1
|
Sandovici I, Knee O, Lopez-Tello J, Shreeve N, Fowden AL, Sferruzzi-Perri AN, Constância M. A genetically small fetus impairs placental adaptations near term. Dis Model Mech 2024; 17:dmm050719. [PMID: 39207227 PMCID: PMC11381921 DOI: 10.1242/dmm.050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The placenta is a gatekeeper between the mother and fetus, adapting its structure and functions to support optimal fetal growth. Studies exploring adaptations of placentae that support the development of genetically small fetuses are lacking. Here, using a mouse model of impaired fetal growth, achieved by deleting insulin-like growth factor 2 (Igf2) in the epiblast, we assessed placental nutrient transfer and umbilical artery (UA) blood flow during late gestation. At embryonic day (E) 15.5, we observed a decline in the trans-placental flux of glucose and system A amino acids (by using 3H-MeG and 14C-MeAIB), proportionate to the diminished fetal size, whereas UA blood flow was normal. However, at E18.5, the trans-placental flux of both tracers was disproportionately decreased and accompanied by blunted UA blood flow. Feto-placental growth and nutrient transfer were more impaired in female conceptuses. Thus, reducing the fetal genetic demand for growth impairs the adaptations in placental blood flow and nutrient transport that normally support the fast fetal growth during late gestation. These findings have important implications for our understanding of the pathophysiology of pregnancies afflicted by fetal growth restriction.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Olatejumoye Knee
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
2
|
Umapathy A, Clark A, Sehgal A, Karanam V, Rajaraman G, Kalionis B, Jones H, James J, Murthi P. Molecular regulators of defective placental and cardiovascular development in fetal growth restriction. Clin Sci (Lond) 2024; 138:761-775. [PMID: 38904187 PMCID: PMC11193155 DOI: 10.1042/cs20220428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Placental insufficiency is one of the major causes of fetal growth restriction (FGR), a significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. As well as the acute consequences of being born too small, affected offspring are at increased risk of cardiovascular disease, diabetes and other chronic diseases in later life. The placenta and heart develop concurrently, therefore placental maldevelopment and function in FGR may have profound effect on the growth and differentiation of many organ systems, including the heart. Hence, understanding the key molecular players that are synergistically linked in the development of the placenta and heart is critical. This review highlights the key growth factors, angiogenic molecules and transcription factors that are common causes of defective placental and cardiovascular development.
Collapse
Affiliation(s)
- Anandita Umapathy
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
- Auckland Bioengineering Institute, Bioengineering Institute, New Zealand
| | - Arvind Sehgal
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia and Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Vijaya Karanam
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and Royal Women’s Hospital, Victoria, Australia
| | - Gayathri Rajaraman
- First year college, Victoria University, St Albans, Victoria 3021, Australia
| | - Bill Kalionis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and Royal Women’s Hospital, Victoria, Australia
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women’s Hospital, Victoria, Australia
| | - Helen N. Jones
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, U.S.A
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, U.S.A
| | - Jo James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
- Auckland Bioengineering Institute, Bioengineering Institute, New Zealand
| | - Padma Murthi
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and Royal Women’s Hospital, Victoria, Australia
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women’s Hospital, Victoria, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Singh N, Chérin E, Roa CF, Soenjaya Y, Wodlinger B, Zheng G, Wilson BC, Foster FS, Demore CEM. Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-clinical Demonstration. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:457-466. [PMID: 38238200 DOI: 10.1016/j.ultrasmedbio.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE High-frequency, high-resolution transrectal micro-ultrasound (micro-US: ≥15 MHz) imaging of the prostate is emerging as a beneficial tool for scoring disease risk and accurately targeting biopsies. Adding photoacoustic (PA) imaging to visualize abnormal vascularization and accumulation of contrast agents in tumors has potential for guiding focal therapies. In this work, we describe a new imaging platform that combines a transrectal micro-US system with transurethral light delivery for PA imaging. METHODS A clinical transrectal micro-US system was adapted to acquire PA images synchronous to a tunable laser pulse. A transurethral side-firing optical fiber was developed for light delivery. A polyvinyl chloride (PVC)-plastisol phantom was developed and characterized to image PA contrast agents in wall-less channels. After resolution measurement in water, PA imaging was demonstrated in phantom channels with dyes and biodegradable nanoparticle contrast agents called porphysomes. In vivo imaging of a tumor model was performed, with porphysomes administered intravenously. RESULTS Photoacoustic imaging data were acquired at 5 Hz, and image reconstruction was performed offline. PA image resolution at a 14-mm depth was 74 and 261 μm in the axial and lateral directions, respectively. The speed of sound in PVC-plastisol was 1383 m/s, and the attenuation was 4 dB/mm at 20 MHz. PA signal from porphysomes was spectrally unmixed from blood signals in the tumor, and a signal increase was observed 3 h after porphysome injection. CONCLUSION A combined transrectal micro-US and PA imaging system was developed and characterized, and in vivo imaging demonstrated. High-resolution PA imaging may provide valuable additional information for diagnostic and therapeutic applications in the prostate.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| | | | - Carlos-Felipe Roa
