1
|
Munoz M, Solis C, McCann M, Park J, Rafael-Clyke K, Chowdhury SAK, Jiang Y, Rosas PC. P21-activated kinase-1 signaling is required to preserve adipose tissue homeostasis and cardiac function. Mol Cell Biochem 2025; 480:249-263. [PMID: 38430300 PMCID: PMC11371416 DOI: 10.1007/s11010-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
While P21-activated kinase-1 (PAK1) has been extensively studied in relation to cardiovascular health and glucose metabolism, its roles within adipose tissue and cardiometabolic diseases are less understood. In this study, we explored the effects of PAK1 deletion on energy balance, adipose tissue homeostasis, and cardiac function utilizing a whole-body PAK1 knockout (PAK1-/-) mouse model. Our findings revealed that body weight differences between PAK1-/- and WT mice emerged at 9 weeks of age, with further increases observed at 12 weeks. Furthermore, PAK1-/- mice displayed increased fat mass and decreased lean mass at 12 weeks, indicating a shift towards adiposity. In conjunction with the increased body weight, PAK1-/- mice had increased food intake and reduced energy expenditure. At a mechanistic level, PAK1 deletion boosted the expression of lipogenic markers while diminishing thermogenic markers expression in adipose tissues, contributing to reduced energy expenditure and the overall obesogenic phenotype. Moreover, our findings highlighted a significant impact on cardiac function following PAK1 deletion, including alterations in calcium kinetics and compromised systolic and lusitropy functions. In summary, our study emphasizes the significant role of PAK1 in weight regulation and cardiac function, enriching our comprehension of heart health and metabolism. These findings could potentially facilitate the identification of novel therapeutic targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Marcos Munoz
- Divison of Endocrinology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Solis
- Department of Health, Nutrition & Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Maximilian McCann
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jooman Park
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Koreena Rafael-Clyke
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shamim A K Chowdhury
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Zadmajid V, Shahriar S, Gorelick DA. Testosterone acts through the membrane protein GPRC6A to cause cardiac edema in zebrafish embryos. Development 2024; 151:dev204390. [PMID: 39479956 PMCID: PMC11634029 DOI: 10.1242/dev.204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024]
Abstract
Androgens are classically thought to act through intracellular androgen receptors (AR/NR3C4), but they can also trigger non-genomic effects via membrane proteins. Although several membrane androgen receptors have been characterized in vitro, their functions in vivo remain unclear. Using a chemical-genetic screen in zebrafish, we found that GPRC6A, a G-protein-coupled receptor, mediates non-genomic androgen actions during embryonic development. Exposure to androgens (androstanedione, DHT and testosterone) caused cardiac edema or tail curvature in wild-type embryos, as well as in ar mutants, suggesting AR-independent pathways. We then mutated putative membrane androgen receptors [gprc6a, hcar1-4 and zip9 (slc39a9)] and found that only gprc6a mutants exhibited a significant reduction in cardiac edema after testosterone exposure. Additionally, co-treatment of wild-type embryos with testosterone and GPRC6A antagonists significantly suppressed the cardiac edema phenotype. Using RNA-seq and RNA rescue approaches, we found that testosterone and GPRC6A cause cardiac phenotypes by reducing Pak1 signaling. Our results indicate that testosterone induces cardiac edema in zebrafish embryos through GPRC6A, independent of nuclear androgen receptors, highlighting a previously unappreciated non-genomic androgen signaling pathway in embryonic development.
