1
|
Lu P, Fan J, Li B, Wang X, Song M. A novel protein encoded by circLARP1B promotes the proliferation and migration of vascular smooth muscle cells by suppressing cAMP signaling. Atherosclerosis 2024; 395:117575. [PMID: 38851155 DOI: 10.1016/j.atherosclerosis.2024.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Circular RNA (circRNA) is closely related to atherosclerosis (AS) incidence and progression, but its regulatory mechanism in AS needs further elucidation. AS development is significantly influenced by abnormal vascular smooth muscle cells (VSMCs) growth and migration. This study explored the potential protein role of circLARP1B in VSMC proliferation and migration. METHODS We performed whole-transcriptome sequencing in human normal arterial intima and advanced atherosclerotic plaques to screen for differentially expressed circRNAs. The sequencing results were combined with database analysis to screen for circRNAs with coding ability. Real-time quantitative polymerase chain reaction was utilized to assess circLARP1B expression levels in atherosclerotic plaque tissues and cells. circLARP1B-243aa function and pathway in VSMCs growth and migration were studied by scratch, transwell, 5-ethynyl-2'-deoxyuridine, cell counting kit-8, and Western blot experiments. RESULTS We found that circLARP1B was downregulated in atherosclerotic plaque tissue and promoted the proliferation and migration of VSMCs. circLARP1B encodes a novel protein with a length of 243 amino acids. Through functional experiments, we confirmed the role of circLARP1B-243aa in enhancing VSMCs migration and proliferation. Mechanistically, circLARP1B-243aa promotes VSMCs migration and growth by upregulating phosphodiesterase 4C to inhibit the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS Our results suggested that circLARP1B could promote VSMCs growth and migration through the encoded protein circLARP1B-243aa. Therefore, it could be a treatment target and biomarker for AS.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- Cell Movement
- Humans
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Cyclic AMP/metabolism
- SS-B Antigen
- Cells, Cultured
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Plaque, Atherosclerotic
- Male
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Jidan Fan
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China
| | - Ben Li
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| |
Collapse
|
2
|
Wang H, Mai P, He F, Zhang Y. Expression of miRNA-29c in the carotid plaque and its association with diabetic mellitus. Front Cardiovasc Med 2024; 11:1276066. [PMID: 38374991 PMCID: PMC10875088 DOI: 10.3389/fcvm.2024.1276066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Background Carotid artery atherosclerosis is a major cause of ischemic stroke, and ischemic stroke is the leading cause of morbidity and mortality worldwide. Unfortunately, the reason for the build-up of atherosclerosis plaque is unknown. The miRNA-29c was reported to promote the phenotype transformation of vascular smooth muscle cells (VSMCs) in diabetes mice, eventually leading to plaque formation and bleeding. However, such studies are rare and limited to animal experiments. Methods In our study, 40 patients were divided into a diabetic mellitus (DM) group and a non-DM group according to whether they were diagnosed with DM. Then, the real-time quantitative PCR was applied to examine the miRNA-29c level in human carotid plaque tissue derived from 40 subjects receiving carotid endarterectomy. Results Briefly, diabetes patients had a decreased miRNA-29c level as compared with non-DM subjects, and this comparison was statistically significant (P = 0.02). Notably, variable miRNA-29c level was negatively associated with HbA1c level, although no statistical significance was observed. Moreover, there was an increased miRNA-29c level in patients with cerebral stroke. Conclusion Collectively, the miRNA-29c level in the carotid plaque is closely associated with DM and cerebral stroke, which may contribute to atherosclerosis formation.
