1
|
Xu M, Chen Y, Xi X, Jiang C, Zhang Q, Wu T, Chu J, Dai G, Bai Y, Yu Q, Zou J, Ju W. In vitro inhibitory effects of components from Salvia miltiorrhiza on catalytic activity of three human AA ω-hydroxylases. Drug Metab Pharmacokinet 2022; 43:100402. [DOI: 10.1016/j.dmpk.2021.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/03/2022]
|
2
|
Yi X, Zhou Q, Qing T, Ming B, Lin J, Li J, Lin J. 20-hydroxyeiscosatetraenoic acid may be as a predictor of malignant middle cerebral artery infarction in patients with massive middle cerebral artery infarction. BMC Neurol 2021; 21:437. [PMID: 34753429 PMCID: PMC8576932 DOI: 10.1186/s12883-021-02456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Early identification of massive middle cerebral artery infarction (MCAI) at risk for malignant MCAI (m-MCAI) may be useful in selecting patients for aggressive therapies. The aim of this study was to determine whether CYP metabolites may help to predict impending m-MCAI. Methods This is a prospective, two-center observational study in 256 patients with acute massive MCAI. Plasma levels of 20-hydroxyeicosatetraenoic acid (20-HETE), epoxyeicosatrienoic acids, and dihydroxyeicosatrienoic acids were measured at admission. Brain computed tomography (CT) was performed at admission and repeated between day 3 and 7, or earlier if there was neurological deterioration. The primary outcome was m-MCAI. The m-MCAI was diagnosed when follow-up brain CT detected a more than two-thirds space-occupying MCAI with midline shift, compression of the basal cisterns, and neurological worsening. Results In total of 256 enrolled patients, 77 (30.1%) patients developed m-MCAI. Among the 77 patients with m-MCAI, 60 (77.9%) patients died during 3 months of stroke onset. 20-HETE level on admission was significantly higher in patients with m-MCAI than those without m-MCAI. There was an increase in the risk of m-MCAI with increase of 20-HETE levels. The third and fourth quartiles of 20-HETE levels were independent predictors of m-MCAI (OR: 2.86; 95% CI: 1.16 – 6.68; P = 0.025, and OR: 4.23; 95% CI: 1.35 – 8.26; P = 0.002, respectively). Conclusions Incidence of m-MCAI was high in patients with massive MCAI and the prognosis of m-MCAI is very poor. Elevated plasma 20-HETE may be as a predictor for m-MCAI in acute massive MCAI, and it might useful in clinical practice in therapeutic decision making.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Ting Qing
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Bing Ming
- Department of Radiology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Jing Lin
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Jie Li
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Jie Lin
- Department of PET/CT, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Geraghty JR, Davis JL, Testai FD. Neuroinflammation and Microvascular Dysfunction After Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocrit Care 2019; 31:373-389. [PMID: 31012056 PMCID: PMC6759381 DOI: 10.1007/s12028-019-00710-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aneurysmal subarachnoid hemorrhage has a high mortality rate and, for those who survive this devastating injury, can lead to lifelong impairment. Clinical trials have demonstrated that cerebral vasospasm of larger extraparenchymal vessels is not the sole contributor to neurological outcome. Recently, the focus of intense investigation has turned to mechanisms of early brain injury that may play a larger role in outcome, including neuroinflammation and microvascular dysfunction. Extravasated blood after aneurysm rupture results in a robust inflammatory response characterized by activation of microglia, upregulation of cellular adhesion molecules, recruitment of peripheral immune cells, as well as impaired neurovascular coupling, disruption of the blood-brain barrier, and imbalances in endogenous vasodilators and vasoconstrictors. Each of these phenomena is either directly or indirectly associated with neuronal death and brain injury. Here, we review recent studies investigating these various mechanisms in experimental models of subarachnoid hemorrhage with special emphasis on neuroinflammation and its effect on microvascular dysfunction. We discuss the various therapeutic targets that have risen from these mechanistic studies and suggest the utility of a multi-targeted approach to preventing delayed injury and improving outcome after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA.
- Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.