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margret Cancer Center, Toronto, ON, Canada
| | - Brian C Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margret Cancer Center, Toronto, ON, Canada
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christine E M Demore
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Dibbon KC, Mercer GV, Maekawa AS, Hanrahan J, Steeves KL, Ringer LCM, Simpson AJ, Simpson MJ, Baschat AA, Kingdom JC, Macgowan CK, Sled JG, Jobst KJ, Cahill LS. Polystyrene micro- and nanoplastics cause placental dysfunction in mice†. Biol Reprod 2024; 110:211-218. [PMID: 37724921 DOI: 10.1093/biolre/ioad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 μm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Katherine C Dibbon
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alexandre S Maekawa
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lauren C M Ringer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet A Baschat
- Department of Gynecology & Obstetrics, Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Zurub RE, Cariaco Y, Wade MG, Bainbridge SA. Microplastics exposure: implications for human fertility, pregnancy and child health. Front Endocrinol (Lausanne) 2024; 14:1330396. [PMID: 38239985 PMCID: PMC10794604 DOI: 10.3389/fendo.2023.1330396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Plastics found in our everyday environment are becoming an increasing concern for individual and population-level health, and the extent of exposure and potential toxic effects of these contaminants on numerous human organ systems are becoming clear. Microplastics (MPs), tiny plastic particles, appear to have many of the same biological effects as their plastic precursors and have the compounded effect of potential accumulation in different organs. Recently, microplastic accumulation was observed in the human placenta, raising important questions related to the biological effects of these contaminants on the health of pregnancies and offspring. These concerns are particularly heightened considering the developmental origins of health and disease (DOHaD) framework, which postulates that in utero exposure can programme the lifelong health of the offspring. The current review examines the state of knowledge on this topic and highlights important avenues for future investigation.
Collapse
Affiliation(s)
- Rewa E. Zurub
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael G. Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Herrera CL, Kim MJ, Do QN, Owen DM, Fei B, Twickler DM, Spong CY. The human placenta project: Funded studies, imaging technologies, and future directions. Placenta 2023; 142:27-35. [PMID: 37634371 PMCID: PMC11257151 DOI: 10.1016/j.placenta.2023.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored. Thus, in 2014, the National Institute of Child Health and Human Development launched the Human Placenta Project (HPP). As of May 2023, the HPP has awarded over $101 million in research funds, resulting in 41 funded studies and 459 publications. We conducted a comprehensive review of these studies and publications to identify areas of funded research, advances in those areas, limitations of current research, and continued areas of need. This paper will specifically review the funded studies by the HPP, followed by an in-depth discussion on advances and gaps within placental-focused imaging. We highlight the progress within magnetic reasonance imaging and ultrasound, including development of tools for the assessment of placental function and structure.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Meredith J Kim
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David M Owen
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Baowei Fei
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Diane M Twickler
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Y Spong
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA
| |
Collapse
|
7
|
Saghian R, Cahill LS, Debebe SK, Rahman A, Serghides L, McDonald CR, Weckman AM, Kain KC, Sled JG. Allometric scaling relationships in mouse placenta. J R Soc Interface 2022; 19:20220579. [PMID: 36349448 PMCID: PMC9653247 DOI: 10.1098/rsif.2022.0579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 08/29/2023] Open
Abstract
Fetal growth and maturation are highly intertwined with placental development during pregnancy. Here we used placental vascular morphology measurements (depth and span) as well as the umbilical artery (UA) diameter of previously published studies on three different mouse strains (C57BL6/J, CD-1 and BALB/c), which were exposed to different conditions (combination antiretroviral therapy, chronic maternal hypoxia and malaria infection) at different embryonic days, to test the hypothesis that placental vascularization and specifically the UA size affect conceptus weight. Interaction of each study parameter with embryonic day, strain and exposure to treatments are studied to investigate the stability of the scaling relationships across and/or within strains and conditions. In addition, the effect of UA diameter on the placental growth measurements (depth and span) is studied. These results show that the power-law scaling relationship of conceptus weight and placental depth with the UA diameter is conserved across strains and conditions with the scaling exponent of approximately 3/8 and 5/8, respectively. By contrast, the relationship between conceptus weight and either the placental span or depth is different between strains and conditions, suggesting multiple mechanisms of vascular adaptation.