Collapse
Affiliation(s)
- Hua Wang
- Division of Graduate, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Ultrasonography, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Peipei Mai
- Department of Ultrasonography, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Fang He
- Division of Graduate, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanfang Zhang
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
3
|
Goryszewska E, Kaczynski P, Balboni G, Waclawik A. Prokineticin 1-prokineticin receptor 1 signaling promotes angiogenesis in the porcine endometrium during pregnancy†. Biol Reprod 2020; 103:654-668. [PMID: 32355954 DOI: 10.1093/biolre/ioaa066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Abstract
Pregnancy establishment in mammals, including pigs, requires proper communication between embryos and the maternal reproductive tract. Prokineticin 1 (PROK1) has been described as a secretory protein with pleiotropic functions and as a novel tissue-specific angiogenic factor. However, despite the studies performed mainly on human cell lines and in mice, the function of PROK1 in the endometrium during early pregnancy is still not fully elucidated. We hypothesized that PROK1 contributes to pregnancy establishment in pigs. The present study is the first to report that the expression of PROK1 and its receptor (PROKR1) is elevated in the porcine endometrium during the implantation and early placentation period. PROK1 protein was detected mainly in luminal epithelial cells, glandular epithelial cells, and blood vessels in the endometrium. Using the porcine in vivo model of unilateral pregnancy, we revealed that conceptuses induced the endometrial expression of PROK1 and PROKR1. Moreover, the embryonic signal, estradiol-17β, as well as progesterone, stimulated the endometrial expression of PROK1 and PROKR1. We also evidenced that PROK1-PROKR1 signaling supports endometrial angiogenesis in pigs. The PROK1-stimulated proliferation of primary porcine endometrial endothelial (PEE) cells involved PI3K/AKT/mTOR, MAPK, cAMP, and NFKB signaling pathways. Furthermore, PROK1 via PROKR1 promoted the formation of capillary-like structures by PEE cells. PROK1 also stimulated VEGFA and PGF2α secretion, which in turn may indirectly support angiogenic changes within endometrial tissue. In summary, our study suggests that PROK1 acts as an embryonic signal mediator that regulates endometrial angiogenesis and secretory function during the implantation and early placentation period in pigs.
Collapse
Affiliation(s)
- Ewelina Goryszewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Piotr Kaczynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
4
|
PERK Inhibition Mitigates Restenosis and Thrombosis: A Potential Low-Thrombogenic Antirestenotic Paradigm. JACC Basic Transl Sci 2020; 5:245-263. [PMID: 32215348 PMCID: PMC7091514 DOI: 10.1016/j.jacbts.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
Abstract
Drug-eluting stents impede neointimal smooth muscle cell hyperplasia but exacerbate endothelial cell dysfunction and thrombogenicity. It has been a challenge to identify a common target to inhibit both. Findings in this study suggest PERK as such a target. A PERK inhibitor administered either via an endovascular (in biomimetic nanocarriers) or perivascular (in hydrogel) route effectively mitigated neointimal hyperplasia in rats. Oral gavage of the PERK inhibitor partially preserved the normal blood flow in a mouse model of induced thrombosis. Dampening PERK activity inhibited STAT3 while activating SRF in smooth muscle cells, and also reduced prothrombogenic tissue factor and growth impairment of endothelial cells.
Developing endothelial-protective, nonthrombogenic antirestenotic treatments has been a challenge. A major hurdle to this has been the identification of a common molecular target in both smooth muscle cells and endothelial cells, inhibition of which blocks dysfunction of both cell types. The authors’ findings suggest that the PERK kinase could be such a target. Importantly, PERK inhibition mitigated both restenosis and thrombosis in preclinical models, implicating a low-thrombogenic antirestenotic paradigm.