Collapse
MESH Headings
- Animals
- Zebrafish/embryology
- Zebrafish/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Testosterone/metabolism
- Testosterone/pharmacology
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/genetics
- Edema, Cardiac/metabolism
- Edema, Cardiac/pathology
- Edema, Cardiac/genetics
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Heart/embryology
- Heart/drug effects
- Androgens/pharmacology
- Androgens/metabolism
- Mutation/genetics
Collapse
Affiliation(s)
- Vahid Zadmajid
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, BCM229, Houston, TX 77030, USA
| | - Shayan Shahriar
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, BCM229, Houston, TX 77030, USA
| | - Daniel A. Gorelick
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, BCM229, Houston, TX 77030, USA
| |
Collapse
|
3
|
Pereira CH, Bare DJ, Rosas PC, Dias FAL, Banach K. The role of P21-activated kinase (Pak1) in sinus node function. J Mol Cell Cardiol 2023; 179:90-101. [PMID: 37086972 PMCID: PMC10294268 DOI: 10.1016/j.yjmcc.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Sinoatrial node (SAN) dysfunction (SND) and atrial arrhythmia frequently occur simultaneously with a hazard ratio of 4.2 for new onset atrial fibrillation (AF) in SND patients. In the atrial muscle attenuated activity of p21-activated kinase 1 (Pak1) increases the risk for AF by enhancing NADPH oxidase 2 dependent production of reactive oxygen species (ROS). However, the role of Pak1 dependent ROS regulation in SAN function has not yet been determined. We hypothesize that Pak1 activity maintains SAN activity by regulating the expression of the hyperpolarization activated cyclic nucleotide gated cation channel (HCN). To determine Pak1 dependent changes in heart rate (HR) regulation we quantified the intrinsic sinus rhythm in wild type (WT) and Pak1 deficient (Pak1-/-) mice of both sexes in vivo and in isolated Langendorff perfused hearts. Pak1-/- hearts displayed an attenuated HR in vivo after autonomic blockage and in isolated hearts. The contribution of the Ca2+ clock to pacemaker activity remained unchanged, but Ivabradine (3 μM), a blocker of HCN channels that are a membrane clock component, eliminated the differences in SAN activity between WT and Pak1-/- hearts. Reduced HCN4 expression was confirmed in Pak1-/- right atria. The reduced HCN activity in Pak1-/- could be rescued by class II HDAC inhibition (LMK235), ROS scavenging (TEMPOL) or attenuation of Extracellular Signal-Regulated Kinase (ERK) 1/2 activity (SCH772984). No sex specific differences in Pak1 dependent SAN regulation were determined. Our results establish Pak1 as a class II HDAC regulator and a potential therapeutic target to attenuate SAN bradycardia and AF susceptibility.
Collapse
Affiliation(s)
- Carlos H Pereira
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA; Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Dan J Bare
- Dept. of Physiology & Biophysics, The Ohio State University, 5018 Graves Hall, 333 W.10th Ave., Columbus, OH 4321, USA.
| | - Paola C Rosas
- Dept. of Pharmacy Practice, College of Pharmacy, 833 S Wood St., Chicago, IL 60612, USA.
| | - Fernando A L Dias
- Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Yang B, Jiang Q, He S, Li T, Ou X, Chen T, Fan X, Jiang F, Zeng X, Huang CLH, Lei M, Tan X. Ventricular SK2 upregulation following angiotensin II challenge: Modulation by p21-activated kinase-1. J Mol Cell Cardiol 2022; 164:110-125. [PMID: 34774547 DOI: 10.1016/j.yjmcc.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Effects of hypertrophic challenge on small-conductance, Ca2+-activated K+(SK2) channel expression were explored in intact murine hearts, isolated ventricular myocytes and neonatal rat cardiomyocytes (NRCMs). An established experimental platform applied angiotensin II (Ang II) challenge in the presence and absence of reduced p21-activated kinase (PAK1) (PAK1cko vs. PAK1f/f, or shRNA-PAK1 interference) expression. SK2 current contributions were detected through their sensitivity to apamin block. Ang II treatment increased such SK2 contributions to optically mapped action potential durations (APD80) and their heterogeneity, and to patch-clamp currents. Such changes were accentuated in PAK1cko compared to PAK1f/f, intact hearts and isolated cardiomyocytes. They paralleled increased histological and echocardiographic hypertrophic indices, reduced cardiac contractility, and increased SK2 protein expression, changes similarly greater with