1
|
Dunn ME, Kithcart A, Kim JH, Ho AJH, Franklin MC, Romero Hernandez A, de Hoon J, Botermans W, Meyer J, Jin X, Zhang D, Torello J, Jasewicz D, Kamat V, Garnova E, Liu N, Rosconi M, Pan H, Karnik S, Burczynski ME, Zheng W, Rafique A, Nielsen JB, De T, Verweij N, Pandit A, Locke A, Chalasani N, Melander O, Schwantes-An TH, Baras A, Lotta LA, Musser BJ, Mastaitis J, Devalaraja-Narashimha KB, Rankin AJ, Huang T, Herman G, Olson W, Murphy AJ, Yancopoulos GD, Olenchock BA, Morton L. Agonist antibody to guanylate cyclase receptor NPR1 regulates vascular tone. Nature 2024; 633:654-661. [PMID: 39261724 PMCID: PMC11410649 DOI: 10.1038/s41586-024-07903-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Heart failure is a leading cause of morbidity and mortality1,2. Elevated intracardiac pressures and myocyte stretch in heart failure trigger the release of counter-regulatory natriuretic peptides, which act through their receptor (NPR1) to affect vasodilation, diuresis and natriuresis, lowering venous pressures and relieving venous congestion3-8. Recombinant natriuretic peptide infusions were developed to treat heart failure but have been limited by a short duration of effect9,10. Here we report that in a human genetic analysis of over 700,000 individuals, lifelong exposure to coding variants of the NPR1 gene is associated with changes in blood pressure and risk of heart failure. We describe the development of REGN5381, an investigational monoclonal agonist antibody that targets the membrane-bound guanylate cyclase receptor NPR1. REGN5381, an allosteric agonist of NPR1, induces an active-like receptor conformation that results in haemodynamic effects preferentially on venous vasculature, including reductions in systolic blood pressure and venous pressure in animal models. In healthy human volunteers, REGN5381 produced the expected haemodynamic effects, reflecting reductions in venous pressures, without obvious changes in diuresis and natriuresis. These data support the development of REGN5381 for long-lasting and selective lowering of venous pressures that drive symptomatology in patients with heart failure.
Collapse
Affiliation(s)
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Botermans
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium
| | | | - Ximei Jin
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | - Nina Liu
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Hao Pan
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | - Jonas B Nielsen
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Tanima De
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Niek Verweij
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Anita Pandit
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Adam Locke
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Naga Chalasani
- Indiana University School of Medicine & Indiana University Health, Indianapolis, IN, USA
| | - Olle Melander
- The Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | - Tammy Huang
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Gary Herman
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | - Lori Morton
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| |
Collapse
|
2
|
Ríos-Arrabal S, Puentes-Pardo JD, Moreno-SanJuan S, Szuba Á, Casado J, García-Costela M, Escudero-Feliu J, Verbeni M, Cano C, González-Puga C, Martín-Lagos Maldonado A, Carazo Á, León J. Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53. J Pers Med 2021; 11:jpm11060509. [PMID: 34199777 PMCID: PMC8227293 DOI: 10.3390/jpm11060509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an antioxidant protein implicated in tumor progression, metastasis, and resistance to therapy. Elevated HO-1 expression is associated with stemness in several types of cancer, although this aspect has not yet been studied in colorectal cancer (CRC). Using an in vitro model, we demonstrated that HO-1 overexpression regulates stemness and resistance to 5-FU treatment, regardless of p53. In samples from CRC patients, HO-1 and endothelin converting enzyme-1 (ECE-1) expression correlated significantly, and p53 had no influence on this result. Carbon monoxide (CO) activated the ECE-1/endothelin-1 (ET-1) pathway, which could account for the protumoral effects of HO-1 in p53 wild-type cells, as demonstrated after treatment with bosentan (an antagonist of both ETRA and ETRB endothelin-1 receptors). Surprisingly, in cells with a non-active p53 or a mutated p53 with gain-of-function, ECE-1-produced ET-1 acted as a protective molecule, since treatment with bosentan led to increased efficiency for spheres formation and percentage of cancer stem cells (CSCs) markers. In these cells, HO-1 could activate or inactivate certain unknown routes that could induce these contrary responses after treatment with bosentan in our cell model. However more research is warranted to confirm these results. Patients carrying tumors with a high expression of both HO-1 and ECE-1 and a non-wild-type p53 should be considered for HO-1 based-therapies instead of ET-1 antagonists-based ones.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Jose D. Puentes-Pardo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sara Moreno-SanJuan
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Cytometry and Microscopy Research Service, Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Ágata Szuba
- Unidad de Gestión Clínica de Cirugía, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jorge Casado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - María García-Costela
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Julia Escudero-Feliu
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Michela Verbeni
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Carlos Cano
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Cristina González-Puga
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Cirugía, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Alicia Martín-Lagos Maldonado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Ángel Carazo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958023199
| |
Collapse
|
3
|
Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2264. [PMID: 34066839 PMCID: PMC8125955 DOI: 10.3390/cancers13092264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