Collapse
Key Words
- ATF, activating transcription factor
- Ad, adenovirus
- CHOP, CCAAT-enhancer-binding protein homologous protein
- DES, drug-eluting stents
- DMSO, dimethyl sulfoxide
- EC, endothelial cell
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- GFP, green fluorescent protein
- HA, hemagglutinin
- I/M, intima to media
- IEL, internal elastic lamina
- IH, intimal hyperplasia
- IRE1, inositol-requiring kinase 1
- MRTF-A, myocardin related transcription factor A
- PDGF, platelet-derived growth factor
- PDGF-BB, platelet-derived growth factor with 2 B subunits
- PERK
- PERK, protein kinase RNA-like endoplasmic reticulum kinase
- SMA, smooth muscle actin
- SMC, smooth muscle cell
- SRF, serum response factor
- STAT3, signal transducer and activator of transcription 3
- TNF, tumor necrosis factor
- eIF2, eukaryotic translation initiation factor 2
- endothelial cells
- restenosis
- siRNA, small interfering ribonucleic acid
- smooth muscle cells
- thrombosis
Collapse
|
5
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
6
|
Torella D, Iaconetti C, Tarallo R, Marino F, Giurato G, Veneziano C, Aquila I, Scalise M, Mancuso T, Cianflone E, Valeriano C, Marotta P, Tammè L, Vicinanza C, Sasso FC, Cozzolino D, Torella M, Weisz A, Indolfi C. miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes 2018; 67:2554-2568. [PMID: 30257973 DOI: 10.2337/db17-1434] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
Harnessing the mechanisms underlying the exacerbated vascular remodeling in diabetes mellitus (DM) is pivotal to prevent the high toll of vascular diseases in patients with DM. miRNA regulates vascular smooth muscle cell (VSMC) phenotypic switch. However, miRNA modulation of the detrimental diabetic VSMC phenotype is underexplored. Streptozotocin-induced type 1 DM (T1DM) Wistar rats and type 2 DM (T2DM) Zucker rats underwent right carotid artery experimental angioplasty, and global miRNA/mRNA expression profiling was obtained by RNA sequencing (RNA-Seq). Two days after injury, a set of six miRNAs were found to be uniquely downregulated or upregulated in VSMCs both in T1DM and T2DM. Among these miRNAs, miR-29c and miR-204 were the most significantly misregulated in atherosclerotic plaques from patients with DM. miR-29c overexpression and miR-204 inhibition per se attenuated VSMC phenotypic switch in DM. Concomitant miR-29c overexpression and miR-204 inhibition fostered an additive reduction in VSMC proliferation. Epithelial membrane protein 2 (Emp2) and Caveolin-1 (Cav1) mRNAs were identified as direct targets of miR-29c and miR-204, respectively. Importantly, contemporary miR-29c overexpression and miR-204 inhibition in the injured artery robustly reduced arterial stenosis in DM rats. Thus, contemporaneous miR-29c activation and miR-204 inhibition in DM arterial tissues is necessary and sufficient to prevent the exaggerated VSMC growth upon injury.
Collapse
MESH Headings
- Animals
- Cell Proliferation/physiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Male
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Daniele Torella
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Claudio Iaconetti
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Fabiola Marino
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Claudia Veneziano
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Chiara Valeriano
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Tammè
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Carla Vicinanza
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ferdinando C Sasso
- Department of Internal and Experimental Medicine "Magrassi-Lanzara," University of Campania "L. Vanvitelli," Naples, Italy
| | - Domenico Cozzolino
- Department of Internal and Experimental Medicine "Magrassi-Lanzara," University of Campania "L. Vanvitelli," Naples, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania "L. Vanvitelli," Naples, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Ciro Indolfi
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
7
|
Cilostazol attenuates indices of liver damage induced by thioacetamide in albino rats through regulating inflammatory cytokines and apoptotic biomarkers. Eur J Pharmacol 2018; 822:168-176. [DOI: 10.1016/j.ejphar.2018.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022]
|
8
|
Sorrentino S, Iaconetti C, De Rosa S, Polimeni A, Sabatino J, Gareri C, Passafaro F, Mancuso T, Tammè L, Mignogna C, Camastra C, Esposito G, Curcio A, Torella D, Indolfi C. Hindlimb Ischemia Impairs Endothelial Recovery and Increases Neointimal Proliferation in the Carotid Artery. Sci Rep 2018; 8:761. [PMID: 29335599 PMCID: PMC5768880 DOI: 10.1038/s41598-017-19136-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023] Open
Abstract
Peripheral ischemia is associated with higher degree of endothelial dysfunction and a worse prognosis after percutaneous coronary interventions (PCI). However, the role of peripheral ischemia on vascular remodeling in remote districts remains poorly understood. Here we show that the presence of hindlimb ischemia significantly enhances neointima formation and impairs endothelial recovery in balloon-injured carotid arteries. Endothelial-derived microRNAs are involved in the modulation of these processes. Indeed, endothelial miR-16 is remarkably upregulated after vascular injury in the presences of hindlimb ischemia and exerts a negative effect on endothelial repair through the inhibition of RhoGDIα and nitric oxide (NO) production. We showed that the repression of RhoGDIα by means of miR-16 induces RhoA, with consequent reduction of NO bioavailability. Thus, hindlimb ischemia affects negative carotid remodeling increasing neointima formation after injury, while systemic antagonizzation of miR-16 is able to prevent these negative effects.