Collapse
Affiliation(s)
- Rojan Saghian
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lindsay S. Cahill
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Department of Chemistry, Memorial University of Newfoundland, Newfoundland and Labrador, St John’s, Canada
| | - Sarah K. Debebe
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Anum Rahman
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Lena Serghides
- Department of Immunology and Institute of Medical Sciences, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Women’s College Research Institute, Women’s College Hospital, Toronto, Ontario, Canada
| | - Chloe R. McDonald
- Institute of Medical Science, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M. Weckman
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C. Kain
- Institute of Medical Science, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John G. Sled
- Mouse Imaging Centre, 25 Orde Street, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Xu C, Sellke FW, Abid MR. Assessments of microvascular function in organ systems. Am J Physiol Heart Circ Physiol 2022; 322:H891-H905. [PMID: 35333121 PMCID: PMC9037705 DOI: 10.1152/ajpheart.00589.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/23/2023]
Abstract
Microvascular disease plays critical roles in the dysfunction of all organ systems, and there are many methods available to assess the microvasculature. These methods can either assess the target organ directly or assess an easily accessible organ such as the skin or retina so that inferences can be extrapolated to the other systems and/or related diseases. Despite the abundance of exploratory research on some of these modalities and their possible applications, there is a general lack of clinical use. This deficiency is likely due to two main reasons: the need for standardization of protocols to establish a role in clinical practice or the lack of therapies targeted toward microvascular dysfunction. Also, there remain some questions to be answered about the coronary microvasculature, as it is complex, heterogeneous, and difficult to visualize in vivo even with advanced imaging technology. This review will discuss novel approaches that are being used to assess microvasculature health in several key organ systems, and evaluate their clinical utility and scope for further development.
Collapse
Affiliation(s)
- Cynthia Xu
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
9
|
Sicotte B, Brochu M. Fetal Sex and Fetal Environment Interact to Alter Diameter, Myogenic Tone, and Contractile Response to Thromboxane Analog in Rat Umbilical Cord Vessels. Front Physiol 2021; 12:620058. [PMID: 34603067 PMCID: PMC8481594 DOI: 10.3389/fphys.2021.620058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Fetal growth needs adequate blood perfusion from both sides of the placenta, on the maternal side through the uterine vessels and on the fetal side through the umbilical cord. In a model of intrauterine growth restriction (IUGR) induced by reduced blood volume expansion, uterine artery remodeling was blunted. The aim of this study is to determine if IUGR and fetus sex alter the functional and mechanical parameters of umbilical cord blood vessels. Pregnant rats were given a low sodium (IUGR) or a control diet for the last 7 days of pregnancy. Umbilical arteries and veins from term (22 day) fetal rats were isolated and set-up in wire myographs. Myogenic tone, diameter, length tension curve and contractile response to thromboxane analog U46619 and serotonin (5-HT) were measured. In arteries from IUGR fetuses, myogenic tone was increased in both sexes while diameter was significantly greater only in male fetuses. In umbilical arteries collected from the control group, the maximal contraction to U46619 was lower in females than males. Compared to the control groups, the maximal response decreased in IUGR male arteries and increased in female ones, thus abolishing the sexual dimorphism observed in the control groups. Reduced contractile response to U46619 was observed in the IUGR vein of both sexes. No difference between groups was observed in response to 5HT in arteries. In conclusion, the change in parameters of the umbilical cord blood vessels in response to a mild insult seems to show adaptation that favors better exchange of deoxygenated and wasted blood from the fetus to the placenta with increased myogenic tone.