Collapse
Affiliation(s)
- Iman M. Ahmad
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Kelly A. O’Connell
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Bradley E. Britigan
- Veterans Affairs Medical Center-Nebraska Western Iowa, Department of Internal Medicine and Research Service, Omaha, NE 68105, USA;
| | - Michael A. Hollingsworth
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
4
|
Coburn RF. Coronary and cerebral metabolism-blood flow coupling and pulmonary alveolar ventilation-blood flow coupling may be disabled during acute carbon monoxide poisoning. J Appl Physiol (1985) 2020; 129:1039-1050. [PMID: 32853110 DOI: 10.1152/japplphysiol.00172.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current evidence indicates that the toxicity of carbon monoxide (CO) poisoning results from increases in reactive oxygen species (ROS) generation plus tissue hypoxia resulting from decreases in capillary Po2 evoked by effects of increases in blood [carboxyhemoglobin] on the oxyhemoglobin dissociation curve. There has not been consideration of how increases in Pco could influence metabolism-blood flow coupling, a physiological mechanism that regulates the uniformity of tissue Po2, and alveolar ventilation-blood flow coupling, a mechanism that increases the efficiency of pulmonary O2 uptake. Using published data, I consider hypotheses that these coupling mechanisms, triggered by O2 and CO sensors located in arterial and arteriolar vessels in the coronary and cerebral circulations and in lung intralobar arteries, are disrupted during acute CO poisoning. These hypotheses are supported by calculations that show that the Pco in these vessels can reach levels during CO poisoning that would exert effects on signal transduction molecules involved in these coupling mechanisms.NEW & NOTEWORTHY This article introduces and supports a postulate that the tissue hypoxia component of carbon monoxide poisoning results in part from impairment of physiological adaptation mechanisms whereby tissues can match regional blood flow to O2 uptake, and the lung can match regional blood flow to alveolar ventilation.
Collapse
Affiliation(s)
- Ronald F Coburn
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
6
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Yoo HY, Park SJ, Kim HJ, Kim WK, Kim SJ. Integrative understanding of hypoxic pulmonary vasoconstriction using in vitro models: from ventilated/perfused lung to single arterial myocyte. Integr Med Res 2014; 3:180-188. [PMID: 28664095 PMCID: PMC5481745 DOI: 10.1016/j.imr.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 10/25/2022] Open
Abstract
Contractile response of a pulmonary artery (PA) to hypoxia (hypoxic pulmonary vasoconstriction; HPV) is a unique physiological reaction. HPV is beneficial for the optimal distribution of blood flow to differentially ventilated alveolar regions in the lung, thereby preventing systemic hypoxemia. Numerous in vitro studies have been conducted to elucidate the mechanisms underlying HPV. These studies indicate that PA smooth muscle cells (PASMCs) sense lowers the oxygen partial pressure (PO2) and contract under hypoxia. As for the PO2-sensing molecules, a variety of ion channels in PASMCs had been suggested. Nonetheless, the modulator(s) of the ion channels alone cannot mimic HPV in the experiments using PA segments and/or isolated organs. We compared the hypoxic responses of PASMCs, PAs, lung slices, and total lungs using a variety of methods (e.g., patch-clamp technique, isometric contraction measurement, video analysis of precision-cut lung slices, and PA pressure measurement in ventilated/perfused lungs). In this review, the relevant results are compared to provide a comprehensive understanding of HPV. Integration of the influences from surrounding tissues including blood cells as well as the hypoxic regulation of ion channels in PASMCs are indispensable for insights into HPV and other related clinical conditions.
Collapse
Affiliation(s)
- Hae Young Yoo
- Red Cross College of Nursing, Chung-Ang University, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Hae Jin Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Woo Kyung Kim
- Department of Internal Medicine and Channelopathy Research Institute (CRC), College of Medicine, Dongguk University, Goyang, Korea
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Taabazuing CY, Hangasky JA, Knapp MJ. Oxygen sensing strategies in mammals and bacteria. J Inorg Biochem 2014; 133:63-72. [PMID: 24468676 PMCID: PMC4097052 DOI: 10.1016/j.jinorgbio.2013.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022]
Abstract
The ability to sense and adapt to changes in pO2 is crucial for basic metabolism in most organisms, leading to elaborate pathways for sensing hypoxia (low pO2). This review focuses on the mechanisms utilized by mammals and bacteria to sense hypoxia. While responses to acute hypoxia in mammalian tissues lead to altered vascular tension, the molecular mechanism of signal transduction is not well understood. In contrast, chronic hypoxia evokes cellular responses that lead to transcriptional changes mediated by the hypoxia inducible factor (HIF), which is directly controlled by post-translational hydroxylation of HIF by the non-heme Fe(II)/αKG-dependent enzymes FIH and PHD2. Research on PHD2 and FIH is focused on developing inhibitors and understanding the links between HIF binding and the O2 reaction in these enzymes. Sulfur speciation is a putative mechanism for acute O2-sensing, with special focus on the role of H2S. This sulfur-centered model is discussed, as are some of the directions for further refinement of this model. In contrast to mammals, bacterial O2-sensing relies on protein cofactors that either bind O2 or oxidatively decompose. The sensing modality for bacterial O2-sensors is either via altered DNA binding affinity of the sensory protein, or else due to the actions of a two-component signaling cascade. Emerging data suggests that proteins containing a hemerythrin-domain, such as FBXL5, may serve to connect iron sensing to O2-sensing in both bacteria and humans. As specific molecular machinery becomes identified, these hypoxia sensing pathways present therapeutic targets for diseases including ischemia, cancer, or bacterial infection.