PAK1cko than PAK1f/f. In NRCMs, Ang II challenge replicated such increases in apamin-sensitive SK patch clamp currents as well as in real-time PCR and western blot measures of SK2 mRNA and protein expression and cell hypertrophy. Furthermore, the latter were enhanced by shRNA-PAK1 interference and mitigated by the PAK1 agonist FTY720. Increased CaMKII and CREB phosphorylation accompanied these effects. These were rescued by both FTY720 as well as the CaMKII inhibitor KN93, but not its inactive analogue KN92. Such CREB then specifically bound to the KCNN2 promoter sequence in luciferase assays. These findings associate Ang II induced hypertrophy with increased SK2 expression brought about by a CaMKII/CREB signaling convergent with the PAK1 pathway thence upregulating the KCNN2 promoter activity. SK2 may then influence cardiac electrophysiology under conditions of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Binbin Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China; Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin Jiang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shicheng He
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Feng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaorong Zeng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Christopher L-H Huang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China; Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in cis. Biochem J 2019; 476:1037-1051. [PMID: 30858169 PMCID: PMC6448136 DOI: 10.1042/bcj20180867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
The group A p21-activated kinases (PAKs) exist in an auto-inhibited form until activated by GTPase binding and auto-phosphorylation. In the auto-inhibited form, a regulatory domain binds to the kinase domain (KD) blocking the binding of substrates, and CDC42 or Rac binding to the regulatory domain relieves this auto-inhibition allowing auto-phosphorylation on the KD activation loop. We have determined the crystal structure of the PAK3 catalytic domain and by small angle X-ray scattering, the solution-phase structures of full-length inactive PAK1 and PAK3. The structures reveal a compact but elongated molecular shape that demonstrates that, together with multiple independent biophysical measurements and in contrast with previous assumptions, group A PAKs are monomeric both before and after activation, consistent with an activation mechanism of cis-auto-inhibition and initial cis-auto-phosphorylation, followed by transient dimerisation to allow trans-auto-phosphorylation for full activation, yielding a monomeric active PAK protein.
Collapse
|
7
|
Abstract
BACKGROUND Atrial fibrillation (AF) is initiated through arrhythmic atrial excitation from outside the sinus node or remodeling of atrial tissue that allows reentry of excitation. Angiotensin II (AngII) has been implicated in the initiation and maintenance of AF through changes in Ca2+ handling and production of reactive oxygen species (ROS). OBJECTIVE We aimed to determine the role of p21-activated kinase 1 (Pak1), a downstream target in the AngII signaling cascade, in atrial electrophysiology and arrhythmia. METHODS Wild-type and Pak1-/- mice were used to determine atrial function in vivo on the organ and cellular level by quantification of electrophysiological and Ca2+ handling properties. RESULTS We demonstrate that reduced Pak1 activity increases the inducibility of atrial arrhythmia in vivo and in vitro. On the cellular level, Pak1-/- atrial myocytes (AMs) exhibit increased basal and AngII (1 μM)-induced ROS production, sensitivity to the NADPH oxidase-2 (NOX2) inhibitors gp91ds-tat and apocynin (1 μM), and enhanced membrane translocation of Ras-related C3 substrate 1 (Rac1) that is part of the multimolecular NOX2 complex. Upon stimulation with AngII, Pak1-/- AMs exhibit an exaggerated increase in the intracellular Calcium concentration ([Ca2+]i) and arrhythmic events that were sensitive to sodium-calcium exchanger (NCX) inhibitors (KB-R7943 and SEA0400; 1 μM) and suppressed in AMs from NOX2-deficient (gp91phox-/-) mice. Pak1 stimulation (FTY720; 200 nM) in wild-type AMs and AMs from a canine model of ventricular tachypacing-induced AF prevented AngII-induced arrhythmic Ca2+ overload by attenuating NCX activity in a NOX2-dependent manner. CONCLUSION The experimental results support that Pak1 stimulation can attenuate NCX-dependent Ca2+ overload and prevent triggered arrhythmic activity by suppressing NOX2-dependent ROS production.
