1
|
Maung Ye SS, Phng LK. A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration. PLoS Comput Biol 2023; 19:e1011665. [PMID: 38048371 PMCID: PMC10721208 DOI: 10.1371/journal.pcbi.1011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
The development of a functional cardiovascular system ensures a sustainable oxygen, nutrient and hormone delivery system for successful embryonic development and homeostasis in adulthood. While early vessels are formed by biochemical signaling and genetic programming, the onset of blood flow provides mechanical cues that participate in vascular remodeling of the embryonic vascular system. The zebrafish is a prolific animal model for studying the quantitative relationship between blood flow and vascular morphogenesis due to a combination of favorable factors including blood flow visualization in optically transparent larvae. In this study, we have developed a cell-and-plasma blood transport model using computational fluid dynamics (CFD) to understand how red blood cell (RBC) partitioning affect lumen wall shear stress (WSS) and blood pressure in zebrafish trunk blood vascular networks with altered rheology and morphology. By performing live imaging of embryos with reduced hematocrit, we discovered that cardiac output and caudal artery flow rates were maintained. These adaptation trends were recapitulated in our CFD models, which showed reduction in network WSS via viscosity reduction in the caudal artery/vein and via pressure gradient weakening in the intersegmental vessels (ISVs). Embryos with experimentally reduced lumen diameter showed reduced cardiac output and caudal artery flow rate. Factoring in this trend into our CFD models, simulations highlighted that lumen diameter reduction increased vessel WSS but this increase was mitigated by flow reduction due to the adaptive network pressure gradient weakening. Additionally, hypothetical network CFD models with different vessel lumen diameter distribution characteristics indicated the significance of axial variation in lumen diameter and cross-sectional shape for establishing physiological WSS gradients along ISVs. In summary, our work demonstrates how both experiment-driven and hypothetical CFD modeling can be employed for the study of blood flow physiology during vascular remodeling.
Collapse
Affiliation(s)
- Swe Soe Maung Ye
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
2
|
Mirza I, Haloul M, Hassan C, Masrur M, Mostafa A, Bianco FM, Ali MM, Minshall RD, Mahmoud AM. Adiposomes from Obese-Diabetic Individuals Promote Endothelial Dysfunction and Loss of Surface Caveolae. Cells 2023; 12:2453. [PMID: 37887297 PMCID: PMC10605845 DOI: 10.3390/cells12202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glycosphingolipids (GSLs) are products of lipid glycosylation that have been implicated in the development of cardiovascular diseases. In diabetes, the adipocyte microenvironment is characterized by hyperglycemia and inflammation, resulting in high levels of GSLs. Therefore, we sought to assess the GSL content in extracellular vesicles derived from the adipose tissues (adiposomes) of obese-diabetic (OB-T2D) subjects and their impact on endothelial cell function. To this end, endothelial cells were exposed to adiposomes isolated from OB-T2D versus healthy subjects. Cells were assessed for caveolar integrity and related signaling, such as Src-kinase and caveolin-1 (cav-1) phosphorylation, and functional pathways, such as endothelial nitric oxide synthase (eNOS) activity. Compared with adiposomes from healthy subjects, OB-T2D adiposomes had higher levels of GSLs, especially LacCer and GM3; they promoted cav-1 phosphorylation coupled to an obvious loss of endothelial surface caveolae and induced eNOS-uncoupling, peroxynitrite generation, and cav-1 nitrosylation. These effects were abolished by Src kinase inhibition and were not observed in GSL-depleted adiposomes. At the functional levels, OB-T2D adiposomes reduced nitric oxide production, shear response, and albumin intake in endothelial cells and impaired flow-induced dilation in healthy arterioles. In conclusion, OB-T2D adiposomes carried a detrimental GSL cargo that disturbed endothelial caveolae and the associated signaling.
Collapse
Affiliation(s)
- Imaduddin Mirza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Mohamed Haloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Chandra Hassan
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mario Masrur
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Amro Mostafa
- Departments of Anesthesiology and Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Francesco M. Bianco
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mohamed M. Ali
- School of Business and Non-Profit Management, North Park University, Chicago, IL 60625, USA;
| | - Richard D. Minshall
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Zhang S, Tuk B, van de Peppel J, Kremers GJ, Koedam M, Pesch GR, Rahman Z, Hoogenboezem RM, Bindels EMJ, van Neck JW, Boukany PE, van Leeuwen JPTM, van der Eerden BCJ. Microfluidic evidence of synergistic effects between mesenchymal stromal cell-derived biochemical factors and biomechanical forces to control endothelial cell function. Acta Biomater 2022; 151:346-359. [PMID: 35995408 DOI: 10.1016/j.actbio.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood. Here, we used two different microfluidic designs to investigate critical steps during angiogenesis and found pronounced effects of endothelial cell proliferation as well as chemotactic and mechanotactic migration induced by BMSC conditioned medium (CM). The application of BMSC-CM in dynamic cultures demonstrates that bioactive factors in combination with fluidic flow-induced biomechanical signals significantly enhanced endothelial cell migration. Transcriptional analyses of endothelial cells demonstrate the induction of a unique gene expression profile related to tricarboxylic acid cycle and energy metabolism by the combination of BMSC-CM factors and shear stress, which opens an interesting avenue to explore during fracture healing. Our results stress the importance of in vivo - like microenvironments simultaneously including biochemical, biomechanical and oxygen levels when investigating key events during vessel repair. STATEMENT OF SIGNIFICANCE: Our results demonstrate the importance of recapitulating in vivo - like microenvironments when investigating key events during vessel repair. Endothelial cells exhibit enhanced angiogenesis characteristics when simultaneous exposing them to hMSC-CM, mechanical forces and biochemical signals simultaneously. The improved angiogenesis may not only result from the direct effect of growth factors, but also by reprogramming of endothelial cell metabolism. Moreover, with this model we demonstrated a synergistic impact of mechanical forces and biochemical factors on endothelial cell behavior and the expression of genes involved in the TCA cycle and energy metabolism, which opens an interesting new avenue to stimulate angiogenesis during fracture healing.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Bastiaan Tuk
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Center, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Georg R Pesch
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Johan W van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Abello J, Raghavan S, Yien YY, Stratman AN. Peristaltic pumps adapted for laminar flow experiments enhance in vitro modeling of vascular cell behavior. J Biol Chem 2022; 298:102404. [PMID: 35988646 PMCID: PMC9508572 DOI: 10.1016/j.jbc.2022.102404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) are the primary cellular constituent of blood vessels that are in direct contact with hemodynamic forces over their lifetime. Throughout the body, vessels experience different blood flow patterns and rates that alter vascular architecture and cellular behavior. Because of the complexities of studying blood flow in an intact organism, particularly during development, the field has increasingly relied on in vitro modeling of blood flow as a powerful technique for studying hemodynamic-dependent signaling mechanisms in ECs. While commercial flow systems that recirculate fluids exist, many commercially available pumps are peristaltic and best model pulsatile flow conditions. However, there are many important situations in which ECs experience laminar flow conditions in vivo, such as along long straight stretches of the vasculature. To understand EC function under these contexts, it is important to be able to reproducibly model laminar flow conditions in vitro. Here, we outline a method to reliably adapt commercially available peristaltic pumps to study laminar flow conditions. Our proof-of-concept study focuses on 2D models but could be further adapted to 3D environments to better model in vivo scenarios, such as organ development. Our studies make significant inroads into solving technical challenges associated with flow modeling and allow us to conduct functional studies toward understanding the mechanistic role of shear forces on vascular architecture, cellular behavior, and remodeling in diverse physiological contexts.