Collapse
Affiliation(s)
| | - John A Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Michael J Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
9
|
Abstract
High-altitude pulmonary edema (HAPE), a not uncommon form of acute altitude illness, can occur within days of ascent above 2500 to 3000 m. Although life-threatening, it is avoidable by slow ascent to permit acclimatization or with drug prophylaxis. The critical pathophysiology is an excessive rise in pulmonary vascular resistance or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular pressures. The resultant hydrostatic stress causes dynamic changes in the permeability of the alveolar capillary barrier and mechanical injurious damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage and hemodynamic pressure measurements in humans confirm that elevated capillary pressure induces a high-permeability noninflammatory lung edema. Reduced nitric oxide availability and increased endothelin in hypoxia are the major determinants of excessive HPV in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial active fluid reabsorption likely contribute additionally to HAPE susceptibility. Recent studies strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level causes leakage. In areas of high blood flow due to lesser HPV, edema develops due to pressures that exceed the dynamic and structural capacity of the alveolar capillary barrier to maintain normal fluid balance. This article will review the pathophysiology of the vasculature, alveolar epithelium, innervation, immune response, and genetics of the lung at high altitude, as well as therapeutic and prophylactic strategies to reduce the morbidity and mortality of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
10
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|
11
|
Heme oxygenase-1 induces 15-lipoxygenase expression during hypoxia-induced pulmonary hypertension. Int J Biochem Cell Biol 2013; 45:964-72. [DOI: 10.1016/j.biocel.2013.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/25/2012] [Accepted: 01/25/2013] [Indexed: 11/22/2022]
|
12
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
13
|
Goebel U, Siepe M, Schwer CI, Schibilsky D, Brehm K, Priebe HJ, Schlensak C, Loop T. Postconditioning of the Lungs with Inhaled Carbon Monoxide After Cardiopulmonary Bypass in Pigs. Anesth Analg 2011; 112:282-91. [DOI: 10.1213/ane.0b013e318203f591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Yoo HY, Park SJ, Bahk JH, Kim SJ. Inhibition of hypoxic pulmonary vasoconstriction of rats by carbon monoxide. J Korean Med Sci 2010; 25:1411-7. [PMID: 20890419 PMCID: PMC2946648 DOI: 10.3346/jkms.2010.25.10.1411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/23/2010] [Indexed: 11/20/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV), a unique response of pulmonary circulation, is critical to prevent hypoxemia under local hypoventilation. Hypoxic inhibition of K(+) channel is known as an important O(2)-sensing mechanism in HPV. Carbon monoxide (CO) is suggested as a positive regulator of Ca(2+)-activated K(+) channel (BK(Ca)), a stimulator of guanylate cyclase, and an O(2)-mimetic agent in heme moiety-dependent O(2) sensing mechanisms. Here we compared the effects of CO on the HPV (P(O(2)), 3%) in isolated pulmonary artery (HPV(PA)) and in blood-perfused/ventilated lungs (HPV(lung)) of rats. A pretreatment with CO (3%) abolished the HPV(PA) in a reversible manner. The inhibition of HPV(PA) was completely reversed by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor. In contrast, the HPV(lung) was only partly decreased by CO. Moreover, the partial inhibition of HPV(lung) by CO was affected neither by the pretreatment with ODQ nor by NO synthase inhibitor (L-NAME). The CO-induced inhibitions of HPV(PA) and HPV(lung) were commonly unaffected by tetraethylammonium (TEA, 2 mM), a blocker of BK(Ca). As a whole, CO inhibits HPV(PA) via activating guanylate cyclase. The inconsistent effects of ODQ on HPV(PA) and HPV(lung) suggest that ODQ may lose its sGC inhibitory action when applied to the blood-containing perfusate.