Collapse
|
8
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Schubert C, Raparelli V, Westphal C, Dworatzek E, Petrov G, Kararigas G, Regitz-Zagrosek V. Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor β. Biol Sex Differ 2016; 7:53. [PMID: 27688871 PMCID: PMC5035458 DOI: 10.1186/s13293-016-0104-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Estrogen improves cardiac recovery after ischemia/reperfusion (I/R) by yet incompletely understood mechanisms. Mitochondria play a crucial role in I/R injury through cytochrome c-dependent apoptosis activation. We tested the hypothesis that 17β-estradiol (E2) as well as a specific ERβ agonist improve cardiac recovery through estrogen receptor (ER)β-mediated mechanisms by reducing mitochondria-induced apoptosis and preserving mitochondrial integrity. Methods We randomized ovariectomized C57BL/6N mice 24h before I/R to pre-treatment with E2 or a specific ERβ agonist (ERβA). Isolated hearts were perfused for 20min prior to 30min global ischemia followed by 40min reperfusion. Results Compared with controls, ERβA and E2 treated groups showed a significant improvement in cardiac recovery, i.e. an increase in left ventricular developed pressure, dP/dtmax and dP/dtmin. ERβA and E2 pre-treatment led to a significant reduction in apoptosis with decreased cytochrome c release from the mitochondria and increased mitochondrial levels of anti-apoptotic Bcl2 and ACAA2. Protein levels of mitochondrial translocase inner membrane (TIM23) and mitochondrial complex I of respiratory chain were increased by ERβA and E2 pre-treatment. Furthermore, we found a significant increase of myosin light chain 2 (MLC2) phosphorylation together with ERK1/2 activation in E2, but not in ERβA treated groups. Conclusions Activation of ERβ is essential for the improvement of cardiac recovery after I/R through the inhibition of apoptosis and preservation of mitochondrial integrity and can be a achieved by a specific ERβ agonist. Furthermore, E2 modulates MLC2 activation after I/R independent of ERβ. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0104-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola Schubert
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Valeria Raparelli
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Elke Dworatzek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - George Petrov
- Klinik für Kardiovaskuläre Chirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
10
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Zheng CJ, Yang XY, Qi ZP, Xia P, Hou TT, Li DY. Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury: a transcriptomics study. Neural Regen Res 2016; 11:480-6. [PMID: 27127490 PMCID: PMC4829016 DOI: 10.4103/1673-5374.179067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns could distinguish simple ischemia from ischemia/reperfusion. No. 28 pattern could analyze the need for inducing reperfusion injury. The study of specific pathways and functions for different dynamic patterns can provide a theoretical basis for clinical differential diagnosis and treatment of spinal cord ischemia/reperfusion injury.
Collapse
|
12
|
Davis RT, Simon JN, Utter M, Mungai P, Alvarez MG, Chowdhury SAK, Heydemann A, Ke Y, Wolska BM, Solaro RJ. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling. Cardiovasc Res 2015; 108:335-47. [PMID: 26464331 DOI: 10.1093/cvr/cvv234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 10/03/2015] [Indexed: 01/14/2023] Open
Abstract
AIMS Despite its known cardiovascular benefits, the intracellular signalling mechanisms underlying physiological cardiac growth remain poorly understood. Therefore, the purpose of this study was to investigate a novel role of p21-activated kinase-1 (Pak1) in the regulation of exercise-induced cardiac hypertrophy. METHODS AND RESULTS Wild-type (WT) and Pak1 KO mice were subjected to 6 weeks of treadmill endurance exercise training (ex-training). Cardiac function was assessed via echocardiography, in situ haemodynamics, and the pCa-force relations in skinned fibre preparations at baseline and at the end of the training regimen. Post-translational modifications to the sarcomeric proteins and expression levels of calcium-regulating proteins were also assessed following ex-training. Heart weight/tibia length and echocardiography data revealed that there was marked hypertrophy following ex-training in the WT mice, which was not evident in the KO mice. Additionally, following ex-training, WT mice demonstrated an increase in cardiac contractility, myofilament calcium sensitivity, and phosphorylation of cardiac myosin-binding protein C, cardiac TnT, and tropomyosin compared with KO mice. With ex-training in WT mice, there were also increased protein levels of calcineurin and increased phosphorylation of phospholamban. CONCLUSIONS Our data suggest that Pak1 is essential for adaptive physiological cardiac remodelling and support previous evidence that demonstrates Pak1 signalling is important for cardiac growth and survival.