Collapse
Affiliation(s)
- Javier Abello
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station TX 77843
| | - Yvette Y Yien
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Amber N Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110.
| |
Collapse
|
5
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Phosphoproteomic response of cardiac endothelial cells to ischemia and ultrasound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140683. [PMID: 34119693 DOI: 10.1016/j.bbapap.2021.140683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Myocardial infarction and subsequent therapeutic interventions activate numerous intracellular cascades in every constituent cell type of the heart. Endothelial cells produce several protective compounds in response to therapeutic ultrasound, under both normoxic and ischemic conditions. How endothelial cells sense ultrasound and convert it to a beneficial biological response is not known. We adopted a global, unbiased phosphoproteomics approach aimed at understanding how endothelial cells respond to ultrasound. Here, we use primary cardiac endothelial cells to explore the cellular signaling events underlying the response to ischemia-like cellular injury and ultrasound exposure in vitro. Enriched phosphopeptides were analyzed with a high mass accuracy liquid chromatrography (LC) - tandem mass spectrometry (MS/MS) proteomic platform, yielding multiple alterations in both total protein levels and phosphorylation events in response to ischemic injury and ultrasound. Application of pathway algorithms reveals numerous protein networks recruited in response to ultrasound including those regulating RNA splicing, cell-cell interactions and cytoskeletal organization. Our dataset also permits the informatic prediction of potential kinases responsible for the modifications detected. Taken together, our findings begin to reveal the endothelial proteomic response to ultrasound and suggest potential targets for future studies of the protective effects of ultrasound in the ischemic heart.
Collapse
|
7
|
Urschel K, Tauchi M, Achenbach S, Dietel B. Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice-From Bench to Bedside. Int J Mol Sci 2021; 22:5635. [PMID: 34073212 PMCID: PMC8198948 DOI: 10.3390/ijms22115635] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as "wall shear stress (WSS)", and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.
Collapse
Affiliation(s)
| | | | | | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum, 91054 Erlangen, Germany; (K.U.); (M.T.); (S.A.)
| |
Collapse
|
8
|
Ca 2+ homeostasis in brain microvascular endothelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:55-110. [PMID: 34253298 DOI: 10.1016/bs.ircmb.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood brain barrier (BBB) is formed by the brain microvascular endothelial cells (BMVECs) lining the wall of brain capillaries. Its integrity is regulated by multiple mechanisms, including up/downregulation of tight junction proteins or adhesion molecules, altered Ca2+ homeostasis, remodeling of cytoskeleton, that are confined at the level of BMVECs. Beside the contribution of BMVECs to BBB permeability changes, other cells, such as pericytes, astrocytes, microglia, leukocytes or neurons, etc. are also exerting direct or indirect modulatory effects on BBB. Alterations in BBB integrity play a key role in multiple brain pathologies, including neurological (e.g. epilepsy) and neurodegenerative disorders (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.). In this review, the principal Ca2+ signaling pathways in brain microvascular endothelial cells are discussed and their contribution to BBB integrity is emphasized. Improving the knowledge of Ca2+ homeostasis alterations in BMVECa is fundamental to identify new possible drug targets that diminish/prevent BBB permeabilization in neurological and neurodegenerative disorders.
Collapse
|
9
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
10
|
Side-dependent effect in the response of valve endothelial cells to bidirectional shear stress. Int J Cardiol 2020; 323:220-228. [PMID: 32858136 DOI: 10.1016/j.ijcard.2020.08.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Endothelial cells covering the aortic and ventricular sides of the aortic valve leaflets are exposed to different stresses, in particular wall shear stress (WSS). Biomechanical stimuli actively regulate valve tissue structure and induce remodeling events leading to valve dysfunction. Endothelial to mesenchymal transformation (EndMT), for example, has been associated with aortic valve disease. The biomechanical response of cells at different sides of the leaflets has not been clearly characterized. To analyze the mechanical response of valve endothelial cells (VECs) we developed a unique fluid activation device that applies physiologically relevant pulsatile WSS. We characterized the morphology and function of adult porcine aortic VECs derived from the opposite sides of aortic valve leaflets following exposure to different pulsatile WSS. We found that elongation and orientation of cells in response to pulsatile WSS depends on their side of origin. Quantification of gene expression confirms phenotypic differences between aortic and ventricular VECs. Aortic VECs exposed to pulsatile WSS similar to that in vivo at the tip of aortic side of the valve leaflet upregulated pro-EndMT (ACTA2, Snail, TGFβ1) and inflammation (ICAM-1, VCAM-1) genes, whereas expression of endothelial markers like PECAM-1 was decreased. Conversely, ventricular-VECs showed strong increase of PECAM-1 expression and no activation of pro-EndMT marker. Finally, we found that stress-induced genes are upregulated in both cell types, at higher levels in ventricular compared to aortic VECs. Application of physiological shear stress levels using a fluid activation device therefore reveals functional differences in VECs derived from opposite sides of the aortic valve leaflets.
Collapse
|
11
|
Tabibian A, Ghaffari S, Vargas DA, Van Oosterwyck H, Jones EAV. Simulating flow induced migration in vascular remodelling. PLoS Comput Biol 2020; 16:e1007874. [PMID: 32822340 PMCID: PMC7478591 DOI: 10.1371/journal.pcbi.1007874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/08/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Shear stress induces directed endothelial cell (EC) migration in blood vessels leading to vessel diameter increase and induction of vascular maturation. Other factors, such as EC elongation and interaction between ECs and non-vascular areas are also important. Computational models have previously been used to study collective cell migration. These models can be used to predict EC migration and its effect on vascular remodelling during embryogenesis. We combined live time-lapse imaging of the remodelling vasculature of the quail embryo yolk sac with flow quantification using a combination of micro-Particle Image Velocimetry and computational fluid dynamics. We then used the flow and remodelling data to inform a model of EC migration during remodelling. To obtain the relation between shear stress and velocity in vitro for EC cells, we developed a flow chamber to assess how confluent sheets of ECs migrate in response to shear stress. Using these data as an input, we developed a multiphase, self-propelled particles (SPP) model where individual agents are driven to migrate based on the level of shear stress while maintaining appropriate spatial relationship to nearby agents. These agents elongate, interact with each other, and with avascular agents at each time-step of the model. We compared predicted vascular shape to real vascular shape after 4 hours from our time-lapse movies and performed sensitivity analysis on the various model parameters. Our model shows that shear stress has the largest effect on the remodelling process. Importantly, however, elongation played an especially important part in remodelling. This model provides a powerful tool to study the input of different biological processes on remodelling. Shear stress is known to play a leading role in endothelial cell (EC) migration and hence, vascular remodelling. Vascular remodelling is, however, more complicated than only EC migration. To achieve a better understanding of this process, we developed a computational model in which, shear stress mediated EC migration has the leading role and other factors, such as avascular regions and EC elongation, are also accounted for. We have tested this model for different vessel shapes during remodelling and could study the role that each of these factors play in remodelling. This model gives us the possibility of addition of other factors such as biochemical signals and angiogenesis which will help us in the study of vascular remodelling in both development and disease.