Collapse
Affiliation(s)
- Benoit Sicotte
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Michèle Brochu
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Saghian R, Cahill L, Rahman A, Steinman J, Stortz G, Kingdom J, Macgowan C, Sled J. Interpretation of wave reflections in the umbilical arterial segment of the feto-placental circulation: computational modeling of the feto-placental arterial tree. IEEE Trans Biomed Eng 2021; 68:3647-3658. [PMID: 34010124 DOI: 10.1109/tbme.2021.3082064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Placental vascular abnormalities are associated with a host of pregnancy complications including placenta mediated fetal growth restriction (FGR). Umbilical arterial (UA) Doppler ultrasound velocity waveforms are widely used in the diagnosis of underlying placental vascular abnormalities in pregnancies with suspected FGR, which greatly help prevent stillbirth via ongoing fetal monitoring and timely delivery. However, the sensitivity of UA Doppler diagnosis diminishes late in gestation. Our goal was to present a generalized wave decomposition method to compute forward and reflected components from UA waveforms. A detailed anatomical based model was also developed to explain observed UA flow waveform and to explore how vascular properties affect the shape of flow wave components. Using pregnant mice and high frequency ultrasound microscopy, we obtained in utero Doppler and M- mode ultrasound measurements in 15 fetuses UA. Following ultrasound, the placentas were collected and perfused with contrast agent to obtain high-resolution 3D images of the feto-placental arteries. Model results indicate the significant role of terminal load impedance (capillary and/or veins) in creating positive or negative reflected waveforms. A negative reflected waveform is obtained when terminal impedance increases. This is consistent with the elongated and non-branching terminal villi that are proposed cause the highly abnormal UA waveforms found in early-onset FGR. The significance of these findings for the diagnostic utility of UA Doppler in human pregnancy is that the identification and measurement of wave reflections may aid in discriminating between healthy and abnormal placental vasculature in pregnancies with suspected late-onset FGR.
Collapse
|
11
|
Wave reflections in the umbilical artery measured by Doppler ultrasound as a novel predictor of placental pathology. EBioMedicine 2021; 67:103326. [PMID: 33965347 PMCID: PMC8176120 DOI: 10.1016/j.ebiom.2021.103326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background The umbilical artery (UA) Doppler pulsatility index is used clinically to detect elevated feto-placental vascular resistance. However, this metric is confounded by variation in fetal cardiac function and is only moderately predictive of placental pathology. Our group developed a novel ultrasound methodology that measures wave reflections in the UA, thereby isolating a component of the Doppler signal that is specific to the placenta. The present study examined whether wave reflections in the UA are predictive of placental vascular pathology. Methods Standard clinical Doppler ultrasound of the UAs was performed in 241 pregnant women. Of these, 40 women met narrowly defined preset criteria for the control group, 36 had maternal vascular malperfusion (MVM) and 16 had fetal vascular malperfusion (FVM). Using a computational procedure, the Doppler waveforms were decomposed into a pair of forward and backward propagating waves. Findings Compared to controls, wave reflections were significantly elevated in women with either MVM (p<0.0001) or FVM pathology (p = 0.02). In contrast, the umbilical and uterine artery pulsatility indices were only elevated in the MVM group (p<0.0001) and there were no differences between women with FVM and the controls. Interpretation The measurement of wave reflections in the UA, combined with standard clinical ultrasound parameters, has the potential to improve the diagnostic performance of UA Doppler to detect placental vascular pathology. Identifying women with FVM pathology is particularly challenging prenatally and future investigations will determine if women at risk of this specific placental disease could benefit from this novel diagnostic technique.
Collapse
|
12
|
Real-time Assessment of the Development and Function of the Placenta Across Gestation to Support Therapeutics in Pregnancy. Clin Ther 2020; 43:279-286. [PMID: 33246660 DOI: 10.1016/j.clinthera.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
The placenta is vital to the health and development of the fetus, serving to deliver oxygen and nutrients, facilitate the removal of waste products, and provide a barrier to pathogens and other harmful substances present in the maternal circulation. When these processes fail to operate normally, they can lead to complications of pregnancy such as preeclampsia or fetal growth restriction. The development of novel therapeutics for the mother, fetus, or placenta requires a mechanistic understanding of the development and functions of the placenta. For the obstetric clinician, being able to monitor the placenta throughout the pregnancy and to measure the impact of any treatment modality on the mother and the developing fetus are essential for providing the best possible care. The Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health has been a longtime supporter of research on the placenta. In 2014, the Human Placenta Project was initiated to help to drive an understanding of the biology of the human placenta and to facilitate the development of novel tools and approaches to allow for safe, noninvasive, real-time assessment of the placenta across pregnancy. Those efforts, along with others from around the globe, are showing promise. Although not yet ready for clinical application, these advances are moving the field forward and are certain to have a tremendous impact on the development and assessment of therapeutics designed for treating conditions of pregnancy.
