kinase-like endoplasmic reticulum kinase and p-eukaryotic initiation factor 2α were found in the spinal neurons during bone cancer pain, along with upregulation of inflammatory mediators (TNF-α, interleukin 1β, and interleukin 6). Intrathecal administration of TNF-α or lipopolysaccharide increased the expression of endoplasmic reticulum stress markers in control mice. Inhibition of endoplasmic reticulum stress by intrathecal administration of 4-PBA (baseline vs. 3 h: 0.34 ± 0.16 g vs. 1.65 ± 0.40 g in paw withdrawal mechanical threshold, 8.00 ± 1.20 times per 2 min vs. 0.88 ± 0.64 times per 2 min in number of spontaneous flinches, P < 0.001, n = 8) or GSK2606414 (baseline vs. 3 h: 0.37 ± 0.08 g vs. 1.38 ± 0.11 g in paw withdrawal mechanical threshold, 8.00 ± 0.93 times per 2 min vs. 3.25 ± 1.04 times per 2 min in number of spontaneous flinches, P < 0.001, n = 8) showed time- and dose-dependent antinociception. Meanwhile, decreased expression of inflammatory mediators (TNF-α, interleukin 1β, and interleukin 6), as well as decreased activation of astrocytes in the spinal cord, were found after 4-PBA or GSK2606414 treatment. CONCLUSIONS Inhibition of inflammatory mediator-triggered endoplasmic reticulum stress in spinal neurons attenuates bone cancer pain via modulation of neuroinflammation, which suggests new approaches to pain relief.
Collapse
Affiliation(s)
- Yanting Mao
- From the Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Neves KB, Harvey AP, Moreton F, Montezano AC, Rios FJ, Alves-Lopes R, Nguyen Dinh Cat A, Rocchicciolli P, Delles C, Joutel A, Muir K, Touyz RM. ER stress and Rho kinase activation underlie the vasculopathy of CADASIL. JCI Insight 2019; 4:131344. [PMID: 31647781 PMCID: PMC6962020 DOI: 10.1172/jci.insight.131344] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) leads to premature stroke and vascular dementia. Mechanism-specific therapies for this aggressive cerebral small vessel disease are lacking. CADASIL is caused by NOTCH3 mutations that influence vascular smooth muscle cell (VSMC) function through unknown processes. We investigated molecular mechanisms underlying the vasculopathy in CADASIL focusing on endoplasmic reticulum (ER) stress and RhoA/Rho kinase (ROCK). Peripheral small arteries and VSMCs were isolated from gluteal biopsies of CADASIL patients and mesentery of TgNotch3R169C mice (CADASIL model). CADASIL vessels exhibited impaired vasorelaxation, blunted vasoconstriction, and hypertrophic remodeling. Expression of NOTCH3 and ER stress target genes was amplified and ER stress response, Rho kinase activity, superoxide production, and cytoskeleton-associated protein phosphorylation were increased in CADASIL, processes associated with Nox5 upregulation. Aberrant vascular responses and signaling in CADASIL were ameliorated by inhibitors of Notch3 (γ-secretase inhibitor), Nox5 (mellitin), ER stress (4-phenylbutyric acid), and ROCK (fasudil). Observations in human CADASIL were recapitulated in TgNotch3R169C mice. These findings indicate that vascular dysfunction in CADASIL involves ER stress/ROCK interplay driven by Notch3-induced Nox5 activation and that NOTCH3 mutation-associated vascular pathology, typical in cerebral vessels, also manifests peripherally. We define Notch3-Nox5/ER stress/ROCK signaling as a putative mechanism-specific target and suggest that peripheral artery responses may be an accessible biomarker in CADASIL.
Collapse
Affiliation(s)
- Karla B. Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Adam P. Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Fiona Moreton
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco J. Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | | | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris Inserm, Paris Descartes University, Paris, France
| | - Keith Muir
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Soliman E, Behairy SF, El-maraghy NN, Elshazly SM. PPAR-γ agonist, pioglitazone, reduced oxidative and endoplasmic reticulum stress associated with L-NAME-induced hypertension in rats. Life Sci 2019; 239:117047. [DOI: 10.1016/j.lfs.2019.117047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
|
20
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|