Collapse
Affiliation(s)
- Hae Young Yoo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyon Bahk
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Herrera EA, Riquelme RA, Ebensperger G, Reyes RV, Ulloa CE, Cabello G, Krause BJ, Parer JT, Giussani DA, Llanos AJ. Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1676-84. [PMID: 20881096 PMCID: PMC3007194 DOI: 10.1152/ajpregu.00123.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined whether postnatal pulmonary hypertension induced by 70% of pregnancy at high altitude (HA) persists once the offspring return to sea level and investigated pulmonary vascular mechanisms operating under these circumstances. Pregnant ewes were divided into two groups: conception, pregnancy, and delivery at low altitude (580 m, LLL) and conception at low altitude, pregnancy at HA (3,600 m) from 30% of gestation until delivery, and return to lowland (LHL). Pulmonary arterial pressure (PAP) was measured in vivo. Vascular reactivity and morphometry were assessed in small pulmonary arteries (SPA). Protein expression of vascular mediators was determined. LHL lambs had higher basal PAP and a greater increment in PAP after NG-nitro-l-arginine methyl ester (20.9 ± 1.1 vs. 13.7 ± 0.5 mmHg; 39.9 ± 5.0 vs. 18.3 ± 1.3 mmHg, respectively). SPA from LHL had a greater maximal contraction to K+ (1.34 ± 0.05 vs. 1.16 ± 0.05 N/m), higher sensitivity to endothelin-1 and nitroprusside, and persistence of dilatation following blockade of soluble guanylate cyclase. The heart ratio of the right ventricle-to-left ventricle plus septum was higher in the LHL relative to LLL. The muscle area of SPA (29.3 ± 2.9 vs. 21.1 ± 1.7%) and the protein expression of endothelial nitric oxide synthase (1.7 ± 0.1 vs. 1.1 ± 0.2), phosphodiesterase (1.4 ± 0.1 vs. 0.7 ± 0.1), and Ca2+-activated K+ channel (0.76 ± 0.16 vs. 0.30 ± 0.01) were greater in LHL compared with LLL lambs. In contrast, LHL had decreased heme oxygenase-1 expression (0.82 ± 0.26 vs. 2.22 ± 0.44) and carbon monoxide production (all P < 0.05). Postnatal pulmonary hypertension induced by 70% of pregnancy at HA promotes cardiopulmonary remodeling that persists at sea level.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile. Avda. Salvador 486, Providencia, CP 6640871, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang J, Dong MQ, Liu ML, Xu DQ, Luo Y, Zhang B, Liu LL, Xu M, Zhao PT, Gao YQ, Li ZC. Tanshinone IIA modulates pulmonary vascular response to agonist and hypoxia primarily via inhibiting Ca2+ influx and release in normal and hypoxic pulmonary hypertension rats. Eur J Pharmacol 2010; 640:129-38. [PMID: 20460121 DOI: 10.1016/j.ejphar.2010.04.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/09/2010] [Accepted: 04/23/2010] [Indexed: 02/01/2023]
Abstract
The present study was designed to investigate the vascular effects and underlying mechanisms of tanshinone IIA on isolated rat pulmonary artery. Isometric tension was recorded in the arteries from normal and hypoxic pulmonary hypertension rats under normoxia or hypoxia condition. The results showed that tanshinone IIA exerted a biphasic effect on rat pulmonary artery. The constriction was attenuated by endothelium-denudation but was enhanced by inhibition of nitric oxide synthase. Pretreatment with tetraethylammonium (Ca2+-activated K+ channel inhibitor) upward shifted the concentration-response curve without affecting the maximum dilatation. Pretreatment with zinc protoporphyrin IX (heme oxygenase-1 inhibitor), 4-aminopyridine (KV channel inhibitor), glibenclamide (KATP channel inhibitor) or BaCl2 (inwardly rectifying K+ channel inhibitor) did not affect the vasoreactivity. Meanwhile, tanshinone IIA almost abolished vasoconstriction induced by extracellular Ca2+. Under hypoxia condition, tanshinone IIA eliminated acute hypoxia-induced initial contraction, potentiated following vasorelaxation, attenuated and reversed sustained contraction to relaxation in pulmonary artery from normal rats, and reversed phenylephrine-induced sustained constriction to sustained relaxation in remodeled pulmonary artery from hypoxic pulmonary hypertension rats. We concluded that the mild constrictive effect induced by tanshinone IIA was affected by integrity of endothelium and production of nitric oxide, while the potent dilative effect was endothelium-independent and produced primarily by inhibiting extracellular Ca2+ influx and partially by inhibiting intracellular Ca2+ release, as well as activating Ca2+-activated K+ channels. The modulation of tanshinone IIA on pulmonary vasoreactivity under both acute and chronic hypoxia condition may provide a new insight for curing hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abraham NG, Cao J, Sacerdoti D, Li X, Drummond G. Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 2009; 297:F1137-52. [PMID: 19570878 PMCID: PMC2781329 DOI: 10.1152/ajprenal.90449.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 06/09/2009] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function.
Collapse
Affiliation(s)
- Nader G Abraham
- New York Medical College, Department of Pharmacology, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
18
|
Ahmad M, Zhao X, Kelly MR, Kandhi S, Perez O, Abraham NG, Wolin MS. Heme oxygenase-1 induction modulates hypoxic pulmonary vasoconstriction through upregulation of ecSOD. Am J Physiol Heart Circ Physiol 2009; 297:H1453-61. [PMID: 19666846 DOI: 10.1152/ajpheart.00315.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-denuded bovine pulmonary arteries (BPA) contract to hypoxia through a mechanism potentially involving removing a superoxide-derived hydrogen peroxide-mediated relaxation. BPA organ cultured for 24 h with 0.1 mM cobalt chloride (CoCl(2)) to increase the expression and activity of heme oxygenase-1 (HO-1) is accompanied by a decrease in 5 microM lucigenin-detectable superoxide and an increase in horseradish peroxidase-luminol detectable peroxide levels. Force development to KCl in BPA was not affected by increases in HO-1, but the hypoxic pulmonary vasoconstriction (HPV) response was decreased. Organ culture with a HO-1 inhibitor (10 microM chromium mesoporphyrin) reversed the effects of HO-1 on HPV and peroxide. Treatment of HO-1-induced BPA with extracellular catalase resulted in reversal of the attenuation of HPV without affecting the force development to KCl. Increasing intracellular peroxide scavenging with 0.1 mM ebselen increased force development to KCl and partially reversed the decrease in HPV seen on induction of HO-1. HO-1 induction increases extracellular (ec) superoxide dismutase (SOD) expression without changing Cu,Zn-SOD and Mn-SOD levels. HO-1-induced BPA rings treated with the copper chelator 10 mM diethyldithiocarbamate to inactivate ecSOD and Cu,Zn-SOD showed increased superoxide and decreased peroxide to levels equal to non-HO-1-induced rings, whereas the addition of SOD to freshly isolated BPA rings attenuated HPV similar to HO-1 induction with CoCl(2). Therefore, HO-1 induction in BPA increases ecSOD expression associated with enhanced generation of peroxide in amounts that may not be adequately removed during hypoxia, leading to an attenuation of HPV.