| | - Joseph L Davis
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| |
Collapse
|
4
|
Shu S, Zhang Z, Spicer D, Kulikowicz E, Hu K, Babapoor-Farrokhran S, Kannan S, Koehler RC, Robertson CL. Administration of a 20-Hydroxyeicosatetraenoic Acid Synthesis Inhibitor Improves Outcome in a Rat Model of Pediatric Traumatic Brain Injury. Dev Neurosci 2019; 41:166-176. [PMID: 31553983 DOI: 10.1159/000500895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022] Open
Abstract
The arachidonic acid pathway metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia/reperfusion brain injury. Inhibition of 20-HETE formation can protect the developing brain from global ischemia. Here, we examined whether treatment with the 20-HETE synthesis inhibitor N-hydroxy-N-4-butyl-2-methylphenylformamidine (HET0016) can protect the immature brain from traumatic brain injury (TBI). Male rats at postnatal day 9-10 underwent controlled cortical impact followed by intraperitoneal injection with vehicle or HET0016 (1 mg/kg, 5 min and 3 h post-injury). HET0016 decreased the lesion volume by over 50% at 3 days of recovery, and this effect persisted at 30 days as the brain matured. HET0016 decreased peri-lesion gene expression of proinflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β]) at 1 day and increased reparative cytokine (IL-4, IL-10) expression at 3 days. It also partially preserved microglial ramified processes, consistent with less activation. HET0016 decreased contralateral hindlimb foot faults and improved outcome on the novel object recognition memory task 30 days after TBI. In cultured BV2 microglia, HET0016 attenuated the lipopolysaccharide-evoked increase in release of TNF-α. Our data show that HET0016 improves acute and long-term histologic and functional outcomes, in association with an attenuated neuroinflammatory response after contusion of an immature rat brain.
Collapse
Affiliation(s)
- Shiyu Shu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Dawn Spicer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Ke Hu
- Department of Ophthalmology, Retina Division, Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Savalan Babapoor-Farrokhran
- Department of Ophthalmology, Retina Division, Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA, .,Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
5
|
Affiliation(s)
- Raymond C Koehler
- From the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
6
|
Miller TM, Poloyac SM, Anderson KB, Waddell BL, Messamore E, Yao JK. A rapid UPLC-MS/MS assay for eicosanoids in human plasma: Application to evaluate niacin responsivity. Prostaglandins Leukot Essent Fatty Acids 2018; 136:153-159. [PMID: 28111064 DOI: 10.1016/j.plefa.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
A rapid and sensitive method using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to simultaneously quantify hydroxyeicosatetraenoic (HETE), dihydroxyeicosatrienoic (DiHETrE), epoxyeicosatrienoic acid (EET), and prostaglandin metabolites of arachidonic acid in human plasma. Sample preparation consisted of solid phase extraction with Oasis HLB (30mg) cartridges for all metabolites. Separation of HETEs, EETs, and DiHETrEs was achieved on an Acquity UPLC BEH C18, 1.7µm (100×2.1mm) reversed-phase column (Waters Corp, Millford, MA) with negative electrospray ionization mass spectrometric detection. A second injection of the same extracted sample allowed for separation and assessment of prostaglandin metabolites under optimized UPLC-MS/MS conditions. Additionally, the endogenous levels of these metabolites in five different matrices were determined in order to select the optimal matrix for assay development. Human serum albumin was shown to have the least amount of endogenous metabolites, a recovery efficiency of 79-100% and a matrix effect of 71 - 100%. Linear calibration curves ranging from 0.416 to 66.67ng/ml were validated. Inter-assay and intra-assay variance was less than 15% at most concentrations. This method was successfully applied to quantify metabolite levels in plasma samples of healthy control subjects receiving niacin administration to evaluate the association between niacin administration and eicosanoid plasma level response.
Collapse
Affiliation(s)
- Tricia M Miller
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15216, United States
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15216, United States
| | - Kacey B Anderson
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15216, United States
| | - Brooke L Waddell
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15216, United States
| | - Erik Messamore
- Department of Psychiatry, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15216, United States; Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
7
|
Liu X, Davis CM, Alkayed NJ. P450 Eicosanoids and Reactive Oxygen Species Interplay in Brain Injury and Neuroprotection. Antioxid Redox Signal 2018; 28:987-1007. [PMID: 28298143 PMCID: PMC5849284 DOI: 10.1089/ars.2017.7056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Eicosanoids are endogenous lipid mediators that play important roles in brain function and disease. Acute brain injury such as that which occurs in stroke and traumatic brain injury increases the formation of eicosanoids, which, in turn, exacerbate or diminish injury. In chronic neurodegenerative diseases such as Alzheimer's disease and vascular dementia (VD), eicosanoid synthetic and metabolizing enzymes are altered, disrupting the balance between neuroprotective and neurotoxic eicosanoids. Recent Advances: Human and experimental studies have established the opposing roles of hydroxy- and epoxyeicosanoids and their potential utility as diagnostic biomarkers and therapeutic targets in neural injury. Critical Issues: A gap in knowledge remains in understanding the cellular and molecular mechanisms underlying the neurovascular actions of specific eicosanoids, such as specific isomers of epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic acids (HETEs). Future Directions: EETs and HETEs exert their actions on brain cells by targeting multiple mechanisms, which include surface G-protein coupled receptors. The identification of high-affinity receptors for EETs and HETEs and their cellular localization in the brain will be a breakthrough in our understanding of these eicosanoids as mediators of cell-cell communications and contributors to brain development, function, and disease. Antioxid. Redox Signal. 28, 987-1007.