Collapse
Affiliation(s)
- Robert T Davis
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Megan Utter
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Paul Mungai
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Manuel G Alvarez
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Shamim A K Chowdhury
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| | - Beata M Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA Department of Medicine, Section of Cardiology, Center for Cardiovascular Research, University of Illinois, Chicago, IL 60612, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave-Rm. E202, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Ke Y, Wang X, Jin XY, Solaro RJ, Lei M. PAK1 is a novel cardiac protective signaling molecule. Front Med 2014; 8:399-403. [PMID: 25416031 DOI: 10.1007/s11684-014-0380-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022]
Abstract
We review here the novel cardiac protective effects of the multifunctional enzyme, p21-activated kinase 1 (PAK1), a member of a serine/threonine protein kinase family. Despite the large body of evidence from studies in noncardiac tissue indicating that PAK1 activity is key in the regulation of a number of cellular functions, the role of PAK1 in the heart has only been revealed over the past few years. In this review, we assemble an overview of the recent findings on PAK1 signaling in the heart, particularly its cardiac protective effects. We present a model for PAK1 signaling that provides a mechanism for specifically affecting cardiac cellular processes in which regulation of protein phosphorylation states by protein phosphatase 2A (PP2A) predominates.We discuss the anti-adrenergic and antihypertrophic cardiac protective effects of PAK1, as well as its role in maintaining ventricular Ca(2+) homeostasis and electrophysiological stability under physiological, β-adrenergic and hypertrophic stress conditions.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Our work and others’ over the past few years have led to the identification of new roles of PAK1 in cardiac physiology, such as the regulation of cardiac ion channel and actomyosin function. More recent studies have revealed that PAK1-deficient mice were vulnerable to cardiac hypertrophy and readily progress to failure under sustained pressure overload and susceptible to ischemia/reperfusion injury. Our further study indicated that the PAK1 activator FTY720 was able to prevent this pressure overload-induced hypertrophy in wild-type mice without compromising their cardiac functions. A cardiac protective effect against ischemia/reperfusion injury by FTY720 was also observed in both rat and mouse models by us and others. Thus, these studies suggest that PAK1 is more important in the heart than previously thought, in particular a therapeutic potential of PAK1 activators. In the future, in-depth investigations are required to further substantiate our hypotheses on mechanisms for PAK1 function in the heart and to explore a therapeutic potential of FTY720 and other PAK1 activators in heart disease conditions.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Physiology and Biophysics and Center for Cardiovascular Research; University of Illinois at Chicago; Chicago, IL USA
| | | | | | | |
Collapse
|
15
|
Field J, Manser E. The PAKs come of age: Celebrating 18 years of discovery. CELLULAR LOGISTICS 2014; 2:54-58. [PMID: 23125949 PMCID: PMC3485743 DOI: 10.4161/cl.22084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinases are versatile signaling molecules that are involved in the regulation most physiological responses. The p21-activated kinases (PAKs) can be activated directly by the small GTPases Rac and Cdc42 and are among the best characterized downstream effectors of these Rho proteins. The structure, substrate specificity and functional role of PAKS are evolutionarily conserved from protozoa to mammals. Vertebrate PAKs are particularly important for cytoskeletal remodeling and focal adhesion assembly, thereby contributing to dynamic processes such as cell migration and synaptic plasticity. This issue of Cellular Logistics focuses on the PAK family of kinases, with ten reviews written by researchers currently working in the field. Here in this introductory overview we highlight some of the most interesting recent discoveries regarding PAK biochemistry and biology. The reviews in this issue cover a range of topics including the atomic structures of PAK1 and PAK4, their role in animals as assessed by knockout studies, and how PAKs are likely to contribute to cancer and neurodegenerative diseases. The promise remains that PAK inhibitors will emerge that validate current pre-clinical studies suggesting that blocking PAK activity will positively contribute to human health.