Collapse
Affiliation(s)
- Ashkan Tabibian
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, Saint Michael’s Hospital, Toronto, Canada
| | - Diego A. Vargas
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
- * E-mail:
| |
Collapse
|
12
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Dikici S, Aldemir Dikici B, Bhaloo SI, Balcells M, Edelman ER, MacNeil S, Reilly GC, Sherborne C, Claeyssens F. Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Front Bioeng Biotechnol 2020; 7:451. [PMID: 32010677 PMCID: PMC6978624 DOI: 10.3389/fbioe.2019.00451] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach. The study of angiogenesis has gained momentum over the last two decades. Although there are various in vitro, ex vivo, and in vivo angiogenesis models that enable testing of newly discovered pro-angiogenic agents, the problem with researching angiogenesis is the choice of the most appropriate assay. In vivo assays are the most representative and reliable models, but they are expensive, time-consuming and can cause ethical concerns whereas in vitro assays are relatively inexpensive, practical, and reproducible, but they are usually lack of enabling the study of more than one aspect of angiogenesis, and they do not fully represent the complexity of physiological angiogenesis. Therefore, there is a need for the development of an angiogenesis model that allows the study of angiogenesis under physiologically more relevant, dynamic conditions without causing ethical concerns. Accordingly, in this study, we developed 3D in vitro dynamic angiogenesis model, and we tested the angiogenic potential of 2-deoxy-D-ribose (2dDR) in comparison with vascular endothelial growth factor (VEGF) using newly developed in vitro 3D dynamic model and well-established in vitro models. Our results obtained using conventional in vitro assays demonstrated that 2dDR promoted proliferation, migration and tube formation of human aortic endothelial cells (HAECs) in a dose-dependent manner. Then, the angiogenic activity of 2dDR was further assessed using the newly developed 3D in vitro model, which enabled the monitoring of cell proliferation and infiltration simultaneously under dynamic conditions. Our results showed that the administration of 2dDR and VEGF significantly enhanced the outgrowth of HAECs and the cellular density under either static or dynamic conditions.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Avari H, Rogers KA, Savory E. Quantification of Morphological Modulation, F-Actin Remodeling and PECAM-1 (CD-31) Re-distribution in Endothelial Cells in Response to Fluid-Induced Shear Stress under Various Flow Conditions. J Biomech Eng 2019; 141:2723101. [PMID: 30673068 DOI: 10.1115/1.4042601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the number one cause of death globally. Arterial endothelial cell (EC) dysfunction plays a key role in many of these CVDs, such as atherosclerosis. Blood flow-induced wall shear stress (WSS), among many other pathophysiological factors, is known to significantly contribute to EC dysfunction. The present study reports an in vitro investigation of the effect of quantified WSS on ECs, analyzing the EC morphometric parameters as well as cytoskeletal remodeling. The effects of four different flow cases (low steady laminar (LSL), medium steady laminar (MSL), non-zero-mean sinusoidal laminar (NZMSL) and laminar carotid (LCRD) waveforms) on EC area, perimeter, shape index (SI), angle of orientation, F-actin bundle remodeling and PECAM-1 localization were studied. For the first time, a flow facility was fully quantified for the uniformity of flow over ECs as well as for WSS determination (as opposed to relying on analytical equations). The SI and angle of orientation were found to be the most flow-sensitive morphometric parameters. A 2D Fast Fourier Transform based image processing technique was applied to analyze the F-actin directionality and an alignment index (AI) was defined accordingly. Also, a significant peripheral loss of PECAM-1 in ECs subjected to atheroprone cases (LSL and NZMSL) with high cell surface/cytoplasm stain of this protein is reported, which may shed light on of the mechanosensory role of PECAM-1 in mechanotransduction.
Collapse
Affiliation(s)
- Hamed Avari
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Kem A Rogers
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Eric Savory
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| |
Collapse
|
15
|
Hakim MA, Behringer EJ. Simultaneous Measurements of Intracellular Calcium and Membrane Potential in Freshly Isolated and Intact Mouse Cerebral Endothelium. J Vis Exp 2019. [PMID: 30735188 DOI: 10.3791/58832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cerebral arteries and their respective microcirculation deliver oxygen and nutrients to the brain via blood flow regulation. Endothelial cells line the lumen of blood vessels and command changes in vascular diameter as needed to meet the metabolic demand of neurons. Primary endothelial-dependent signaling pathways of hyperpolarization of membrane potential (Vm) and nitric oxide typically operate in parallel to mediate vasodilation and thereby increase blood flow. Although integral to coordinating vasodilation over several millimeters of vascular length, components of endothelium-derived hyperpolarization (EDH) have been historically difficult to measure. These components of EDH entail intracellular Ca2+ [Ca2+]i increases and subsequent activation of small- and intermediate conductance Ca2+-activated K+ (SKCa/IKCa) channels. Here, we present a simplified illustration of the isolation of fresh endothelium from mouse cerebral arteries; simultaneous measurements of endothelial [Ca2+]i and Vm using Fura-2 photometry and intracellular sharp electrodes, respectively; and a continuous superfusion of salt solutions and pharmacological agents under physiological conditions (pH 7.4, 37 °C). Posterior cerebral arteries from the Circle of Willis are removed free of the posterior communicating and the basilar arteries. Enzymatic digestion of cleaned posterior cerebral arterial segments and subsequent trituration facilitates removal of adventitia, perivascular nerves, and smooth muscle cells. Resulting posterior cerebral arterial endothelial "tubes" are then secured under a microscope and examined using a camera, photomultiplier tube, and one to two electrometers while under continuous superfusion. Collectively, this method can simultaneously measure changes in endothelial [Ca2+]i and Vm in discrete cellular locations, in addition to the spreading of EDH through gap junctions up to millimeter distances along the intact endothelium. This method is expected to yield a high-throughput analysis of the cerebral endothelial functions underlying mechanisms of blood flow regulation in the normal and diseased brain.
Collapse
Affiliation(s)
- Md A Hakim
- Department of Basic Sciences, Loma Linda University
| | | |
Collapse
|
16
|
Bogorad MI, DeStefano J, Wong AD, Searson PC. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation 2018; 24. [PMID: 28164421 DOI: 10.1111/micc.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/29/2017] [Indexed: 12/13/2022]
Abstract
Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation.