Collapse
Affiliation(s)
- Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
8
|
Lidington D, Kroetsch JT, Bolz SS. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage. J Cereb Blood Flow Metab 2018; 38:17-37. [PMID: 29135346 PMCID: PMC5757446 DOI: 10.1177/0271678x17742548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating cerebral event that kills or debilitates the majority of those afflicted. The blood that spills into the subarachnoid space stimulates profound cerebral artery vasoconstriction and consequently, cerebral ischemia. Thus, once the initial bleeding in SAH is appropriately managed, the clinical focus shifts to maintaining/improving cerebral perfusion. However, current therapeutic interventions largely fail to improve clinical outcome, because they do not effectively restore normal cerebral artery function. This review discusses emerging evidence that perturbed cerebrovascular "myogenic reactivity," a crucial microvascular process that potently dictates cerebral perfusion, is the critical element underlying cerebral ischemia in SAH. In fact, the myogenic mechanism could be the reason why many therapeutic interventions, including "Triple H" therapy, fail to deliver benefit to patients. Understanding the molecular basis for myogenic reactivity changes in SAH holds the key to develop more effective therapeutic interventions; indeed, promising recent advancements fuel optimism that vascular dysfunction in SAH can be corrected to improve outcome.
Collapse
Affiliation(s)
- Darcy Lidington
- 1 Department of Physiology, University of Toronto, Toronto, Canada.,2 Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Jeffrey T Kroetsch
- 1 Department of Physiology, University of Toronto, Toronto, Canada.,2 Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Steffen-Sebastian Bolz
- 1 Department of Physiology, University of Toronto, Toronto, Canada.,2 Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada.,3 Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Abstract
Cytochrome P450 eicosanoids play important roles in brain function and disease through their complementary actions on cell-cell communications within the neurovascular unit (NVU) and mechanisms of brain injury. Epoxy- and hydroxyeicosanoids, respectively formed by cytochrome P450 epoxygenases and ω-hydroxylases, play opposing roles in cerebrovascular function and in pathological processes underlying neural injury, including ischemia, neuroinflammation and oxidative injury. P450 eicosanoids also contribute to cerebrovascular disease risk factors, including hypertension and diabetes. We summarize studies investigating the roles P450 eicosanoids in cerebrovascular physiology and disease to highlight the existing balance between these important lipid signaling molecules, as well as their roles in maintaining neurovascular homeostasis and in acute and chronic neurovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
10
|
Hua C, Zhao G. Adult posthaemorrhagic hydrocephalus animal models. J Neurol Sci 2017; 379:39-43. [PMID: 28716276 DOI: 10.1016/j.jns.2017.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022]
Abstract
Posthaemorrhagic hydrocephalus (PHH) is often associated with high morbidity and mortality and serves as an important clinical predictor of poor outcomes after intracranial haemorrhage (ICH). We are lack of effective medical intervention methods to improve functional outcomes in patients with PHH because little is still known about the mechanisms of PHH pathogenesis. Animal models play a key role in the study of PHH. Developed a suitable animal model that will help us to be better to find preventative strategies and improve the prognosis of patients with PHH. The purpose of this review is to summarize the body of knowledge gained from animal studies.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China.
| | - Gang Zhao
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
12
|
Liao D, Yi X, Zhang B, Zhou Q, Lin J. Interaction Between CYP4F2 rs2108622 and CPY4A11 rs9333025 Variants Is Significantly Correlated with Susceptibility to Ischemic Stroke and 20-Hydroxyeicosatetraenoic Acid Level. Genet Test Mol Biomarkers 2016; 20:223-8. [PMID: 26959478 DOI: 10.1089/gtmb.2015.0205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS To investigate the association of four variants of two CYP ω-hydroxylase genes and 20-hydroxyeicosatetraenoic acid (HETE) levels with ischemic stroke (IS) and whether gene-gene interactions between these genes increase the risk of IS. METHODS Three hundred ninety-six patients with IS and 378 controls were genotyped for rs2269231, rs9333025, rs2108622, and rs3093135. Gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) methods. The 20-HETE levels was measured in 218 IS patients and 126 controls. RESULTS The frequency of the GG genotype of rs9333025 was significantly higher in IS patients than in controls (p < 0.001). The GMDR analysis showed a significant gene-gene interaction between rs9333025 and rs2108622 (p = 0.0116). This gene-gene interaction predicted a significantly higher risk of IS in individuals carrying the genotypes of rs9333025 GG and rs2108622 GG (odds ratio = 1.92, 95% confidence interval = 1.12-4.26, p = 0.007). The plasma levels of 20-HETE were significantly higher in IS patients than in controls, and IS patients carrying the genotype combination of rs9333025 GG and rs2108622 GG had higher 20-HETE levels than IS patients with other combinations of the two variants. CONCLUSION CYP4A1l rs9333025 GG and CYP4F2 rs2108622 GG two-loci interaction significantly increases the risk for IS and an elevated 20-HETE level.
