1
|
Jiang H, Liu M, Yang W, Hong YK, Xu D, Nalbant EK, Clutter ED, Foroozandeh P, Kaplan N, Wysocki J, Batlle D, Miller SD, Lu K, Peng H. Activation of limbal epithelial proliferation is partly controlled by the ACE2-LCN2 pathway. iScience 2024; 27:110534. [PMID: 39175771 PMCID: PMC11338997 DOI: 10.1016/j.isci.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
In response to corneal injury, an activation of corneal epithelial stem cells and their direct progeny the early transit amplifying (eTA) cells to rapidly proliferate is critical for proper re-epithelialization. Thus, it is important to understand how such stem/eTA cell activation is regulated. Angiotensin-converting enzyme 2 (ACE2) is predominantly expressed in the stem/eTA-enriched limbal epithelium but its role in the limbal epithelium was unclear. Single cell RNA sequencing (scRNA-seq) suggested that Ace2 involved the proliferation of the stem/eTA cells. Ace2 was reduced following corneal injury. Such reduction enhanced limbal epithelial proliferation and downregulated LCN2, a negative regulator of proliferation in a variety of tissues, via upregulating TGFA and consequently activating epidermal growth factor receptor (EGFR). Inhibition of EGFR or overexpression of LCN2 reversed the increased proliferation in limbal epithelial cells lacking ACE2. Our findings demonstrate that after corneal injury, ACE2 is downregulated, which activates limbal epithelial cell proliferation via a TGFA/EGFR/LCN2 pathway.
Collapse
Affiliation(s)
- Huimin Jiang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Liu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wending Yang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yi-Kai Hong
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dan Xu
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elif Kayaalp Nalbant
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elwin D. Clutter
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Parisa Foroozandeh
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jan Wysocki
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Batlle
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D. Miller
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kurt Lu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Li H, Wan L, Liu M, Ma E, Huang L, Yang Y, Li Q, Fang Y, Li J, Han B, Zhang C, Sun L, Hou X, Li H, Sun M, Qian S, Duan X, Zhao R, Yang X, Chen Y, Wu S, Zhang X, Zhang Y, Cheng G, Chen G, Gao Q, Xu J, Hou L, Wei C, Zhong H. SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure. PLoS Pathog 2024; 20:e1012291. [PMID: 39102426 PMCID: PMC11326701 DOI: 10.1371/journal.ppat.1012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/15/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Huilong Li
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yilong Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Qihong Li
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingqing Han
- Beijing Institute of Biotechnology, Beijing, China
| | - Chang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lijuan Sun
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Xufeng Hou
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Haiyang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingyu Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Sichong Qian
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuhui Zhang
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | | | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengye Chen
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Gao
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Guo YT, Jiang JB, Qiao GR, Luo RH, Zhou X, Hua R, Zheng CB, Liu Z. Pleiotropy of positive selection in ancient ACE2 suggests an alternative hypothesis for bat-specific adaptations to host coronaviruses. Proc Natl Acad Sci U S A 2024; 121:e2321619121. [PMID: 38833475 PMCID: PMC11181079 DOI: 10.1073/pnas.2321619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Angiotensin-convertingenzyme 2 (ACE2) has dual functions, regulating cardiovascular physiology and serving as the receptor for coronaviruses. Bats, the only true flying mammals and natural viral reservoirs, have evolved positive alterations in traits related to both functions of ACE2. This suggests significant evolutionary changes in ACE2 during bat evolution. To test this hypothesis, we examine the selection pressure in ACE2 along the ancestral branch of all bats (AncBat-ACE2), where powered flight and bat-coronavirus coevolution occurred, and detect a positive selection signature. To assess the functional effects of positive selection, we resurrect AncBat-ACE2 and its mutant (AncBat-ACE2-mut) created by replacing the positively selected sites. Compared to AncBat-ACE2-mut, AncBat-ACE2 exhibits stronger enzymatic activity, enhances mice's performance in exercise fatigue, and shows lower affinity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings indicate the functional pleiotropy of positive selection in the ancient ACE2 of bats, providing an alternative hypothesis for the evolutionary origin of bats' defense against coronaviruses.