Collapse
Affiliation(s)
- Max I Bogorad
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson DeStefano
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Behringer EJ, Segal SS. Impact of Aging on Calcium Signaling and Membrane Potential in Endothelium of Resistance Arteries: A Role for Mitochondria. J Gerontol A Biol Sci Med Sci 2017; 72:1627-1637. [PMID: 28510636 DOI: 10.1093/gerona/glx079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Impaired blood flow to peripheral tissues during advanced age is associated with endothelial dysfunction and diminished bioavailability of nitric oxide (NO). However, it is unknown whether aging impacts coupling between intracellular calcium ([Ca2+]i) signaling and small- and intermediate K+ channel (SKCa/IKCa) activity during endothelium-derived hyperpolarization (EDH), a signaling pathway integral to dilation of the resistance vasculature. To address the potential impact of aging on EDH, Fura-2 photometry and intracellular recording were applied to evaluate [Ca2+]i and membrane potential of intact endothelial tubes (width, 60 µm; length, 1-3 mm) freshly isolated from superior epigastric arteries of young (4-6 mo) and old (24-26 mo) male C57BL/6 mice. In response to acetylcholine, intracellular release of Ca2+ from the endoplasmic reticulum (ER) was enhanced with aging. Further, treatment with the mitochondrial uncoupler FCCP evoked a significant increase of [Ca2+]i with membrane hyperpolarization in an SKCa/IKCa-dependent manner in the endothelium of old but not young mice. We conclude that the ability of resistance artery endothelium to release Ca2+ from intracellular stores (ie, ER and mitochondria) and hyperpolarize Vm via SKCa/IKCa activation is augmented as compensation for reduced NO bioavailability during advanced age.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, California.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
18
|
Jamieson JJ, Searson PC, Gerecht S. Engineering the human blood-brain barrier in vitro. J Biol Eng 2017; 11:37. [PMID: 29213304 PMCID: PMC5713119 DOI: 10.1186/s13036-017-0076-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) is the interface between the vasculature and the brain, regulating molecular and cellular transport into the brain. Endothelial cells (ECs) that form the capillary walls constitute the physical barrier but are dependent on interactions with other cell types. In vitro models are widely used in BBB research for mechanistic studies and drug screening. Current models have both biological and technical limitations. Here we review recent advances in stem cell engineering that have been utilized to create innovative platforms to replicate key features of the BBB. The development of human in vitro models is envisioned to enable new mechanistic investigations of BBB transport in central nervous system diseases.
Collapse
Affiliation(s)
- John J Jamieson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Peter C Searson
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| |
Collapse
|
19
|
Heuslein JL, Gorick CM, Song J, Price RJ. DNA Methyltransferase 1-Dependent DNA Hypermethylation Constrains Arteriogenesis by Augmenting Shear Stress Set Point. J Am Heart Assoc 2017; 6:JAHA.117.007673. [PMID: 29191807 PMCID: PMC5779061 DOI: 10.1161/jaha.117.007673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Arteriogenesis is initiated by increased shear stress and is thought to continue until shear stress is returned to its original “set point.” However, the molecular mechanism(s) through which shear stress set point is established by endothelial cells (ECs) are largely unstudied. Here, we tested the hypothesis that DNA methyltransferase 1 (DNMT1)–dependent EC DNA methylation affects arteriogenic capacity via adjustments to shear stress set point. Methods and Results In femoral artery ligation–operated C57BL/6 mice, collateral artery segments exposed to increased shear stress without a change in flow direction (ie, nonreversed flow) exhibited global DNA hypermethylation (increased 5‐methylcytosine staining intensity) and constrained arteriogenesis (30% less diameter growth) when compared with segments exposed to both an increase in shear stress and reversed‐flow direction. In vitro, ECs exposed to a flow waveform biomimetic of nonreversed collateral segments in vivo exhibited a 40% increase in DNMT1 expression, genome‐wide hypermethylation of gene promoters, and a DNMT1‐dependent 60% reduction in proarteriogenic monocyte adhesion compared with ECs exposed to a biomimetic reversed‐flow waveform. These results led us to test whether DNMT1 regulates arteriogenic capacity in vivo. In femoral artery ligation–operated mice, DNMT1 inhibition rescued arteriogenic capacity and returned shear stress back to its original set point in nonreversed collateral segments. Conclusions Increased shear stress without a change in flow direction initiates arteriogenic growth; however, it also elicits DNMT1‐dependent EC DNA hypermethylation. In turn, this diminishes mechanosensing, augments shear stress set point, and constrains the ultimate arteriogenic capacity of the vessel. This epigenetic effect could impact both endogenous collateralization and treatment of arterial occlusive diseases.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
20
|
Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci Rep 2017; 7:9049. [PMID: 28831080 PMCID: PMC5567377 DOI: 10.1038/s41598-017-08982-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Microvascular endothelial cell heterogeneity and its relationship to hemodynamics remains poorly understood due to a lack of sufficient methods to examine these parameters in vivo at high resolution throughout an angiogenic network. The availability of surrogate markers for functional vascular proteins, such as green fluorescent protein, enables expression in individual cells to be followed over time using confocal microscopy, while photoacoustic microscopy enables dynamic measurement of blood flow across the network with capillary-level resolution. We combined these two non-invasive imaging modalities in order to spatially and temporally analyze biochemical and biomechanical drivers of angiogenesis in murine corneal neovessels. By stimulating corneal angiogenesis with an alkali burn in Tie2-GFP fluorescent-reporter mice, we evaluated how onset of blood flow and surgically-altered blood flow affects Tie2-GFP expression. Our study establishes a novel platform for analyzing heterogeneous blood flow and fluorescent reporter protein expression across a dynamic microvascular network in an adult mammal.
Collapse
|
21
|
DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS 2017; 14:20. [PMID: 28774343 PMCID: PMC5543552 DOI: 10.1186/s12987-017-0068-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. METHODS To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm-2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. RESULTS Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. CONCLUSIONS The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation of tight junctions decreases cell motility and prevents any morphological transitions, (3) flow serves to increase the contact area between cells, resulting in very low cell displacement in the monolayer, (4) since tight junctions are already formed under static conditions, increasing the contact area between cells does not cause upregulation in protein and gene expression of BBB markers, and (5) the increase in contact area induced by flow makes barrier function more robust.
Collapse
Affiliation(s)
- Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zinnia S Xu
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Ashley J Williams
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Nahom Yimam
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
22
|
Franzoni M, Walsh MT. Towards the Identification of Hemodynamic Parameters Involved in Arteriovenous Fistula Maturation and Failure: A Review. Cardiovasc Eng Technol 2017; 8:342-356. [PMID: 28744783 DOI: 10.1007/s13239-017-0322-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Native arteriovenous fistulas have a high failure rate mainly due to the lack of maturation and uncontrolled neo-intimal hyperplasia development. Newly established hemodynamics is thought to be central in driving the fistula fate, after surgical creation. To investigate the effects of realistic wall shear stress stimuli on endothelial cells, an in vitro approach is necessary in order to reduce the complexity of the in vivo environment. After a systematic review, realistic WSS waveforms were selected and analysed in terms of magnitude, temporal gradient, presence of reversing phases (oscillatory shear index, OSI) and frequency content (hemodynamics index, HI). The effects induced by these waveforms in cellular cultures were also considered, together with the materials and methods used to cultivate and expose cells to WSS stimuli. The results show a wide heterogeneity of experimental approaches and WSS waveform features that prevent a complete understanding of the mechanisms that regulate mechanotransduction. Furthermore, the hemodynamics derived from the carotid bifurcation is the most investigated (in vitro), while the AVF scenario remains poorly addressed. In conclusion, standardisation of the materials and methods employed, as well as the decomposition of realistic WSS profiles, are required for a better understanding of the hemodynamic effects on AVF outcomes. This standardisation may also lead to a new classification of WSS features according to the risk associated with vascular dysfunction.