Collapse
Affiliation(s)
- Duanxiu Liao
- 1 Department of Neurology, People's Hospital of Deyang City , Deyang, China
| | - Xingyang Yi
- 1 Department of Neurology, People's Hospital of Deyang City , Deyang, China
| | - Biao Zhang
- 1 Department of Neurology, People's Hospital of Deyang City , Deyang, China
| | - Qiang Zhou
- 2 Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College , Zhejiang, China
| | - Jing Lin
- 2 Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College , Zhejiang, China
| |
Collapse
|
13
|
Zhang B, Yi X, Wang C, Liao D, Lin J, Chi L. Cytochrome 4A11 Genetic Polymorphisms Increase Susceptibility to Ischemic Stroke and Associate with Atherothrombotic Events After Stroke in Chinese. Genet Test Mol Biomarkers 2015; 19:235-41. [PMID: 25734770 DOI: 10.1089/gtmb.2014.0305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To evaluate the associations between four single-nucleotide polymorphisms (SNPs) in CYP4A11 and CYP4F2 and ischemic stroke (IS), and between these variants and atherothrombotic events after stroke. IS patients (n=396) and controls (n=378) were genotyped for two CYP4A11 SNPs (rs2269231 and rs9333025) and two CYP4F2 SNPs (rs2108622 and rs3093135). Patients were followed up for 12 months after the stroke for the atherothrombotic events. The frequency of the rs9333025 GG genotype was significantly higher in IS patients than in controls. Logistic regression analysis showed that the presence of rs9333025 GG in patients was associated with significantly higher risk of IS. Cox regression analysis revealed that the rs9333025 GG genotype was an independent risk factor for atherothrombotic events after stroke. The rs9333025 GG genotype increases patients' susceptibility to IS and is associated with high frequencies of atherothrombotic events in stroke patients.
Collapse
Affiliation(s)
- Biao Zhang
- 1 Department of Neurology, People's Hospital of Deyang City , Deyang, Sichuan, China
| | | | | | | | | | | |
Collapse
|
14
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
15
|
Güresir E, Vasiliadis N, Dias S, Raab P, Seifert V, Vatter H. The effect of common carotid artery occlusion on delayed brain tissue damage in the rat double subarachnoid hemorrhage model. Acta Neurochir (Wien) 2012; 154:11-9. [PMID: 21986833 DOI: 10.1007/s00701-011-1191-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Delayed ischemic brain tissue damage in the time course of cerebral vasospasm in the rat double-subarachnoid hemorrhage (SAH) model has been described before. However, in order to enhance hemodynamic insufficiency during cerebral vasospasm (CVS), we performed-in a modification to the standard double-hemorrhage model-an additional unilateral common carotid artery occlusion (CCAO), expecting aggravation of brain-tissue damage in areas particularly sensitive to hypoxia. METHODS CVS was induced by injection of 0.25 ml autologous blood twice in the cisterna magna of Sprague-Dawley rats with and without unilateral CCAO. The animals were examined on days 2, 3, 4 and 5, and compared with the sham-operated control group without SAH. The functional deficits were graded between 0 and 3. Perfusion weighted imaging (PWI) at 3 Tesla magnetic resonance (MR) tomography was performed to assess cerebral blood flow (CBF). The brains were fixed, stained and evaluated for histological changes. RESULTS On day 5, the neurological state was significantly worse in rats with SAH. The relative CBF/muscle blood ratio was significantly decreased by SAH and lowest in rats with CCAO and SAH (4.5 ± 1.1 vs 2.7 ± 0.6) compared with sham (7.9 ± 1.5; p < 0.001). Basilar artery (BA) diameter was 79 ± 5 μm (SAH) vs 147 ± 4 μm (sham, p < 0.001). Neuronal cell count in the hippocampal areas CA1-CA4 was significantly reduced by SAH on day 5 (p < 0.001) and lowest in rats with SAH and CCAO. CONCLUSIONS CCAO leads to an aggravation of CVS-related delayed brain tissue damage in the modified rat double-SAH model.