Collapse
|
13
|
Stortz G, Cahill LS, Chandran AR, Baschat A, Sled JG, Macgowan CK. Quantification of Wave Reflection in the Human Umbilical Artery From Asynchronous Doppler Ultrasound Measurements. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3749-3757. [PMID: 32746120 PMCID: PMC7606782 DOI: 10.1109/tmi.2020.3004511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Elevated umbilical artery pulsatility is a widely used biomarker for placental pathology leading to intra-uterine growth restriction and, in severe cases, still-birth. It has been hypothesized that placental pathology modifies umbilical artery pulsatility by altering the degree to which the pulse pressure wave, which originates from the fetal heart, is reflected from the placental vasculature to interfere with the incident wave. Here we present a method for estimating the reflected pulse wave in the umbilical artery of human fetuses using asynchronously acquired Doppler ultrasound measurements from the two ends of the umbilical cord. This approach assumes non-dispersive and loss-less propagation of the waves along the artery and models the reflection process as a linear system with a parameterized impulse response. Model parameters are determined from the measured Doppler waveforms by constrained optimization. Velocity waveforms were obtained from 142 pregnant volunteers where 123 met data quality criteria in at least one umbilical artery. The reflection model was consistent with the measured waveforms in 183 of 212 arteries that were analyzed. The analysis method was validated by applying it to simulated datasets and comparing solutions to ground-truth. With measurement noise levels typical of clinical ultrasound, parameters describing the reflected wave were accurately determined.
Collapse
|
14
|
Cahill LS, Whitehead CL, Hobson SR, Stortz G, Kingdom JC, Baschat A, Murphy KE, Serghides L, Macgowan CK, Sled JG. Effect of maternal betamethasone administration on feto-placental vascular resistance in the mouse†. Biol Reprod 2020; 101:823-831. [PMID: 31318405 DOI: 10.1093/biolre/ioz128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Antenatal corticosteroids are often administered to women at risk of preterm birth to accelerate fetal lung development; however, there is evidence that this treatment may adversely affect placental function in some fetuses. Our group has recently demonstrated that wave reflections in the umbilical artery (UA), measured using high-frequency ultrasound, are sensitive to placental vascular abnormalities. In the present study, we used this approach to investigate the effect of maternal administration of betamethasone, a clinically relevant corticosteroid, on the feto-placental vasculature of the mouse. Fetuses were assessed at embryonic day (E)15.5 and E17.5 in C57BL6/J mice. At both gestational ages, the UA diameter, UA blood flow, and the wave reflection coefficient were significantly elevated in the betamethasone-treated mice compared to vehicle-treated controls. These observations support the interpretation that placental vascular resistance dropped with betamethasone treatment to an extent that could not be explained by vasodilation of the UA alone. Consistent with clinical studies, the effect of betamethasone on UA end-diastolic velocity was heterogeneous. Our results suggest that UA wave reflections are more sensitive to acute changes in placental vascular resistance compared with the UA pulsatility index, and this technique may have clinical application to identify a favorable placental vascular response to fetal therapies such as antenatal corticosteroids, where the fetal heart rate is likely to vary.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Sebastian R Hobson
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Greg Stortz
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John C Kingdom
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet Baschat
- Centre for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Kellie E Murphy
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Kala S, Dunk C, Acosta S, Serghides L. Periconceptional exposure to lopinavir, but not darunavir, impairs decidualization: a potential mechanism leading to poor birth outcomes in HIV-positive pregnancies. Hum Reprod 2020; 35:1781-1796. [PMID: 32712670 PMCID: PMC7398624 DOI: 10.1093/humrep/deaa151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does HIV protease inhibitor (PI)-based combination antiretroviral therapy (cART) initiated at periconception affect key events in early pregnancy, i.e. decidualization and spiral artery remodeling? SUMMARY ANSWER Two PIs, lopinavir and darunavir, currently offered as cART options in HIV-positive pregnancies were evaluated, and we found that lopinavir-based cART, but not darunavir-based cART, impaired uterine decidualization and spiral artery remodeling in both human ex vivo and mouse in vivo experimental models. WHAT IS KNOWN ALREADY Early initiation of cART is recommended for pregnant women living with HIV. However, poor birth outcomes are frequently observed in HIV-positive pregnancies exposed to PI-based cART, especially when it is initiated prior to conception. The correlation between early initiation of PI-cART and adverse birth outcomes