Collapse
Affiliation(s)
- Marco Franzoni
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
23
|
DeStefano JG, Williams A, Wnorowski A, Yimam N, Searson PC, Wong AD. Real-time quantification of endothelial response to shear stress and vascular modulators. Integr Biol (Camb) 2017; 9:362-374. [PMID: 28345713 PMCID: PMC5490251 DOI: 10.1039/c7ib00023e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quiescence is commonly used to describe the inactive state of endothelial cells (ECs) in monolayers that have reached homeostasis. Experimentally quiescence is usually described in terms of the relative change in cell activity (e.g. turnover, speed, etc.) in response to a perturbation (e.g. solute, shear stress, etc.). The objective of this study is to provide new insight into EC quiescence by quantitatively defining the morphology and activity of confluent cell monolayers in response to shear stress and vascular modulators. Confluent monolayers of human umbilical vein ECs (HUVECs) were subjected to a range of shear stresses (4-16 dyne cm-2) under steady flow. Using phase contrast, time-lapse microscopy and image analysis, we quantified EC morphology, speed, proliferation, and apoptosis rates over time and detected differences in monolayer responses under various media conditions: basal media supplemented with growth factors, interleukin-8, or cyclic AMP. In all conditions, we observed a transition from cobblestone to spindle-like morphology in a dose-dependent manner due to shear stress. Cyclic AMP enhanced the elongation and alignment of HUVECs due to shear stress and reduced steady state cell speed. We observed the lowest proliferation rates below 8 dyne cm-2 and found that growth factors and cyclic AMP reduced proliferation and apoptosis; interleukin-8 similarly decreased proliferation, but increased apoptosis. We have quantified the response of ECs in confluent monolayers to shear stress and vascular modulators in terms of morphology, speed, proliferation and apoptosis and have established quantifiable metrics of cell activity to define vascular quiescence under shear stress.
Collapse
Affiliation(s)
- Jackson G DeStefano
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Stichel D, Middleton AM, Müller BF, Depner S, Klingmüller U, Breuhahn K, Matthäus F. An individual-based model for collective cancer cell migration explains speed dynamics and phenotype variability in response to growth factors. NPJ Syst Biol Appl 2017. [PMID: 28649432 PMCID: PMC5460121 DOI: 10.1038/s41540-017-0006-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Collective cell migration is a common phenotype in epithelial cancers, which is associated with tumor cell metastasis and poor patient survival. However, the interplay between physiologically relevant pro-migratory stimuli and the underlying mechanical cell–cell interactions are poorly understood. We investigated the migratory behavior of different collectively migrating non-small cell lung cancer cell lines in response to motogenic growth factors (e.g. epidermal growth factor) or clinically relevant small compound inhibitors. Depending on the treatment, we observed distinct behaviors in a classical lateral migration assay involving traveling fronts, finger-shapes or the development of cellular bridges. Particle image velocimetry analysis revealed characteristic speed dynamics (evolution of the average speed of all cells in a frame) in all experiments exhibiting initial acceleration and subsequent deceleration of the cell populations. To better understand the mechanical properties of individual cells leading to the observed speed dynamics and the phenotypic differences we developed a mathematical model based on a Langevin approach. This model describes intercellular forces, random motility, and stimulation of active migration by mechanical interaction between cells. Simulations show that the model is able to reproduce the characteristic spatio-temporal speed distributions as well as most migratory phenotypes of the studied cell lines. A specific strength of the proposed model is that it identifies a small set of mechanical features necessary to explain all phenotypic and dynamical features of the migratory response of non-small cell lung cancer cells to chemical stimulation/inhibition. Furthermore, all processes included in the model can be associated with potential molecular components, and are therefore amenable to experimental validation. Thus, the presented mathematical model may help to predict which mechanical aspects involved in non-small cell lung cancer cell migration are affected by the respective therapeutic treatment. In many cancers, spreading and the formation of metastasis involve the coordinated migration of many cells. An interdisciplinary team of researchers from Heidelberg and Frankfurt studied the collective movement of cultured lung cancer cells subject to chemical stimulation. Based on extensive data analysis a mathematical model was developed to explain the variety of migration behaviors observed under different treatments. The model describes the mechanics of compression, stretch, cell elasticity and force-regulated active motion—which in sum lead to coordination within large cell groups. Simulations demonstrate how these mechanical features affect cell coordination and collective behavior. In tests of potential medical treatment strategies, the model can be used to predict the effects of the drug on specific mechanical properties of single cells.
Collapse
Affiliation(s)
- Damian Stichel
- BIOMS/IWR, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, 69120 Germany.,DKFZ Heidelberg, KKE Neuropathologie, Im Neuenheimer Feld 221, Heidelberg, 69120 Germany
| | - Alistair M Middleton
- BIOMS/IWR, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, 69120 Germany
| | - Benedikt F Müller
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 221, Heidelberg, Germany
| | - Sofia Depner
- DKFZ Heidelberg, KKE Neuropathologie, Im Neuenheimer Feld 221, Heidelberg, 69120 Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ursula Klingmüller
- DKFZ Heidelberg, KKE Neuropathologie, Im Neuenheimer Feld 221, Heidelberg, 69120 Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 221, Heidelberg, Germany
| | - Franziska Matthäus
- BIOMS/IWR, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, 69120 Germany.,CCTB, University of Würzburg, Campus Hubland Nord 32, Würzburg, 97074 Germany.,FIAS, University of Frankfurt, Ruth-Moufang-Str. 1, Frankfurt am Main, 60438 Germany
| |
Collapse
|
25
|
Azizoglu DB, Cleaver O. Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:598-617. [PMID: 27328421 DOI: 10.1002/wdev.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/23/2016] [Accepted: 04/16/2016] [Indexed: 01/02/2023]
Abstract
Blood vessels form a highly branched, interconnected, and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are 'patterned,' and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. WIREs Dev Biol 2016, 5:598-617. doi: 10.1002/wdev.240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- D Berfin Azizoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Cole BK, Simmers MB, Feaver R, Qualls CW, Collado MS, Berzin E, Figler RA, Pryor AW, Lawson M, Mackey A, Manka D, Wamhoff BR, Turk JR, Blackman BR. An In Vitro Cynomolgus Vascular Surrogate System for Preclinical Drug Assessment and Human Translation. Arterioscler Thromb Vasc Biol 2015; 35:2185-95. [DOI: 10.1161/atvbaha.115.306245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/06/2015] [Indexed: 01/29/2023]
Abstract
Objectives—
The predictive value of animal and in vitro systems for drug development is limited, particularly for nonhuman primate studies as it is difficult to deduce the drug mechanism of action. We describe the development of an in vitro cynomolgus macaque vascular system that reflects the in vivo biology of healthy, atheroprone, or advanced inflammatory cardiovascular disease conditions.
Approach and Results—
We compare the responses of the in vitro human and cynomolgus vascular systems to 4 statins. Although statins exert beneficial pleiotropic effects on the human vasculature, the mechanism of action is difficult to investigate at the tissue level. Using RNA sequencing, we quantified the response to statins and report that most statins significantly increased the expression of genes that promote vascular health while suppressing inflammatory cytokine gene expression. Applying computational pathway analytics, we identified statin-regulated biological themes, independent of cholesterol lowering, that provide mechanisms for off-target effects, including thrombosis, cell cycle regulation, glycogen metabolism, and ethanol degradation.