Collapse
Affiliation(s)
- Erdem Güresir
- Department of Neurosurgery, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
|
18
|
Crago EA, Thampatty BP, Sherwood PR, Kuo CWJ, Bender C, Balzer J, Horowitz M, Poloyac SM. Cerebrospinal fluid 20-HETE is associated with delayed cerebral ischemia and poor outcomes after aneurysmal subarachnoid hemorrhage. Stroke 2011; 42:1872-7. [PMID: 21617146 DOI: 10.1161/strokeaha.110.605816] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Delayed cerebral ischemia (DCI) is a major complication after aneurysmal subarachnoid hemorrhage (aSAH); it is manifested by changes in cerebral blood flow accompanied by neurological decline, and it results in long-term functional and neuropsychological impairment. Preclinical evidence has demonstrated that the arachidonic acid metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), affects cerebral microvascular tone and cerebral blood flow after aSAH. The purpose of this study was to determine whether cerebrospinal fluid 20-HETE levels were associated with DCI and long-term neuropsychological outcomes in aSAH patients. METHODS Cerebrospinal fluid samples were collected twice daily through 14 days after hemorrhage on 108 acute, adult, aSAH patients. Samples were analyzed for 20-HETE via HPLC MSQ single quadrupole mass spectrometry. DCI was defined as the presence of impaired cerebral blood flow (angiographic vasospasm, elevated transcranial Dopplers, abnormal computed tomography or magnetic resonance perfusion scans) accompanied by neurological deterioration. Outcomes, including death and neuropsychological testing, were completed at 3 months after hemorrhage. RESULTS Detectable 20-HETE levels were observed in 31% of patient samples and were associated with severity of hemorrhage (Hunt & Hess [HH], P=0.04; Fisher, P=0.05). Detection of 20-HETE was not associated with angiographic vasospasm (P=0.34); however, detectable 20-HETE was significantly associated with DCI (P=0.016). Our data also suggest that detectable 20-HETE was associated with decreased performance in 5 neuropsychological domains. CONCLUSIONS These results provide the first clinical evidence that cerebrospinal fluid 20-HETE concentrations are associated with DCI and poor outcomes, and this provides impetus for future studies to elucidate the clinical utility of inhibiting 20-HETE formation as a novel therapeutic intervention in patients with aSAH.
Collapse
Affiliation(s)
- Elizabeth A Crago
- School of Pharmacy, University of Pittsburgh, 807 Salk Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Miller TM, Donnelly MK, Crago EA, Roman DM, Sherwood PR, Horowitz MB, Poloyac SM. Rapid, simultaneous quantitation of mono and dioxygenated metabolites of arachidonic acid in human CSF and rat brain. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3991-4000. [PMID: 19892608 DOI: 10.1016/j.jchromb.2009.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 11/16/2022]
Abstract
Currently, there are few biomarkers to predict the risk of symptomatic cerebral vasospasm (SV) in subarachnoid hemorrhage (SAH) patients. Mono and dioxygenated arachidonic acid metabolites, involved in the pathogenesis of ischemic injury, may serve as indicators of SV. This study developed a quantitative UPLC-MS/MS method to simultaneously measure hydroxyeicosatetraenoic acid (HETE), dihydroxyeicosatrienoic acid (DiHETrE), and epoxyeicosatrienoic acid (EET) metabolites of arachidonic acid in cerebrospinal fluid (CSF) samples of SAH patients. Additionally, we determined the recovery of these metabolites from polyvinylchloride (PVC) bags used for CSF collection. Linear calibration curves ranging from 0.208 to 33.3 ng/ml were validated. The inter-day and intra-day variance was less than 15% at most concentrations with extraction efficiency greater than 73%. The matrix did not affect the reproducibility and reliability of the assay. In CSF samples, peak concentrations of 8,9-DiHETrE, 20-HETE, 15-HETE, and 12-HETE ranged from 0.293 to 24.9 ng/ml. In rat brain cortical tissue samples, concentrations of 20-, 15-, 12-HETE, 8,9-EET, and 14,15-, 11,12-DiHETrE ranged from 0.57 to 23.99 pmol/g wet tissue. In rat cortical microsomal incubates, all 10 metabolites were measured with formation rates ranging from 0.03 to 7.77 pmol/mg/min. Furthermore, 12-HETE and EET metabolites were significantly altered by contact with PVC bags at all time points evaluated. These data demonstrate that the simultaneous measurement of these compounds in human CSF and rat brain can be achieved with a UPLC-MS/MS system and that this method is necessary for evaluation of these metabolites as potential quantitative biomarkers in future clinical trials.
Collapse
Affiliation(s)
- Tricia M Miller
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 2009; 29:629-39. [PMID: 19107134 PMCID: PMC2821901 DOI: 10.1038/jcbfm.2008.156] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the effects of an inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis, N-(3-chloro-4-morpholin-4-yl)phenyl-N'-hydroxyimido formamide (TS-011), on infarct volume, volume at risk, cerebral blood flow (CBF), and levels of cytochrome P450 (CYP450) eicosanoids in the brain after transient occlusion of the middle cerebral artery (t-MCAO) in rats. TS-011 (0.1 mg/kg, iv) reduced cortical infarct volume by approximately 70% and total infarct volume by 55%. TS-011 had no effect on the volume at risk or CBF during or up to 30 mins after the ischemic period. TS-011 reduced the delayed fall in CBF seen 2 h after reperfusion. The levels of CYP450 eicosanoids were similar in the ischemic and contralateral hemispheres after t-MCAO. TS-011 reduced 20-HETE levels in cerebral tissue by 80% but had no effect on the levels of EETs. Administration of another 20-HETE inhibitor, HET0016 (0.01 to 1.0 mg/kg, iv) or a 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (10 mg/kg, iv) also reduced infarct size. These results indicate that inhibitors of the synthesis or vasoconstrictor effects of 20-HETE reduce infarct size in rats after cerebral ischemia. The effects of TS-011 are not associated with changes in the area at risk or CBF and may be because of a potential protective effect in neurons subjected to ischemic stress.