is poorly understood, due to lack of data on the specific effects of PI-cART on the early stages of pregnancy involving uterine decidualization and spiral artery remodeling. STUDY DESIGN, SIZE, DURATION Lopinavir and darunavir were evaluated in clinically relevant combinations using an ex vivo human first-trimester placenta-decidua explant model, an in vitro human primary decidual cell culture system, and an in vivo mouse pregnancy model. The first-trimester (gestational age, 6–8 weeks) human placenta-decidua tissue was obtained from 11 to 15 healthy women undergoing elective termination of pregnancy. C57Bl/6 female mice (four/treatment group) were administered either lopinavir-cART, darunavir-cART or water by oral gavage once daily starting on the day of plug detection until sacrifice. PARTICIPANTS/MATERIALS, SETTING, METHODS Human: Spiral artery remodeling was assessed by immunohistochemical analysis of first-trimester placenta-decidua explant co-culture system. Trophoblast migration was measured using a placental explant culture. A primary decidual cell culture was used to evaluate the viability of immune cell populations by flow cytometry. Soluble factors, including biomarkers of decidualization and angiogenesis, were quantified by ELISA and Luminex assay using decidua-conditioned media. Mouse: In the mouse pregnancy model, gestational day 6.5 or 9.5 implantation sites were used to assess decidualization, spiral artery remodeling and uterine natural killer (uNK) cell numbers by immunohistochemistry. Transcription factor STAT3 was assayed by immunohistochemistry in both human decidua and mouse implantation sites. MAIN RESULTS AND THE ROLE OF CHANCE Lopinavir-cART, but not darunavir-cART, impaired uterine decidualization and spiral artery remodeling in both experimental models. Lopinavir-cART treatment was also associated with selective depletion of uNK cells, reduced trophoblast migration and defective placentation. The lopinavir-associated decidualization defects were attributed to a decrease in expression of transcription factor STAT3, known to regulate decidualization. Our results suggest that periconceptional initiation of lopinavir-cART, but not darunavir-cART, causes defective maturation of the uterine endometrium, leading to impairments in spiral artery remodeling and placentation, thus contributing to the poor birth outcomes. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION The human first-trimester placenta/decidua samples could only be obtained from healthy females undergoing elective termination of pregnancy. As biopsy is the only way to obtain first-trimester decidua from pregnant women living with HIV on PI-cART, ethics approval and participant consent are difficult to obtain. Furthermore, our animal model is limited to the study of cART and does not include HIV. HIV infection is also associated with immune dysregulation, inflammation, alterations in angiogenic factors and complement activation, all of which could influence decidual and placental vascular remodeling and modify any cART effects. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide mechanistic insight with direct clinical implications, rationalizing why the highest adverse birth outcomes are reported in HIV-positive pregnancies exposed to lopinavir-cART from conception. We demonstrate that dysregulation of decidualization is the mechanism through which lopinavir-cART, but not darunavir-cART, use in early pregnancy leads to poor birth outcomes. Although lopinavir is no longer a first-line regimen in pregnancy, it remains an alternate regimen and is often the only PI available in low resource settings. Our results highlight the need for reconsidering current guidelines recommending lopinavir use in pregnancy and indicate that lopinavir should be avoided especially in the first trimester, whereas darunavir is safe to use and should be the preferred PI in pregnancy. Further, in current times of the COVID-19 pandemic, lopinavir is among the top drug candidates which are being repurposed for inclusion in clinical trials world-over, to assess their therapeutic potential against the dangerous respiratory disease. Current trials are also testing the efficacy of lopinavir given prophylactically to protect health care workers and people with potential exposures. Given the current extraordinary numbers, these might include women with early pregnancies, who may or may not be cognizant of their gestational status. This is a matter of concern as it could mean that women with early pregnancies might be exposed to this drug, which can cause decidualization defects. Our findings provide evidence of safety concerns surrounding lopinavir use in pregnancy, that women of reproductive age considering participation in such trials should be made aware of, so they can make a fully informed decision. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the Canadian Institutes of Health Research (CIHR) (PJT-148684 and MOP-130398 to L.S.). C.D. received support from CIHR Foundation (FDN143262 to Stephen Lye). S.K. received a TGHRI postdoctoral fellowship. The authors declare that there are no conflicts of interest. L.S. reports personal fees from ViiV Healthcare for participation in a Women and Transgender Think Tank.