Conclusions—
The cynomolgus vascular system described herein mimics the baseline and inflammatory regional biology of the human vasculature, including statin responsiveness, and provides mechanistic insight not achievable in vivo.
Collapse
Affiliation(s)
- Banumathi K. Cole
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Michael B. Simmers
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Ryan Feaver
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Charles W. Qualls
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - M. Sol Collado
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Erica Berzin
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Robert A. Figler
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Andrew W. Pryor
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Mark Lawson
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Aaron Mackey
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - David Manka
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Brian R. Wamhoff
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - James R. Turk
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Brett R. Blackman
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| |
Collapse
|
27
|
Reinitz A, DeStefano J, Ye M, Wong AD, Searson PC. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc Res 2015; 99:8-18. [PMID: 25725258 DOI: 10.1016/j.mvr.2015.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/02/2023]
Abstract
Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier.
Collapse
Affiliation(s)
- Adam Reinitz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jackson DeStefano
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Mao Ye
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Andrew D Wong
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Peter C Searson
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
28
|
Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep 2014; 4:4681. [PMID: 24732421 PMCID: PMC3986701 DOI: 10.1038/srep04681] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/14/2014] [Indexed: 11/08/2022] Open
Abstract
The highly specialized endothelial cells in brain capillaries are a key component of the blood-brain barrier, forming a network of tight junctions that almost completely block paracellular transport. In contrast to vascular endothelial cells in other organs, we show that brain microvascular endothelial cells resist elongation in response to curvature and shear stress. Since the tight junction network is defined by endothelial cell morphology, these results suggest that there may be an evolutionary advantage to resisting elongation by minimizing the total length of cell-cell junctions per unit length of vessel.
Collapse
|
29
|
Tahir H, Bona-Casas C, Narracott AJ, Iqbal J, Gunn J, Lawford P, Hoekstra AG. Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling. J R Soc Interface 2014; 11:20140022. [PMID: 24621816 DOI: 10.1098/rsif.2014.0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Re-establishing a functional endothelium following endovascular treatment is an important factor in arresting neointimal proliferation. In this study, both histology (in vivo) and computational simulations (in silico) are used to evaluate neointimal growth patterns within coronary arteries along the axial direction of the stent. Comparison of the growth configurations in vivo and in silico was undertaken to identify candidate mechanisms for endothelial repair. Stent, lumen and neointimal areas were measured from histological sections obtained from eight right coronary stented porcine arteries. Two re-endothelialization scenarios (endothelial cell (EC) random seeding and EC growth from proximal and distal ends) were implemented in silico to evaluate their influence on the morphology of the simulated lesions. Subject to the assumptions made in the current simulations, comparison between in vivo and in silico results suggests that endothelial growth does not occur from the proximal and distal ends alone, but is more consistent with the assumption of a random seeding process. This may occur either from the patches of endothelium which survive following stent implantation or from attachment of circulating endothelial progenitor cells.
Collapse
Affiliation(s)
- Hannan Tahir
- Computational Science, Informatics Institute, University of Amsterdam, , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Salehi-Nik N, Amoabediny G, Pouran B, Tabesh H, Shokrgozar MA, Haghighipour N, Khatibi N, Anisi F, Mottaghy K, Zandieh-Doulabi B. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering. BIOMED RESEARCH INTERNATIONAL 2013; 2013:762132. [PMID: 24000327 PMCID: PMC3755438 DOI: 10.1155/2013/762132] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.
Collapse
Affiliation(s)
- Nasim Salehi-Nik
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Behdad Pouran
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Hadi Tabesh
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Nooshin Haghighipour
- National Cell Bank, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Nahid Khatibi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Fatemeh Anisi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Khosrow Mottaghy
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
31
|
Feaver RE, Gelfand BD, Blackman BR. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 2013; 4:1525. [PMID: 23443553 DOI: 10.1038/ncomms2530] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/21/2013] [Indexed: 01/14/2023] Open
Abstract
Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.
Collapse
Affiliation(s)
- Ryan E Feaver
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
32
|
Endothelial Wound Recovery is Influenced by Treatment with Shear Stress, Wound Direction, and Substrate. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0277-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Lizama CO, Zovein AC. Polarizing pathways: balancing endothelial polarity, permeability, and lumen formation. Exp Cell Res 2013; 319:1247-54. [PMID: 23567183 DOI: 10.1016/j.yexcr.2013.03.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Carlos O Lizama
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
34
|
Udan RS, Culver JC, Dickinson ME. Understanding vascular development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:327-46. [PMID: 23799579 DOI: 10.1002/wdev.91] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasculature of an organism has the daunting task of connecting all the organ systems to nourish tissue and sustain life. This complex network of vessels and associated cells must maintain blood flow, but constantly adapt to acute and chronic changes within tissues. While the vasculature has been studied for over a century, we are just beginning to understand the processes that regulate its formation and how genetic hierarchies are influenced by mechanical and metabolic cues to refine vessel structure and optimize efficiency. As we gain insights into the developmental mechanisms, it is clear that the processes that regulate blood vessel development can also enable the adult to adapt to changes in tissues that can be elicited by exercise, aging, injury, or pathology. Thus, research in vessel development has provided tremendous insights into therapies for vascular diseases and disorders, cancer interventions, wound repair and tissue engineering, and in turn, these models have clearly impacted our understanding of development. Here we provide an overview of the development of the vascular system, highlighting several areas of active investigation and key questions that remain to be answered.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
35
|
Dragt BS, van Agtmaal EL, de Laat B, Voorberg J. Effect of laminar shear stress on the distribution of Weibel-Palade bodies in endothelial cells. Thromb Res 2012; 130:741-5. [PMID: 22964027 DOI: 10.1016/j.thromres.2012.08.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Vascular endothelial cells (ECs) provide a highly interactive barrier between blood and the underlying tissues. It is well established that ECs exposed to laminar flow align in the direction of flow and also arrange their actin stress fibers in a parallel manner in the direction of flow. Also the organization of the microtubule network is altered in response to flow with repositioning of the microtubule-organizing centre (MTOC) in the direction of flow. Weibel-Palade bodies (WPBs) are endothelial cell specific storage organelles that contain a number of important homeostatic and inflammatory components. Dynamics of WPBs are controlled by microtubules and the actin cytoskeleton. OBJECTIVES Here, we monitored flow-induced changes in distribution of WPBs. METHODS ECs were exposed for five days to laminar shear stress of 10 dyne/cm(2). Subsequently we measured the distance of individual WPBs with respect to the centre of the nucleus using Image Pro Plus. RESULTS ECs aligned in the direction of flow under these conditions. After 5 days the MTOC was positioned downstream of the nucleus in the direction of the flow. The number of WPBs per cell was slightly reduced as a result of the application of flow. Unexpectedly, only minor differences in the distribution of WPBs in ECs cultured under laminar flow were observed when compared to that of cells grown under static conditions. CONCLUSIONS Our findings suggest that laminar flow does not induce major changes in number and distribution of WPBs in ECs.