Collapse
Affiliation(s)
- Yuan-Ting Guo
- College of Life Sciences, Northwest University, Xi’an710127, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
| | - Ji-Bin Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guan-Rong Qiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming650500, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
| | - Xin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming650500, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming650201, China
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
| |
Collapse
|
4
|
Luo D, Bai M, Zhang W, Wang J. The possible mechanism and research progress of ACE2 involved in cardiovascular injury caused by COVID-19: a review. Front Cardiovasc Med 2024; 11:1409723. [PMID: 38863899 PMCID: PMC11165996 DOI: 10.3389/fcvm.2024.1409723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
ACE2 is the earliest receptor discovered to mediate the entry of SARS-CoV-2. In addition to the receptor, it also participates in complex pathological and physiological processes, including regulating the RAS system, apelin, KKS system, and immune system. In addition to affecting the respiratory system, viral infections also interact with cardiovascular diseases. SARS-CoV-2 can directly invade the cardiovascular system through ACE2; Similarly, cardiovascular diseases such as hypertension and coronary heart disease can affect ACE2 levels and exacerbate the disease, and ACE2 dysregulation may also be a potential mechanism for long-term acute sequelae of COVID-19. Since the SARS CoV-2 epidemic, many large population studies have tried to clarify the current focus of debate, that is, whether we should give COVID-19 patients ACEI and ARB drug treatment, but there is still no conclusive conclusion. We also discussed potential disease treatment options for ACE2 at present. Finally, we discussed the researchers' latest findings on ACE2 and their prospects for future research.
Collapse
Affiliation(s)
| | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Liang S, Zheng YY, Pan Y. Blood transcriptome analysis uncovered COVID-19-myocarditis crosstalk. Microb Pathog 2024; 189:106587. [PMID: 38373644 DOI: 10.1016/j.micpath.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The condition of COVID-19-related myocarditis has emerged as a prominent contributor to COVID-19 mortality. As the epidemic persists, its incidence continues to rise. Despite ongoing efforts, the elucidation of COVID-19-related myocarditis underlying molecular mechanisms still requires further investigation. METHODS Hub genes for COVID-19-related myocarditis were screened by integrating gene expression profile analysis via differential expression in COVID-19 (GSE196822) and myocarditis (GSE148153 and GSE147517). After verification with independent datasets (GSE211979, GSE167028, GSE178491 and GSE215865), the hub genes were studied using a range of systems-biology approaches, such as ceRNA, TF-mRNA networks and PPI networks, as well as gene ontology, pathway enrichment, immune infiltration analysis and drug target identification. RESULTS TBKBP1 and ERGIC1 were identified as COVID-19-related myocarditis hub genes via integrated bioinformatics analysis. In addition, receiver operating characteristic curves constructed based on the expression levels of TBKBP1 and ERGIC1 could effectively distinguish healthy control individuals from patients with COVID-19. Functional enrichment analysis suggested several enriched biological pathways related to inflammation and immune response. Immune cell changes correlated with TBKBP1 and ERGIC1 levels in patients with COVID-19 or patients with COVID-19 and myocarditis. Tamibarotene, methotrexate and theophylline were identified as a potential drug targeting TBKBP1 and ERGIC1. CONCLUSION TBKBP1 and ERGIC1 were identified as crucial genes in the development of COVID-19-related myocarditis and have demonstrated a strong association with innate antiviral immunity. The present work may be helpful for further investigation of the molecular mechanisms and new therapeutic drug targets correlated with myocarditis in COVID-19.