Collapse
Affiliation(s)
- Mansoor Ahmad
- Departments of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Peterson SJ, Kim DH, Li M, Positano V, Vanella L, Rodella LF, Piccolomini F, Puri N, Gastaldelli A, Kusmic C, L'Abbate A, Abraham NG. The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J Lipid Res 2009; 50:1293-304. [PMID: 19224872 PMCID: PMC2694329 DOI: 10.1194/jlr.m800610-jlr200] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We examined mechanisms by which L-4F reduces obesity and diabetes in obese (ob) diabetic mice. We hypothesized that L-4F reduces adiposity via increased pAMPK, pAKT, HO-1, and increased insulin receptor phosphorylation in ob mice. Obese and lean mice were divided into five groups: lean, lean-L-4F-treated, ob, ob-L-4F-treated, and ob-L-4F-LY294002. Food intake, insulin, glucose adipocyte stem cells, pAMPK, pAKT, CB1, and insulin receptor phosphorylation were determined. Subcutaneous (SAT) and visceral adipose tissue (VAT) were determined by MRI and hepatic lipid content by magnetic resonance spectroscopy. SAT and VAT volumes decreased in ob-L-4F-treated animals compared with control. L-4F treatment decreased hepatic lipid content and increased the numbers of small adipocytes (P < 0.05) and phosphorylation of insulin receptors. L-4F decreased CB1 in SAT and VAT and increased pAKT and pAMPK in endothelium. L-4F-mediated improvement in endothelium was prevented by LY294002. Inhibition of pAKT and pAMPK by LY294002 was associated with an increase in glucose levels. Upregulation of HO-1 by L-4F produced adipose remodeling and increased the number of small differentiated adipocytes. The anti-obesity effects of L-4F are manifested by a decrease in visceral fat content with reciprocal increases in adiponectin, pAMPK, pAKT, and phosphorylation of insulin receptors with improved insulin sensitivity.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cao J, Drummond G, Inoue K, Sodhi K, Li XY, Omura S. Upregulation of heme oxygenase-1 combined with increased adiponectin lowers blood pressure in diabetic spontaneously hypertensive rats through a reduction in endothelial cell dysfunction, apoptosis and oxidative stress. Int J Mol Sci 2008; 9:2388-2406. [PMID: 19330083 PMCID: PMC2635644 DOI: 10.3390/ijms9122388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 11/22/2008] [Accepted: 11/28/2008] [Indexed: 12/12/2022] Open
Abstract
This study was designed to investigate the effect of increased levels of HO-1 on hypertension exacerbated by diabetes. Diabetic spontaneously hypertensive rat (SHR) and WKY (control) animals were treated with streptozotocin (STZ) to induce diabetes and stannous chloride (SnCl2) to upregulate HO-1. Treatment with SnCl2 not only attenuated the increase of blood pressure (p<0.01), but also increased HO-1 protein content, HO activity and plasma adiponectin levels, decreased the levels of superoxide and 3-nitrotyrosine (NT), respectively. Reduction in oxidative stress resulted in the increased expression of Bcl-2 and AKT with a concomitant reduction in circulating endothelial cells (CEC) in the peripheral blood (p<0.005) and an improvement of femoral reactivity (response to acetylcholine). Thus induction of HO-1 accompanied with increased plasma adiponectin levels in diabetic hypertensive rats alters the phenotype through a reduction in oxidative stress, thereby permitting endothelial cells to maintain an anti-apoptotic environment and the restoration of endothelial responses thus preventing hypertension.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595 USA. E-Mails:
(G. D.);
(K. I.);
(K. S.);
(S. O.)
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853 China. E-Mail:
(J. C.);
(X. L.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1-914-594-4805; Fax: +1-914-594-4273
| | - George Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595 USA. E-Mails:
(G. D.);
(K. I.);
(K. S.);
(S. O.)
| | - Kazuyoshi Inoue
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595 USA. E-Mails:
(G. D.);
(K. I.);
(K. S.);
(S. O.)
| | - Komal Sodhi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595 USA. E-Mails:
(G. D.);
(K. I.);
(K. S.);
(S. O.)
| | - Xiao Ying Li
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853 China. E-Mail:
(J. C.);
(X. L.)
| | - Shinji Omura
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595 USA. E-Mails:
(G. D.);
(K. I.);
(K. S.);
(S. O.)