Collapse
Affiliation(s)
- Bieuwke S Dragt
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Rezvan A, Ni CW, Alberts-Grill N, Jo H. Animal, in vitro, and ex vivo models of flow-dependent atherosclerosis: role of oxidative stress. Antioxid Redox Signal 2011; 15:1433-48. [PMID: 20712399 PMCID: PMC3144429 DOI: 10.1089/ars.2010.3365] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is an inflammatory disease preferentially occurring in curved or branched arterial regions, whereas straight parts of the arteries are protected, suggesting a close relationship between flow and atherosclerosis. However, evidence directly linking disturbed flow to atherogenesis is just emerging, thanks to the recent development of suitable animal models. In this article, we review the status of various animal, in vitro, and ex vivo models that have been used to study flow-dependent vascular biology and atherosclerosis. For animal models, naturally flow-disturbed regions such as branched or curved arterial regions as well as surgically created models, including arterio-venous fistulas, vascular grafts, perivascular cuffs, and complete, incomplete, or partial ligation of arteries, are used. Although in vivo models provide the environment needed to mimic the complex pathophysiological processes, in vitro models provide simple conditions that allow the study of isolated factors. Typical in vitro models use cultured endothelial cells exposed to various flow conditions, using devices such as cone-and-plate and parallel-plate chambers. Ex vivo models using isolated vessels have been used to bridge the gap between complex in vivo models and simple in vitro systems. Here, we review these flow models in the context of the role of oxidative stress in flow-dependent inflammation, a critical proatherogenic step, and atherosclerosis.
Collapse
Affiliation(s)
- Amir Rezvan
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
37
|
Gelfand BD, Meller J, Pryor AW, Kahn M, Bortz PDS, Wamhoff BR, Blackman BR. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler Thromb Vasc Biol 2011; 31:1625-33. [PMID: 21527747 DOI: 10.1161/atvbaha.111.227827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The goal of this study was to assess the activity of β-catenin/T-cell-specific transcription factor (TCF) signaling in atherosclerosis development and its regulation of fibronectin in vascular endothelium. METHODS AND RESULTS Histological staining identified preferential nuclear localization of β-catenin in the endothelium of atheroprone aorta before and during lesion development. Transgenic reporter studies revealed that increased levels of TCF transcriptional activity in endothelium correlated anatomically with β-catenin nuclear localization and fibronectin deposition. Exposure of endothelial cells to human-derived atheroprone shear stress induced nuclear localization of β-catenin, transcriptional activation of TCF, and expression of fibronectin. Activation of fibronectin expression required β-catenin, TCF, and the transcriptional coactivator CRBP-binding protein. Finally, we identified platelet endothelial cell adhesion molecule-1 as a critical regulator of constitutive β-catenin and glycogen synthase kinase-3β activities. CONCLUSIONS These data reveal novel constitutive activation of the endothelial β-catenin/TCF signaling pathway in atherosclerosis and regulation of fibronectin through hemodynamic shear stress.
Collapse
Affiliation(s)
- Bradley D Gelfand
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Yin W, Shanmugavelayudam SK, Rubenstein DA. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thromb Res 2011; 127:235-41. [DOI: 10.1016/j.thromres.2010.11.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/22/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
39
|
A steering model of endothelial sheet migration recapitulates monolayer integrity and directed collective migration. Mol Cell Biol 2010; 31:342-50. [PMID: 20974808 DOI: 10.1128/mcb.00800-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells in endothelial cell monolayers maintain a tight barrier between blood and tissue, but it is not well understood how endothelial cells move within monolayers, pass each other, migrate when stimulated with growth factor, and also retain monolayer integrity. Here, we develop a quantitative steering model based on functional classes of genes identified previously in a small interfering RNA (siRNA) screen to explain how cells locally coordinate their movement to maintain monolayer integrity and collectively migrate in response to growth factor. In the model, cells autonomously migrate within the monolayer and turn in response to mechanical cues resulting from adhesive, drag, repulsive, and directed steering interactions with neighboring cells. We show that lateral-drag steering explains the local coordination of cell movement and the maintenance of monolayer integrity by allowing closure of small lesions. We further demonstrate that directional steering of cells at monolayer boundaries, combined with adhesive steering of cells behind, can explain growth factor-triggered collective migration into open space. Together, this model provides a mechanistic explanation for the observed genetic modularity and a conceptual framework for how cells can dynamically maintain sheet integrity and undergo collective directed migration.
Collapse
|
40
|
Wang YH, Yan ZQ, Qi YX, Cheng BB, Wang XD, Zhao D, Shen BR, Jiang ZL. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng 2010; 38:729-37. [PMID: 20069369 DOI: 10.1007/s10439-009-9896-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 12/29/2009] [Indexed: 12/27/2022]
Abstract
Endothelial cells (ECs) line the innermost of the blood vessel wall and are constantly subjected to shear stress imposed by blood flow. ECs were also influenced by the neighboring vascular smooth muscle cells (VSMCs). The bidirectional communication between ECs and VSMCs modulates vascular homeostasis. In this study, the involvement of histone deacetylase 6 (HDAC6) in modulating migration of ECs co-cultured with VSMCs by the normal level of laminar shear stress (NSS) was investigated. ECs was either cultured alone or co-cultured with VSMCs under static conditions or subjected to NSS of 15 dyne/cm2 by using a parallel-plate co-culture flow chamber system. It was demonstrated that both NSS and VSMCs could increase EC migration. The migration level of ECs co-cultured with VSMCs under NSS was not higher than that under the static condition. The process of EC migration regulated by VSMCs and NSS was associated with the increased expression of HDAC6 and low level of acetylated tubulin. The increase in HDAC6 expression was accompanied by a time-dependent decrease in the acetylation of tubulin in ECs co-cultured with VSMCs. Inhibition of the HDAC6 by siRNA or tributyrin, an inhibitor of HDACs, induced a parallel alteration in the migration and the acetylated tubulin of ECs co-cultured with VSMCs. It was observed by immunofluorescence staining that the acetylated tubulin was distributed mostly around the cell nucleus in ECs co-cultured with VSMCs. The results suggest that the NSS may display a protective function on the vascular homeostasis by modulating EC migration to a normal level in a VSMC-dependent manner. This modulation process involves the down-regulation of acetylated tubulin which results from increased HDAC6 activity in ECs.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Feaver RE, Gelfand BD, Wang C, Schwartz MA, Blackman BR. Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res 2010; 106:1703-11. [PMID: 20378855 DOI: 10.1161/circresaha.109.216283] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE The extracellular matrix protein fibronectin (FN) is focally deposited in regions of atherosclerosis, where it contributes to inflammatory signaling. OBJECTIVE To elucidate the mechanism by which FN deposition is regulated by local shear stress patterns, its dependence on platelet-endothelial cell adhesion molecule (PECAM)-1 mechanotransduction and the role this pathway plays in sustaining an atheroprone/proinflammatory phenotype. METHODS AND RESULTS Human endothelial cells were exposed in vitro to atheroprone or atheroprotective shear stress patterns derived from human carotid arteries. Onset of atheroprotective flow induced a transient increase in FN deposition, whereas atheroprone flow caused a steady increase in FN expression and integrin activation over time, leading to a significant and sustained increase in FN deposition relative to atheroprotective conditions. Comparing FN staining in ApoE(-/-) and ApoE(-/-)PECAM(-/-) mice showed that PECAM-1 was essential for FN accumulation in atheroprone regions of the aortic arch. In vitro, small interfering RNA against PECAM-1 blocked the induction of FN and the activation of nuclear factor (NF)-kappaB by atheroprone flow, which was rescued by the addition of exogenous FN. Additionally, blocking NF-kappaB activation attenuated the flow-induced FN expression. Small interfering RNA against FN significantly reduced NF-kappaB activity, which was rescued by the addition of exogenous FN. CONCLUSIONS These results indicate that FN gene expression and assembly into matrix fibrils is induced by atheroprone fluid shear stress. This effect is mediated at least in part by the transcription factor NF-kappaB. Additionally, because FN promotes activation of NF-kappaB, atheroprone shear stress creates a positive feedback to maintain inflammation.