Collapse
|
21
|
Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol 2009; 156:545-62. [PMID: 19187341 DOI: 10.1111/j.1476-5381.2009.00052.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The three subtypes of calcium-activated potassium channels (K(Ca)) of large, intermediate and small conductance (BK(Ca), IK(Ca) and SK(Ca)) are present in the vascular wall. In healthy arteries, BK(Ca) channels are preferentially expressed in vascular smooth muscle cells, while IK(Ca) and SK(Ca) are preferentially located in endothelial cells. The activation of endothelial IK(Ca) and SK(Ca) contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na(+)/K(+)-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H(2)O(2)) hyperpolarize and relax the underlying smooth muscle cells by activating BK(Ca). In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BK(Ca). Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle K(Ca) could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IK(Ca) may prevent restenosis and that of BK(Ca) channels sepsis-dependent hypotension.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France.
| |
Collapse
|
22
|
Wakade C, King MD, Laird MD, Alleyne CH, Dhandapani KM. Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal 2009; 11:35-45. [PMID: 18752423 DOI: 10.1089/ars.2008.2056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebral vasospasm is a major cause of death and disability after subarachnoid hemorrhage (SAH); however, clinical therapies to limit the development of cerebral vasospasm are lacking. Although the causative factors underlying the development of cerebral vasospasm are poorly understood, oxidative stress contributes to disease progression. In the present study, curcumin (150 or 300 mg/kg) protected against the development of cerebral vasospasm and limited secondary cerebral infarction after SAH in mice. The protective effect of curcumin was associated with a significant attenuation of inflammatory gene expression and lipid peroxidation within the cerebral cortex and the middle cerebral artery. Despite the ability of curcumin to limit the development of cerebral vasospasm and secondary infarction, behavioral outcome was not improved, indicating a dissociation between cerebral vasospasm and neurologic outcome. Together, these data indicate a novel role for curcumin as a possible adjunct therapy after SAH, both to prevent the development of cerebral vasospasm and to reduce oxidative brain injury after secondary infarction.
Collapse
Affiliation(s)
- Chandramohan Wakade
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
23
|
Mu Y, Klamerus MM, Miller TM, Rohan LC, Graham SH, Poloyac SM. Intravenous formulation of N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) for inhibition of rat brain 20-hydroxyeicosatetraenoic acid formation. Drug Metab Dispos 2008; 36:2324-30. [PMID: 18725506 PMCID: PMC2659781 DOI: 10.1124/dmd.108.023150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) is a potent inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation by specific cytochrome P450 isoforms. Previous studies have demonstrated that administration of HET0016 inhibits brain formation of 20-HETE and reduces brain damage in a rat model of thromboembolic stroke. Delineation of the dose, concentration, and neuroprotective effect relationship of HET0016 has been hampered by the relative insolubility of HET0016 in aqueous solutions and the lack of information concerning the mechanism and duration of HET0016 inhibition of brain 20-HETE formation. Therefore, it was the purpose of this study to develop a water-soluble formulation of HET0016 suitable for intravenous (i.v.) administration and to determine the time course and mechanism of brain 20-HETE inhibition after in vivo dosing. In this study we report that HET0016 is a noncompetitive inhibitor of rat brain 20-HETE formation, which demonstrates a tissue concentration range for brain inhibition. In addition, we demonstrate that complexation of HET0016 with hydroxypropyl-beta-cyclodextrin results in increased aqueous solubility of HET0016 from 34.2 +/- 31.2 to 452.7 +/- 63.3 microg/ml. Administration of the complex as a single HET0016 i.v. dose (1 mg/kg) rapidly reduced rat brain 20-HETE concentrations from 289 to 91 pmol/g. Collectively, these data demonstrate that the i.v. formulation of HET0016 rapidly penetrates the rat brain and significantly inhibits 20-HETE tissue concentrations. These results will enable future studies to determine biopharmaceutics of HET0016 for inhibition of 20-HETE after cerebral ischemia.