| |
Collapse
|
21
|
Ward JPT. Oxygen sensors in context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:1-14. [PMID: 18036551 DOI: 10.1016/j.bbabio.2007.10.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/21/2007] [Accepted: 10/24/2007] [Indexed: 01/02/2023]
Abstract
The ability to adapt to changes in the availability of O2 provides a critical advantage to all O2-dependent lifeforms. In mammals it allows optimal matching of the O2 requirements of the cells to ventilation and O2 delivery, underpins vital changes to the circulation during the transition from fetal to independent, air-breathing life, and provides a means by which dysfunction can be limited or prevented in disease. Certain tissues such as the carotid body, pulmonary circulation, neuroepithelial bodies and fetal adrenomedullary chromaffin cells are specialised for O2 sensing, though most others show for example alterations in transcription of specific genes during hypoxia. A number of mechanisms are known to respond to variations in PO2 over the physiological range, and have been proposed to fulfil the function as O2 sensors; these include modulation of mitochondrial oxidative phosphorylation and a number of O2-dependent synthetic and degradation pathways. There is however much debate as to their relative importance within and between specific tissues, whether their O2 sensitivity is actually appropriate to account for their proposed actions, and in particular their modus operandi. This review discusses our current understanding of how these mechanisms may operate, and attempts to put them into the context of the actual PO2 to which they are likely to be exposed. An important point raised is that the overall O2 sensitivity (P50) of any O2-dependent mechanism does not necessarily correlate with that of its O2 sensor, as the coupling function between the two may be complex and non-linear. In addition, although the bulk of the evidence suggests that mitochondria act as the key O2 sensor in carotid body, pulmonary artery and chromaffin cells, the signalling mechanisms by which alterations in their function are translated into a response appear to differ fundamentally, making a global unified theory of O2 sensing unlikely.
Collapse
Affiliation(s)
- Jeremy P T Ward
- King's College London School of Medicine, Division of Asthma, Allergy and Lung Biology, London SE1 9RT, UK
| |
Collapse
|
22
|
Lin MT, Hessinger DA, Pearce WJ, Longo LD. Modulation of BK channel calcium affinity by differential phosphorylation in developing ovine basilar artery myocytes. Am J Physiol Heart Circ Physiol 2006; 291:H732-40. [PMID: 16840736 DOI: 10.1152/ajpheart.01357.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large-conductance Ca2+-sensitive K+ (BK) channel activity is greater in basilar artery smooth muscle cells (SMCs) of the fetus than the adult, and this increased activity is associated with a lower BK channel Ca2+ set point (Ca0). Associated PKG activity is three times greater in BK channels from fetal than adult myocytes, whereas associated PKA activity is three times greater in channels from adult than fetal myocytes. We hypothesized that the change in Ca0 during development results from different levels of channel phosphorylation. In inside-out membrane patch preparations of basilar artery SMCs from adult and fetal sheep, we measured BK channel activity in four states of phosphorylation: native, dephosphorylated, PKA phosphorylated, and PKG phosphorylated. BK channels from adult and fetus exhibited similar voltage-activation curves, Ca0 values, and Ca2+ dissociation constants (Kd) for the dephosphorylated, PKA phosphorylated, and PKG phosphorylated states. However, voltage-activation curves of native fetal BK channels shifted significantly to the left of those of the adult, with Ca0 and Kd values half those of the adult. For the two age groups at each of the phosphorylation states, Ca0 and Kd produced linear relations when plotted against voltage at half-maximal channel activation. We conclude that the Ca0 and Kd values of the BK channel can be modulated by differential channel phosphorylation. Lower Ca0 and Kd values in BK channels of fetal myocytes can be explained by a greater extent of channel phosphorylation of fetal than adult myocytes.
Collapse
Affiliation(s)
- Mike T Lin
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
23
|
Naik JS, Walker BR. Role of vascular heme oxygenase in reduced myogenic reactivity following chronic hypoxia. Microcirculation 2006; 13:81-8. [PMID: 16459321 DOI: 10.1080/10739680500466301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Exposure to chronic hypoxia (CH) results in a persistent endothelium-dependent vascular smooth muscle hyperpolarization that diminishes vasoconstrictor reactivity. Experiments were performed to test the hypothesis that products of both cytochrome P450 epoxygenase (CYP) and heme oxygenase (HO) are required for the persistent diminished myogenic reactivity following CH. METHODS The authors examined myogenic responses of mesenteric arteries isolated from control and CH (48 h; P(B) = 380 mmHg) rats in the presence of a HO inhibitor (zinc protoporphyrin IX; ZnPPIX) or combined HO and CYP epoxygenase inhibition (sulfaphenazole). Arteries were isolated and cannulated and the vascular smooth muscle was loaded with the Ca2+ indicator Fura-2. RESULTS Control vessels maintained their internal diameter in response to step increases in intraluminal pressure, whereas arteries from CH animals passively distended. ZnPPIX augmented myogenic reactivity and [Ca2+] in arteries from CH animals. Combined administration of sulfaphenazole and ZnPPIX did not have an additional effect compared to ZnPPIX alone. Myogenic reactivity in control vessels was not altered by ZnPPIX or ZnPPIX + sulfaphenazole. CONCLUSIONS HO appears to play a role in regulating myogenic reactivity following CH. Furthermore, these data suggest that products of HO and CYP are both required for the observed attenuation in vasoreactivity following CH.