Collapse
Affiliation(s)
- Smriti Kala
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Caroline Dunk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sebastian Acosta
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Izzetti R, Vitali S, Aringhieri G, Nisi M, Oranges T, Dini V, Ferro F, Baldini C, Romanelli M, Caramella D, Gabriele M. Ultra-High Frequency Ultrasound, A Promising Diagnostic Technique: Review of the Literature and Single-Center Experience. Can Assoc Radiol J 2020; 72:418-431. [PMID: 32721173 DOI: 10.1177/0846537120940684] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Ultra-high frequency ultrasonography (UHFUS) is a recently introduced diagnostic technique which finds several applications in diverse clinical fields. The range of frequencies between 30 and 100 MHz allows for high spatial resolution imaging of superficial structures, making this technique suitable for the imaging of skin, blood vessels, musculoskeletal anatomy, oral mucosa, and small parts. However, the current clinical applications of UHFUS have never been analyzed in a consistent multidisciplinary manner. The aim of this study is to revise and discuss the current applications of UHFUS in different aspects of research and clinical practice, as well as to provide some examples of the current work-in-progress carried out in our center. MATERIALS AND METHODS A literature search was performed in order to retrieve articles reporting the applications of UHFUS both in research and in clinical settings. Inclusion criteria were the use of frequencies above 30 MHz and study design conducted in vivo on human subjects. RESULTS In total 66 articles were retrieved. The majority of the articles focused on dermatological and vascular applications, although musculoskeletal and intraoral applications are emerging fields of use. We also describe our experience in the use of UHFUS as a valuable diagnostic support in the fields of dermatology, rheumatology, oral medicine, and musculoskeletal anatomy. CONCLUSION Ultra-high frequency ultrasonography application involves an increasing number of medical fields. The high spatial resolution and the superb image quality achievable allow to foresee a wider use of this novel technique, which has the potential to bring innovation in diagnostic imaging.
Collapse
Affiliation(s)
- Rossana Izzetti
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, 9310University of Pisa, Pisa, Italy
| | - Saverio Vitali
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, 9310University of Pisa, Pisa, Italy
| | - Giacomo Aringhieri
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, 9310University of Pisa, Pisa, Italy
| | - Marco Nisi
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, 9310University of Pisa, Pisa, Italy
| | - Teresa Oranges
- Unit of Dermatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Valentina Dini
- Unit of Dermatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Francesco Ferro
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Marco Romanelli
- Unit of Dermatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Davide Caramella
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, 9310University of Pisa, Pisa, Italy
| | - Mario Gabriele
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, 9310University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Weeks KL, Henstridge DC, Salim A, Shaw JE, Marwick TH, McMullen JR. CORP: Practical tools for improving experimental design and reporting of laboratory studies of cardiovascular physiology and metabolism. Am J Physiol Heart Circ Physiol 2019; 317:H627-H639. [PMID: 31347916 DOI: 10.1152/ajpheart.00327.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exercise consisted of: 1) a short survey to acquire baseline data on current practices regarding the conduct of animal studies, 2) a series of presentations for promoting awareness and providing advice and practical tools for improving experimental design, and 3) a follow-up survey 12 mo later to assess whether practices had changed. The surveys were compulsory for responsible investigators (n = 16; paired data presented). Other investigators named on animal ethics applications were encouraged to participate (2017, total of 36 investigators; 2018, 37 investigators). The major findings to come from the exercise included 1) a willingness of investigators to make changes when provided with knowledge/tools and solutions that were relatively simple to implement (e.g., proportion of responsible investigators showing improved practices using a structured method for randomization was 0.44, 95% CI (0.19; 0.70), P = 0.003, and deidentifying drugs/interventions was 0.40, 95% CI (0.12; 0.68), P = 0.010); 2) resistance to change if this involved more personnel and time (e.g., as required for allocation concealment); and 3) evidence that changes to long-term practices ("habits") require time and follow-up. Improved practices could be verified based on changes in reporting within publications or documented evidence