Collapse
Affiliation(s)
- Shuang Liang
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, 050000, China.
| | - Ying-Ying Zheng
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, 050000, China
| | - Ying Pan
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, 050000, China
| |
Collapse
|
6
|
Rouhana S, Jacyniak K, Francis ME, Falzarano D, Kelvin AA, Pyle WG. Sex differences in the cardiac stress response following SARS-CoV-2 infection of ferrets. Am J Physiol Heart Circ Physiol 2023; 325:H1153-H1167. [PMID: 37737732 PMCID: PMC10894670 DOI: 10.1152/ajpheart.00101.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection damages the heart, increasing the risk of adverse cardiovascular events. Female sex protects against complications of infection; females are less likely to experience severe illness or death, although their risk for postacute sequelae of COVID-19 ("long COVID") is higher than in males. Despite the important role of the heart in COVID-19 outcomes, molecular elements in the heart impacted by SARS-CoV-2 are poorly understood. Similarly, the role sex has on the myocardial effects of SARS-CoV-2 infection has not been investigated at a molecular level. We intranasally inoculated female and male ferrets with SARS-CoV-2 and assessed myocardial stress signals, inflammation, and the innate immune response for 14 days. Myocardial phosphorylated GSK3α/β decreased at day 2 postinfection (pi) in male ferrets, whereas females showed no changes. Myocardial levels of p62/SQSTM1 decreased in male ferrets at days 2, 7, and 14 pi while lower baseline levels in females increased on day 2. Phosphorylated ERK1/2 increased in cardiomyocyte nuclei in females on days 2 and 14 pi, whereas male ferrets had no changes. Only hearts from females increased fibrosis on day 14 pi. Immune and inflammation markers increased in hearts, with some sex differences. These results are the first to identify myocardial stress responses following SARS-CoV-2 infection and reveal sex differences that may contribute to differential outcomes. Future research is required to define the pathways involving these stress signals to fully understand the myocardial effects of COVID-19 and identify targets that mitigate cardiac injury following SARS-CoV-2 infection.NEW & NOTEWORTHY Cardiovascular disease is a leading risk factor for severe COVID-19, and cardiovascular pathologies are among the most common adverse outcomes following SARS-CoV-2 infection. Females and males have different outcomes and adverse cardiovascular events following SARS-CoV-2 infection. This study shows sex differences in stress proteins p62/SQSTM1, ERK1/2, and GSK3α/β, along with innate immunity and inflammation in hearts of ferrets infected with SARS-CoV-2, identifying mechanisms of COVID-19 cardiac injury and cardiac complications of long COVID.
Collapse
Affiliation(s)
- Sarah Rouhana
- IMPART Investigator Team, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Jacyniak
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Magen E Francis
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - W Glen Pyle
- IMPART Investigator Team, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Broberg MC, Mazer MB, Cheifetz IM. Cardiovascular effects of COVID-19 in children. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:533-541. [PMID: 38920204 DOI: 10.47102/annals-acadmedsg.202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Although severe acute respiratory failure is the primary cause of morbidity and mortality in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, this viral infection leads to cardiovascular disease in some individuals. Cardiac effects of the virus include myocarditis, pericarditis, arrhythmias, coronary aneurysms and cardiomyopathy, and can result in cardiogenic shock and multisystem organ failure. Method This review summarises cardiac manifesta-tions of SARS-CoV-2 in the paediatric population. We performed a scoping review of cardiovascular disease associated with acute coronavirus disease 2019 (COVID-19) infection, multisystem inflammatory syndrome in children (MIS-C), and mRNA COVID-19 vaccines. Also examined are special considerations for paediatric athletes and return to play following COVID-19 infection. Results Children presenting with acute COVID-19 should be screened for cardiac dysfunction and a thorough history should be obtained. Further cardiovascular evaluation should be considered following any signs/symptoms of arrhythmias, low cardiac output, and/or myopericarditis. Patients admitted with severe acute COVID-19 should be monitored with continuous cardiac monitoring. Laboratory testing, as clinically indicated, includes tests for troponin and B-type natriuretic peptide or N-terminal pro-brain natriuretic peptide. Echocardiography with strain evaluation and/or cardiac magnetic resonance imaging should be considered to evaluate diastolic and systolic dysfunction, coronary anatomy, the pericardium and the myocardium. For patients with MIS-C, combination therapy with intravenous immunoglobulin and glucocorticoid therapy is safe and potentially disease altering. Treatment of MIS-C targets the hyperimmune response. Supportive care, including mechanical support, is needed in some cases. Conclusion Cardiovascular disease is a striking feature of SARS-CoV-2 infection. Most infants, children and adolescents with COVID-19 cardiac disease fully recover with no lasting cardiac dysfunction. However, long-term studies and further research are needed to assess cardiovascular risk with variants of SARS-CoV-2 and to understand the pathophysiology of cardiac dysfunction with COVID-19.