Collapse
Affiliation(s)
- Ying Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
24
|
Dunn KM, Renic M, Flasch AK, Harder DR, Falck J, Roman RJ. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2008; 295:H2455-65. [PMID: 18952718 DOI: 10.1152/ajpheart.00512.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is a major risk factor for stroke, but the factors that contribute to the increased incidence and severity of ischemic stroke in hypertension remain to be determined. 20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to be a potent constrictor of cerebral arteries, and inhibitors of 20-HETE formation reduce infarct size following cerebral ischemia. The present study examined whether elevated production of 20-HETE in the cerebral vasculature could contribute to the larger infarct size previously reported after transient middle cerebral artery occlusion (MCAO) in hypertensive strains of rat [spontaneously hypertensive rat (SHR) and spontaneously hypertensive stroke-prone rat (SHRSP)]. The synthesis of 20-HETE in the cerebral vasculature of SHRSP measured by liquid chromatography-tandem mass spectrometry was about twice that seen in Wistar-Kyoto (WKY) rats. This was associated with the elevated expression of cytochrome P-450 (CYP)4A protein and CYP4A1 and CYP4A8 mRNA. Infarct volume after transient MCAO was greater in SHRSP (36+/-4% of hemisphere volume) than in SHR (19+/-5%) or WKY rats (5+/-2%). This was associated with a significantly greater reduction in regional cerebral blood flow (rCBF) in SHR and SHRSP than in WKY rats during the ischemic period (78% vs. 62%). In WKY rats, rCBF returned to 75% of control following reperfusion. In contrast, SHR and SHRSP exhibited a large (166+/-18% of baseline) and sustained (1 h) postischemic hyperperfusion. Acute blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016; 1 mg/kg) reduced infarct size by 59% in SHR and 87% in SHRSP. HET0016 had no effect on the fall in rCBF during MCAO but eliminated the hyperemic response. HET0016 also attenuated vascular O2*- formation and restored endothelium-dependent dilation in cerebral arteries of SHRSP. These results indicate the production of 20-HETE is elevated in the cerebral vasculature of SHRSP and contributes to oxidative stress, endothelial dysfunction, and the enhanced sensitivity to ischemic stroke in this hypertensive model.
Collapse
Affiliation(s)
- Kathryn M Dunn
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nilakantan V, Maenpaa C, Jia G, Roman RJ, Park F. 20-HETE-mediated cytotoxicity and apoptosis in ischemic kidney epithelial cells. Am J Physiol Renal Physiol 2008; 294:F562-70. [PMID: 18171997 DOI: 10.1152/ajprenal.00387.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK(1) cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK(1) cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release (P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 microM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 microM) also inhibited cytotoxicity significantly (P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase (P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells (P < 0.05). This was abolished in the presence of HET-0016 (P < 0.05) or MnTMPyP (P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.
Collapse
Affiliation(s)
- Vani Nilakantan
- Department of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
26
|
Hsu MH, Savas U, Griffin KJ, Johnson EF. Human cytochrome p450 family 4 enzymes: function, genetic variation and regulation. Drug Metab Rev 2007; 39:515-38. [PMID: 17786636 DOI: 10.1080/03602530701468573] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The microsomal cytochrome P450 (CYP) family 4 monooxygenases are the major fatty acid omega-hydroxylases. These enzymes remove excess free fatty acids to prevent lipotoxicity, catabolize leukotrienes and prostanoids, and also produce bioactive metabolites from arachidonic acid omega-hydroxylation. In addition to endogenous substrates, recent evidence indicates that CYP4 monooxygenases can also metabolize xenobiotics, including therapeutic drugs. This review focuses on human CYP4 enzymes and updates current knowledge concerning catalytic activity profiles, genetic variation and regulation of expression. Comparative differences between the human and rodent CYP4 enzymes regarding catalytic function and conditional expression are also discussed.
Collapse
Affiliation(s)
- Mei-Hui Hsu
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
27
|
Abstract
During the last decade, the presumed etiology of glaucoma has moved from a pure pressure concept to a combined mechanical and vascular theory. Evidence of a localized vascular insufficiency leading to perfusion deficits of ocular structures, including the optic nerve head, the retina, the choroid, and the retrobulbar vessels, is now clear. This article evaluates the role of vasospasm as the primary cause of such a vascular failure. The role of both ocular and systemic vasospasms and their clinical correlations are discussed. At a cellular level, the function of the modulating role of the vascular endothelium is reviewed. Evidence of abnormalities of the vascular endothelium and its vasoactive peptides as a conduit for vasospasm is mounting. Herein lies exciting prospects for potential pharmacologic targets in future glaucoma management.