Collapse
Affiliation(s)
- Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | |
Collapse
|
24
|
Di Pascoli M, Rodella L, Sacerdoti D, Bolognesi M, Turkseven S, Abraham NG. Chronic CO levels has a beneficial effect on vascular relaxation in diabetes. Biochem Biophys Res Commun 2006; 340:935-43. [PMID: 16403456 DOI: 10.1016/j.bbrc.2005.12.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
Heme oxygenase (HO) has been shown to provide cytoprotection to the vascular system in diabetes. Isolated femoral arteries from diabetic rats treated with cobalt protoporphyrin (CoPP) exhibited increased relaxation to acetylcholine (ACh), which was markedly decreased in control diabetic rats. In control rats treated with either CoPP or with CO releasing molecules-3 (CORM-3), but not in rats treated with biliverdin, we observed an increased dilatory response to ACh. The inhibition of guanylyl-cyclase (GC) with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) caused a contractile response to ACh in control rats and in biliverdin-treated rats, while in rats treated with CoPP and CORM-3, the ACh dilatory effect was only decreased. Moreover, the inhibition of HO with chromium mesoporphyrin did not change the response to ACh in rats treated with CoPP, suggesting that the improving effect of overproduction of CO on vascular reactivity is due to a decrease in iNOS and the beneficial effect on vascular function.
Collapse
Affiliation(s)
- Marco Di Pascoli
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | |
Collapse
|
25
|
Botros FT, Schwartzman ML, Stier CT, Goodman AI, Abraham NG. Increase in heme oxygenase-1 levels ameliorates renovascular hypertension. Kidney Int 2005; 68:2745-55. [PMID: 16316349 DOI: 10.1111/j.1523-1755.2005.00745.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The heme oxygenase system (HO-1 and HO-2) catalyzes the conversion of heme to free iron, carbon monoxide (CO), a vasodepressor, and biliverdin, which is further converted to bilirubin, an antioxidant. HO-1 induction has been shown to suppress arachidonic acid metabolism by cytochrome P450 (CYP450) monooxygenases and cyclooxygenases (COX), and to decrease blood pressure in spontaneously hypertensive rats (SHR). The Goldblatt 2K1C model is a model of renovascular hypertension in which there is increased expression of COX-2 in the macula densa and increased renin release from the juxtaglomerular apparatus of the clipped kidney. We examined whether HO-1 overexpression, as a prophylactic approach, would attenuate renovascular hypertension and evaluated potential mechanisms that may account for its effect. METHODS 2K1C rats were treated with cobalt protoporphyrin (CoPP) or tin mesoporphyrin (SnMP) one day before surgery and weekly for three weeks thereafter. We measured systolic blood pressure, HO activity, HO-1, HO-2, COX-1 and COX-2 protein expression, heme content, and nitrotyrosine levels as indices of oxidative stress. Urinary prostaglandin excretion (PGE2), plasma renin activity (PRA), and plasma aldosterone levels were also measured. RESULTS CoPP administration induced renal HO-1 expression by 20-fold and HO activity by 6-fold. This was associated with a reduction in heme content, nitrotyrosine levels, COX-2 expression and urinary PGE2 excretion, and attenuation of the development of hypertension in the 2K1C rats. There was no decrease in plasma renin activity; however, plasma aldosterone levels were significantly lower. In the 2K1C SnMP-treated rats, blood pressure was significantly higher than that of untreated 2K1C rats throughout the study, and the difference in the size of the smaller left clipped kidney compared to the nonclipped right kidney was significantly increased. CONCLUSION These findings define an action of prolonged HO-1 induction to interrupt and counteract the influence of the renin-angiotensin-aldosterone system (RAAS) to increase in blood pressure in the 2K1C model of renovascular hypertension. Multiple mechanisms include a decrease in oxidative stress as indicated by the decrease in cellular heme and nitrotyrosine levels, an anti-inflammatory action as evidenced by a decrease in COX-2 and PGE2, interference with the action of angiontensin II (Ang II) as evidenced by an increase in PRA in the face of a decrease in PGE2 and aldosterone, as well as the inhibition of aldosterone synthesis.
Collapse
Affiliation(s)
- Fady T Botros
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
26
|
Harder Y, Amon M, Schramm R, Georgi M, Banic A, Erni D, Menger MD. Heat shock preconditioning reduces ischemic tissue necrosis by heat shock protein (HSP)-32-mediated improvement of the microcirculation rather than induction of ischemic tolerance. Ann Surg 2005; 242:869-78, discussion 878-9. [PMID: 16327497 PMCID: PMC1409874 DOI: 10.1097/01.sla.0000189671.06782.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Supraphysiologic stress induces a heat shock response, which may exert protection against ischemic necrosis. Herein we analyzed in vivo whether the induction of heat shock protein (HSP) 32 improves survival of chronically ischemic myocutaneous tissue, and whether this is based on amelioration of microvascular perfusion or induction of ischemic tolerance. METHODS The dorsal skin of mice was subjected to local heat preconditioning (n = 8) 24 hours before surgery. In additional heat-preconditioned animals (n = 8), HSP-32 was inhibited by tin-protoporphyrin-IX. Unconditioned animals served as controls (n = 8). A random-pattern myocutaneous flap was elevated in the back of the animals and fixed into a dorsal skinfold chamber. The microcirculation, edema formation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day period using intravital fluorescence microscopy. RESULTS HSP-32 protein expression was observed only in heat-preconditioned but not in unconditioned flaps. Heat preconditioning induced arteriolar dilation, which was associated with a significant improvement of both arteriolar blood flow and capillary perfusion in the distal part of the flap. Further, heat shock reduced interstitial edema formation, attenuated apoptotic cell death, and almost completely abrogated the development of flap necrosis (4% +/- 1% versus controls: 53% +/- 5%; P[r] < 0.001). Most strikingly, inhibition of HSP-32 by tin-protoporphyrin-IX completely blunted the preconditioning-induced improvement of microcirculation and resulted in manifestation of 72% +/- 4% necrosis. CONCLUSION Local heat preconditioning of myocutaneous tissue markedly increases flap survival by maintaining adequate nutritive perfusion rather than inducing ischemic tolerance. The protection is caused by the increased arteriolar blood flow due to significant arteriolar dilation, which is mediated through the carbon monoxide-associated vasoactive properties of HSP-32.