Collapse
Affiliation(s)
- Meredith Cg Broberg
- Division of Cardiac Critical Care, UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Monty B Mazer
- Division of Cardiac Critical Care, UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Ira M Cheifetz
- Division of Cardiac Critical Care, UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
8
|
Beetler DJ, Fairweather D. Sex differences in coronavirus disease 2019 myocarditis. CURRENT OPINION IN PHYSIOLOGY 2023; 35:100704. [PMID: 37662585 PMCID: PMC10470486 DOI: 10.1016/j.cophys.2023.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Myocarditis is frequently caused by viral infections, but animal models that closely resemble human disease suggest that virus-triggered autoimmune disease is the most likely cause of myocarditis. Myocarditis is a rare condition that occurs primarily in men under age 50. The incidence of myocarditis rose at least 15x during the COVID-19 pandemic from 1-10 to 150-400 cases/100,000 individuals, with most cases occurring in men under age 50. COVID-19 vaccination was also associated with rare cases of myocarditis primarily in young men under 50 years of age with an incidence as high as 50 cases/100,000 individuals reported for some mRNA vaccines. Sex differences in the immune response to COVID-19 are virtually identical to the mechanisms known to drive sex differences in myocarditis pre-COVID based on clinical studies and animal models. The many similarities between COVID-19 vaccine-associated myocarditis to COVID-19 myocarditis and non-COVID myocarditis suggest common immune mechanisms drive disease.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
9
|
López-Viñas L, Roy-Vallejo E, Rocío-Martín E, de la Rosa Santiago E, Zamora García E, Galván-Román JM, Wix-Ramos R. Diagnostic Assessment of Respiratory and Hemodynamic Changes Related to Prone Position in COVID-19 Patients. Disaster Med Public Health Prep 2023; 17:e475. [PMID: 37655396 DOI: 10.1017/dmp.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To study the respiratory patterns and the hemodynamic variations related to postural changes in inpatients with coronavirus disease (COVID-19). METHODS This report is a prospective study in a cohort of inpatients admitted with COVID-19. We recruited 10 patients admitted to the hospital with moderate or severe COVID-19 who showed improvement in oxygen saturation with prone positioning. We performed cardiorespiratory polygraphy and hemodynamic evaluations by thoracic electrical bioimpedance. RESULTS We observed a median minimum oxygen saturation of 85.00% (IQR: 7.00) in the supine position versus 91.00% (IQR: 8.00) (P = 0.173) in the prone position. The airflow restriction in the supine position was 2.70% (IQR: 6.55) versus 1.55% (IQR: 2.80) (P = 0.383) in the prone position. A total of 36.4% of patients were classified as having a normo-hemodynamic state in the supine position, whereas 54.5% were classified in this group in the prone position (P = 0.668). A decrease in vascular resistance was observed in the prone position (18.2% of vasoconstriction) compared to the supine position (36.4% of vasoconstriction) (P = 0.871). CONCLUSION This brief report describes the effects of prone positioning on respiratory and hemodynamic variables in 10 patients with moderate or severe COVID-19.
Collapse
Affiliation(s)
- Laura López-Viñas
- Neurophysiology Department, Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Emilia Roy-Vallejo
- Internal Medicine Department, La Princesa University Hospital, Madrid, Spain
| | | | | | | | | | - Rybel Wix-Ramos
- Neurophysiology Department, La Princesa University Hospital, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (D.F.,)
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Nicolas Musigk
- Deutsches Herzzentrum der Charité, Berlin, Germany (N.M., B.H.)
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
11
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|