Collapse
|
28
|
Roman RJ, Hoagland KM, Lopez B, Kwitek AE, Garrett MR, Rapp JP, Lazar J, Jacob HJ, Sarkis A. Characterization of blood pressure and renal function in chromosome 5 congenic strains of Dahl S rats. Am J Physiol Renal Physiol 2006; 290:F1463-71. [PMID: 16396943 DOI: 10.1152/ajprenal.00360.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined whether transfer of overlapping regions of chromosome 5 that include (4A+) or exclude the cytochrome P-450 (CYP) 4A genes from the Lewis rat alters the renal production of 20-hydroxyeicosatetraenoic acid (20-HETE) and/or the development of hypertension in congenic strains of Dahl salt-sensitive (S) rats. The expression of CYP4A protein and the production of 20-HETE in the renal outer medulla was greater in the 4A+congenic strain than the levels seen in S rats or in overlapping control congenic strains that exclude the CYP4A region. Mean arterial pressure (MAP) rose from 122 ± 2 to 190 ± 7 mmHg in S rats and from 119 ± 2 and 123 ± 2 to 189 ± 7 and 187 ± 3 mmHg in the two control congenic strains fed an 8.0% NaCl diet for 3 wk. In contrast, MAP only increased from 112 ± 2 to 150 ± 5 mmHg in the 4A+congenic strain. Chronic blockade of the formation of 20-HETE with N-(3-chloro-4-morpholin-4-yl) phenyl- N′-hydroxyimido formamide (TS-011; 1 mg/kg bid) restored the salt-sensitive phenotype in the 4A+congenic strain and MAP rose to 181 ± 6 mmHg after an 8.0% NaCl dietary challenge. TS-011 had no effect on the development of hypertension in S rats or the two control congenic strains. The pressure-natriuretic and diuretic responses were fivefold greater in the 4A+congenic strain than in S rats. These results indicate that transfer of the region of chromosome 5 between markers D5Rat108 to D5Rat31 from the Lewis rat into the Dahl S genetic background increases the renal production of 20-HETE, improves pressure-natriuresis and opposes the development of salt-induced hypertension.
Collapse
Affiliation(s)
- Richard J Roman
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Omura T, Tanaka Y, Miyata N, Koizumi C, Sakurai T, Fukasawa M, Hachiuma K, Minagawa T, Susumu T, Yoshida S, Nakaike S, Okuyama S, Harder DR, Roman RJ. Effect of a new inhibitor of the synthesis of 20-HETE on cerebral ischemia reperfusion injury. Stroke 2006; 37:1307-13. [PMID: 16601220 DOI: 10.1161/01.str.0000217398.37075.07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Arachidonic acid that is released following cerebral ischemia can be metabolized to 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE is a potent vasoconstrictor that may contribute to ischemic injury. This study examined the effects of blockading the synthesis of 20-HETE with TS-011 on infarct size after transient occlusion of the middle cerebral artery (MCAO) of rats and after thromboembolic stroke in monkeys. METHODS Rats were treated with TS-011 or vehicle at various times after MCAO. Infarct size was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining and plasma levels of 20-HETE were determined by liquid chromatography mass spectrometry (LC/MS). The effect of TS-011 on infarct size was also studied in monkeys after introduction of a clot into the internal carotid artery. RESULTS Plasma levels of 20-HETE increased after MCAO in rats. TS-011 (0.01 to 1.0 mg/kg per hour) reduced infarct volume by 40%. Chronic administration of TS-011 for 7 days reduced neurological deficits after MCAO in rats. TS-011 given in combination with tissue plasminogen activator also improved neurological outcome in the stroke model in monkeys. CONCLUSIONS These results suggest that blockade of the formation of 20-HETE with TS-011 may be useful for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tomohiro Omura
- Medicinal Research Laboratory, Taisho Pharmaceutical Co, Ltd, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Takeuchi K, Miyata N, Renic M, Harder DR, Roman RJ. Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH. Am J Physiol Regul Integr Comp Physiol 2005; 290:R84-9. [PMID: 16166205 DOI: 10.1152/ajpregu.00445.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the fall in cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH), but the factors that stimulate the production of 20-HETE are unknown. This study examines the role of vasoactive factors released by clotting blood vs. the scavenging of nitric oxide (NO) by hemoglobin (Hb) in the fall in CBF after SAH. Intracisternal (icv) injection of blood produced a greater and more prolonged (120 vs. 30 min) decrease in CBF than that produced by a 4% solution of Hb. Pretreating rats with N(omega)-nitro-l-arginine methyl ester (l-NAME; 10 mg/kg iv) to block the synthesis of NO had no effect on the fall in CBF produced by an icv injection of blood. l-NAME enhanced rather than attenuated the fall in CBF produced by an icv injection of Hb. Blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg iv) prevented the sustained fall in CBF produced by an icv injection of blood and the transient vasoconstrictor response to Hb. Hb (0.1%) reduced the diameter of the basilar artery (BA) of rats in vitro by 10 +/- 2%. This response was reversed by TS-011 (100 nM). Pretreatment of vessels with l-NAME (300 muM) reduced the diameter of BA and blocked the subsequent vasoconstrictor response to the addition of Hb to the bath. TS-011 returned the diameter of vessels exposed to l-NAME and Hb to that of control. These results suggest that the fall in CBF after SAH is largely due to the release of vasoactive factors by clotting blood rather than the scavenging of NO by Hb and that 20-HETE contributes the vasoconstrictor response of cerebral vessels to both Hb and blood.
Collapse
Affiliation(s)
- Kazuhiko Takeuchi
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|