Collapse
Affiliation(s)
- Yves Harder
- Institute for Clinical & Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Turkseven S, Kruger A, Mingone CJ, Kaminski P, Inaba M, Rodella LF, Ikehara S, Wolin MS, Abraham NG. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. Am J Physiol Heart Circ Physiol 2005; 289:H701-7. [PMID: 15821039 DOI: 10.1152/ajpheart.00024.2005] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P < 0.05). Upregulation of HO-1 expression by intermittent administration of cobalt protoporphyrin, an inducer of HO-1 protein and activity, resulted in a robust increase in EC-SOD but no significant change in Cu-Zn-SOD. Administration of tin mesoporphyrin, an inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.
Collapse
Affiliation(s)
- Saadet Turkseven
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Adachi T, Ishikawa K, Hida W, Matsumoto H, Masuda T, Date F, Ogawa K, Takeda K, Furuyama K, Zhang Y, Kitamuro T, Ogawa H, Maruyama Y, Shibahara S. Hypoxemia and blunted hypoxic ventilatory responses in mice lacking heme oxygenase-2. Biochem Biophys Res Commun 2004; 320:514-22. [PMID: 15219859 DOI: 10.1016/j.bbrc.2004.05.195] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Indexed: 11/20/2022]
Abstract
Heme oxygenase (HO) catalyzes physiological heme degradation and consists of two structurally related isozymes, HO-1 and HO-2. Here we show that HO-2-deficient (HO-2(-/-)) mice exhibit hypoxemia and hypertrophy of the pulmonary venous myocardium associated with increased expression of HO-1. The hypertrophied venous myocardium may reflect adaptation to persistent hypoxemia. HO-2(-/-) mice also show attenuated ventilatory responses to hypoxia (10% O2) with normal responses to hypercapnia (10% CO2), suggesting the impaired oxygen sensing. Importantly, HO-2(-/-) mice exhibit normal breathing patterns with normal arterial CO2 tension and retain the intact alveolar architecture, thereby excluding hypoventilation and shunting as causes of hypoxemia. Instead, ventilation-perfusion mismatch is a likely cause of hypoxemia, which may be due to partial impairment of the lung chemoreception probably at pulmonary artery smooth muscle cells. We therefore propose that HO-2 is involved in oxygen sensing and responsible for the ventilation-perfusion matching that optimizes oxygenation of pulmonary blood.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hartsfield CL, McMurtry IF, Ivy DD, Morris KG, Vidmar S, Rodman DM, Fagan KA. Cardioprotective and vasomotor effects of HO activity during acute and chronic hypoxia. Am J Physiol Heart Circ Physiol 2004; 287:H2009-15. [PMID: 15217799 DOI: 10.1152/ajpheart.00394.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged hypoxia leads to the development of pulmonary hypertension. Recent reports have suggested enhancement of heme oxygenase (HO), the major source of intracellular carbon monoxide (CO), prevents hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Therefore, we hypothesized that inhibition of HO activity by tin protoporphyrin (SnPP) would exacerbate the development of pulmonary hypertension. Rats were injected weekly with either saline or SnPP (50 micromol/kg) and exposed to hypobaric hypoxia or room air for 5 wk. Pulmonary and carotid arteries were catheterized, and animals were allowed to recover for 48 h. Pulmonary and systemic pressures, along with cardiac output, were recorded during room air and acute 10% O2 breathing in conscious rats. No difference was detected in pulmonary artery pressure between saline- and SnPP-treated animals in either normoxic or hypoxic groups. However, blockade of HO activity altered both systemic and pulmonary vasoreactivity to acute hypoxic challenge. Despite no change in baseline pulmonary artery pressure, all rats treated with SnPP had decreased ratio of right ventricular (RV) weight to left ventricular (LV) plus septal (S) weight (RV/LV + S) compared with saline-treated animals. Echocardiograms suggested dilatation of the RV and decreased RV function in hypoxic SnPP-treated rats. Together these data suggest that inhibition of HO activity and CO production does not exacerbate pulmonary hypertension, but rather that HO and CO may be involved in mediating pulmonary and systemic vasoreactivity to acute hypoxia and hypoxia-induced RV function.
Collapse
Affiliation(s)
- Cynthia L Hartsfield
- Div of Pulmonary Sciences and Critical Care Medicine, Univ. of Colorado Health Sciences Center, 4200 East Ninth Ave., B-133, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|