Collapse
Affiliation(s)
- Jeffrey Field
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
16
|
Gao L, Zheng YJ, Gu SS, Tan JL, Paul C, Wang YG, Yang HT. Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion. J Mol Cell Cardiol 2014; 77:102-12. [PMID: 25451385 DOI: 10.1016/j.yjmcc.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
Abstract
Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined. Global myocardial I/R-suppressed cardiac performance in isolated rat hearts was concomitant with decreases of MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, and cMLCK content, but not cMLCP proteins. Consistently, simulated I/R in isolated cardiomyocytes inhibited cell shortening, Ca(2+) transients, MLC-2v phosphorylation, and myofilament sensitivity to Ca(2+). These observations were reversed by cMLCK overexpression, while the specific cMLCK knockdown by short hairpin RNA (shRNA) had the opposite effect. Moreover, the inhibition of matrix metalloproteinase-2 (MMP-2, a zinc-dependent endopeptidase) reversed IR-decreased cMLCK, MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, myocardial contractile function, and myofilament sensitivity to Ca(2+), while the inhibition or knockdown of cMLCK by ML-9 or specific shRNA abolished MMP-2 inhibition-induced cardioprotection. Finally, the co-localization in cardiomyocytes and interaction in vivo of MMP-2 and cMLCK were observed. Purified recombinant rat cMLCK was concentration- and time-dependently degraded by rat MMP-2 in vitro, and this was prevented by the inhibition of MMP-2. These findings reveal that the I/R-activated MMP-2 leads to the degradation of cMLCK, resulting in a reduction of MLC-2v phosphorylation, and myofibrillar Ca(2+)-stimulated ATPase activity, which subsequently suppresses myocardial contractile function through a decrease of myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yan-Jun Zheng
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shan-Shan Gu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Ji-Liang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
17
|
Taglieri DM, Ushio-Fukai M, Monasky MM. P21-activated kinase in inflammatory and cardiovascular disease. Cell Signal 2014; 26:2060-9. [PMID: 24794532 DOI: 10.1016/j.cellsig.2014.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 02/09/2023]
Abstract
P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target.
Collapse
Affiliation(s)
- Domenico M Taglieri
- Department of Anesthesia and General Intensive Care Unit, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 (Milano), Italy.
| | - Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave. E403 MSB, M/C868, Chicago, IL 60612, USA.
| | - Michelle M Monasky
- Cardiovascular Research Center, Humanitas Research Hospital, Via Manzoni 113, Rozzano, 20089 (Milano), Italy.
| |
Collapse
|
18
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
19
|
The art of the deal in myofilament modulation of function. J Mol Cell Cardiol 2014; 72:238-40. [PMID: 24732213 DOI: 10.1016/j.yjmcc.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
20
|
DeSantiago J, Bare DJ, Xiao L, Ke Y, Solaro RJ, Banach K. p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes. J Mol Cell Cardiol 2014; 67:77-85. [PMID: 24380729 PMCID: PMC3930036 DOI: 10.1016/j.yjmcc.2013.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/20/2022]
Abstract
Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca(2+) handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1(-/-)) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca(2+) transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1(-/-) VMs during 15 min of simulated ischemia. However, Pak1(-/-) VMs exhibited an exaggerated increase in [Ca(2+)]i, which resulted in spontaneous Ca(2+) release events and waves. The Ca(2+) overload in Pak1(-/-) VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1(-/-) VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47(phox-/-)) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1(-/-) VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca(2+) overload in Pak1(-/-) VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca(2+) overload under conditions where no significant changes in excitation-contraction coupling are yet evident.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Lei Xiao
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Posttranslational modifications of cardiac troponin T: An overview. J Mol Cell Cardiol 2013; 63:47-56. [DOI: 10.1016/j.yjmcc.2013.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
|
22
|
DeSantiago J, Bare DJ, Ke Y, Sheehan KA, Solaro RJ, Banach K. Functional integrity of the T-tubular system in cardiomyocytes depends on p21-activated kinase 1. J Mol Cell Cardiol 2013; 60:121-8. [PMID: 23612118 PMCID: PMC3679655 DOI: 10.1016/j.yjmcc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/06/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1(-/-) mice. Pak1(-/-) Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased T-tubular density in Pak1(-/-) VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1(-/-) mice where the T-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the T-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the T-tubular system whose remodeling is an integral feature of hypertrophic remodeling.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Katherine A. Sheehan
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R. John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
- Dept. of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| |
Collapse
|