Collapse
Affiliation(s)
- Ryan E Feaver
- Associate Professor, Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
42
|
Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: A basis for shear stress mediated angiogenesis. Nitric Oxide 2010; 22:304-15. [PMID: 20188204 DOI: 10.1016/j.niox.2010.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 01/25/2010] [Accepted: 02/16/2010] [Indexed: 11/23/2022]
Abstract
This study aims to investigate the role of shear stress in cellular remodeling and angiogenesis with relation to nitric oxide (NO). We observed a 2-fold increase in endothelial cell (EC) migration in relation to actin re-arrangements under 15 dyne/cm(2) shear stress. Blocking NO production inhibited the migration and ring formation of ECs by 6-fold and 5-fold, respectively under shear stress. eNOS-siRNA knockdown technique also ascertained a 3-fold reduction in shear stress mediated ring formation. In ovo artery ligation model with a half and complete flow block for 30 min showed a reduction of angiogenesis by 50% and 70%, respectively. External stimulation with NO donor showed a 2-fold recovery in angiogenesis under both half and complete flow block conditions. NO intensity clustering studies by using Diaminofluorescein diacetate (DAF-2DA) probed endothelial monolayer depicted pattern-changes in NO distribution and cluster formation of ECs under shear stress. Immunofluorescence and live cell studies revealed an altered sub-cellular localization pattern of eNOS and phospho-eNOS under shear stress. In conclusion, shear-induced angiogenesis is mediated by nitric oxide dependent EC migration.
Collapse
|
43
|
Abstract
Cobblestone-shaped endothelial cells in confluent monolayers undergo triphasic mechanotaxis in response to steady unidirectional shear stress, but cells that are elongated and aligned on micropatterned substrates do not change their migration behavior in response to either perpendicular or parallel flow. Whether mechanotaxis of micropatterned endothelial cell layers is suppressed by elongated cytoskeletal structure or limited availability of adhesion area remains unknown. In this study, cells were examined on wide (100-200 μm) micropatterned lines after onset of shear stress. Cells in center regions of the lines exhibited cobblestone morphology and triphasic mechanotaxis behavior similar to that in unpatterned monolayers, whereas cells along the edges migrated parallel to the line axis regardless of the flow direction. When scratch wounds were created perpendicular to the micropatterned lines, the cells became less elongated before migrating into the denuded area. In sparsely populated lines oriented perpendicular to the flow direction, elongated cells along the upstream edge migrated parallel to the edge for 7 h before migrating parallel to the shear stress direction, even though adhesion area existed in the downstream direction. Thus, cytoskeletal structure and not available adhesion area serves as the dominant factor in determining whether endothelial mechanotaxis occurs in response to shear stress.
Collapse
|
44
|
Abstract
Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell-cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell-cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell-cell coordination.
Collapse
Affiliation(s)
- Philip Vitorino
- Department of Chemical and Systems Biology, Bio-X Program, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
45
|
Shyu KG. Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci (Lond) 2009; 116:377-389. [DOI: 10.1042/cs20080163] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cells in the cardiovascular system are permanently subjected to mechanical forces due to the pulsatile nature of blood flow and shear stress, created by the beating heart. These haemodynamic forces play an important role in the regulation of vascular development, remodelling, wound healing and atherosclerotic lesion formation. Mechanical stretch can modulate several different cellular functions in VSMCs (vascular smooth muscle cells). These functions include, but are not limited to, cell alignment and differentiation, migration, survival or apoptosis, vascular remodelling, and autocrine and paracrine functions. Laminar shear stress exerts anti-apoptotic, anti-atherosclerotic and antithrombotic effects on ECs (endothelial cells). Mechanical stretch of cardiac myocytes can modulate growth, apoptosis, electric remodelling, alterations in gene expression, and autocrine and paracrine effects. The aim of the present review is primarily to summarize the cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes, emphasizing the molecular mechanisms underlying the regulation. Knowledge of the impact of mechanical stretch on the cardiovascular system is vital to the understanding of the pathogenesis of cardiovascular diseases, and is also crucial to provide new insights into the prevention and therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen-Chang Rd, Taipei 111, Taiwan, and Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
46
|
Abstract
Vascular endothelial cell migration is critical in many physiological processes including wound healing and stent endothelialization. To determine how preexisting cell morphology influences cell migration under fluid shear stress, endothelial cells were preset in an elongated morphology on micropatterned substrates, and unidirectional shear stress was applied either parallel or perpendicular to the cell elongation axis. On micropatterned 20-microm lines, cells exhibited an elongated morphology with stress fibers and focal adhesion sites aligned parallel to the lines. On 115-microm lines, cell morphology varied as a function of distance from the line edge. Unidirectional shear stress caused unpatterned cells in a confluent monolayer to exhibit triphasic mechanotaxis behavior. During the first 3 h, cell migration speed increased in a direction antiparallel to the shear stress direction. Migration speed then slowed and direction became spatially heterogeneous. Starting 11-12 h after the onset of shear stress, the unpatterned cells migrated primarily in the downstream direction, and migration speed increased significantly. In contrast, mechanotaxis was suppressed after the onset of shear stress in cells on micropatterned lines during the same time period, for the cases of both parallel and perpendicular flow. The directional persistence time was much longer for cells on the micropatterned lines, and it decreased significantly after flow onset. Migration trajectories were highly correlated among micropatterned cells within a three-cell neighborhood, and shear stress disrupted this spatially correlated migration behavior. Thus, presetting structural morphology may interfere with mechanisms of sensing local physical cues, which are critical for establishing mechanotaxis in response to hemodynamic shear stress.
Collapse
|
47
|
Girdhar G, Bluestein D. Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert Rev Med Devices 2008; 5:167-81. [PMID: 18331179 PMCID: PMC2865252 DOI: 10.1586/17434440.5.2.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Altered and highly dynamic shear stress conditions have been implicated in endothelial dysfunction leading to cardiovascular disease, and in thromboembolic complications in prosthetic cardiovascular devices. In addition to vascular damage, the pathological flow patterns characterizing cardiovascular pathologies and blood flow in prosthetic devices induce shear activation and damage to blood constituents. Investigation of the specific and accentuated effects of such flow-induced perturbations on individual cell-types in vitro is critical for the optimization of device design, whereby specific design modifications can be made to minimize such perturbations. Such effects are also critical in understanding the development of cardiovascular disease. This review addresses limitations to replicate such dynamic flow conditions in vitro and also introduces the idea of modified in vitro devices, one of which is developed in the authors' laboratory, with dynamic capabilities to investigate the aforementioned effects in greater detail.
Collapse
Affiliation(s)
- Gaurav Girdhar
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-8181, USA.
| | | |
Collapse
|