provided during laboratory visits. In summary, this exercise resulted in changed attitudes, practices, and reporting, but continued follow-up, monitoring, and incentives are required. Efforts to improve experimental rigor will reduce bias and will lead to findings with the greatest translational potential.NEW & NOTEWORTHY The goal of this exercise was to encourage preclinical researchers to improve the quality of their cardiac and metabolic animal studies by 1) increasing awareness of concerns, which can arise from suboptimal experimental designs; 2) providing knowledge, tools, and templates to overcome bias; and 3) conducting two short surveys over 12 mo to monitor change. Improved practices were identified for the uptake of structured methods for randomization, and de-identifying interventions/drugs.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/experimental-design-survey-training-practical-tools/.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Mathematics and Statistics, La Trobe University Victoria, Australia
| | | | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Sled JG, Stortz G, Cahill LS, Milligan N, Ayyathurai V, Serghides L, Morgen E, Seravalli V, Delp C, McShane C, Baschat A, Kingdom J, Macgowan CK. Reflected hemodynamic waves influence the pattern of Doppler ultrasound waveforms along the umbilical arteries. Am J Physiol Heart Circ Physiol 2019; 316:H1105-H1112. [PMID: 30794433 DOI: 10.1152/ajpheart.00704.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pulsatile pattern of blood motion measured by Doppler ultrasound within the umbilical artery is known to contain useful diagnostic information and is widely used to monitor pregnancies at risk of fetal growth restriction or stillbirth. Animal studies have identified reflected pressure waves traveling counter to the direction of blood flow as an important factor in the shape of these waveforms. In the present study, we establish a method to measure reflected waves in the human umbilical artery and assess their influence on blood velocity pulsation. Ninety-five pregnant women were recruited from a general obstetrics clinic between 26 and 37 wk of gestation and examined by Doppler ultrasound. Blood velocity waveforms were recorded for each umbilical artery at three locations along the umbilical cord. With the use of a computational procedure, a pair of forward and reverse propagating waves was identified to explain the variation in observed Doppler ultrasound waveforms along the cord. Among the data sets that met data quality requirements, waveforms in 93 of the 130 arteries examined agreed with the wave reflection model to within 1.5% and showed reflections ranging in magnitude from 3 to 52% of the forward wave amplitude. Strong reflections were associated with large differences in pulsatility between the fetal and placental ends of the cord. As reflections arise from transitions in the biomechanical properties of blood vessels, these observations provide a plausible mechanism for the link between abnormal waveforms and clinically significant placental pathology and could lead to more precise screening methods for detecting pregnancies complicated by placental disease. NEW & NOTEWORTHY The pulsatile pattern of blood motion measured by Doppler ultrasound within the umbilical artery is known to contain useful diagnostic information and is widely used to monitor pregnancies at risk of fetal growth restriction. We demonstrate based on a study of 95 pregnant women that the shape of these umbilical artery waveforms is explained by the presence of a reflected pressure wave traveling counter to the direction of blood flow.
Collapse
Affiliation(s)
- John G Sled
- Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Medical Biophysics, University of Toronto , Toronto, Ontario , Canada.,Department of Obstetrics and Gynecology, University of Toronto , Toronto, Ontario , Canada
| | - Greg Stortz
- Hospital for Sick Children , Toronto, Ontario , Canada
| | | | | | | | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario , Canada.,Department of Immunology, University of Toronto , Toronto, Ontario , Canada
| | - Eric Morgen
- Mount Sinai Hospital , Toronto, Ontario , Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Ontario , Canada
| | - Viola Seravalli
- Center for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland.,Department of Health Sciences, University of Florence , Florence , Italy
| | - Cassandra Delp
- Center for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland
| | - Cyrethia McShane
- Center for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland
| | - Ahmet Baschat
- Center for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland
| | - John Kingdom
- Department of Obstetrics and Gynecology, University of Toronto , Toronto, Ontario , Canada.,Mount Sinai Hospital , Toronto, Ontario , Canada
| | - Christopher K Macgowan
- Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Medical Biophysics, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|