Collapse
Affiliation(s)
- Sabato Sorrentino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Claudio Iaconetti
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Jolanda Sabatino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Clarice Gareri
- Department of Medicine, Duke University, Durham, 27710, NC, USA
| | - Francesco Passafaro
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Tammè
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Caterina Camastra
- Department of Health Science, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy. .,URT-CNR of IFC, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
9
|
Li X, Chen W, Li P, Wei J, Cheng Y, Liu P, Yan Q, Xu X, Cui Y, Gu Z, Simoncini T, Fu X. Follicular Stimulating Hormone Accelerates Atherogenesis by Increasing Endothelial VCAM-1 Expression. Theranostics 2017; 7:4671-4688. [PMID: 29187895 PMCID: PMC5706091 DOI: 10.7150/thno.21216] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Rationale: Postmenopausal atherosclerosis (AS) has for decades been attributed to estrogen deficiency. Although the follicular stimulating hormone (FSH) levels rise sharply in parallel, the direct effect of FSH on AS has never been investigated. In this study, we explored the possible role of FSH in the development of AS. Methods: This was a prospective cohort study of 48 healthy premenopausal and 15 postmenopausal women. ApoE knockout mice were used as atherosclerosis model and human umbilical vascular endothelial cells (HUVECs) were cultured as cell model. Serum hormones and vascular cell adhesion molecule-1 (VCAM-1) levels were measured. Real-time PCR, histology for atherosclerotic lesions, immunofluorescence, luciferase assay, transfection experiments, flow chamber adhesion assay and western blot were performed. Results: In ApoE knockout mice, administration of FSH increased the atherosclerotic lesions and serum VCAM-1 concentration. Importantly, in blood samples of postmenopausal women, we detected significantly higher levels of FSH and VCAM-1 compared with those from premenopausal women, and there was a positive correlation between these two molecules. In cultured HUVECs, FSH receptor (FSHR) mRNA and protein expression were detected and FSH enhanced VCAM-1 expression. This effect was mediated by the activation of nuclear factor κB (NF-κB), which was sequentially enhanced by the activation of PI3K/Akt/mTOR cascade. FSH first enhanced GαS activity resulting in elevated cAMP level and PKA activity, which relayed the signals from FSHR to the PI3K/Akt/mTOR cascade. Furthermore, FSHR was detected in endothelial caveolae fraction and interacted with caveolin-1 and GαS. The disruption of caveolae or the silencing of caveolin-1 blocked FSH effects on signaling activation and VCAM-1 expression, suggesting the existence of a functional signaling module in membrane caveolae. Finally, FSH increased human monocyte adhesion to HUVECs which was reversed by the VCAM-1 neutralizing antibody. Conclusion: FSHR was located in the membrane caveolae of HUVECs and FSH promoted VCAM-1 expression via FSHR/GαS /cAMP/PKA and PI3K/Akt/mTOR/NF-κB pathway. This may contribute to the deleterious role of FSH in the development of AS in postmenopausal women.
Collapse
|
10
|
Divergent Regulation of Actin Dynamics and Megakaryoblastic Leukemia-1 and -2 (Mkl1/2) by cAMP in Endothelial and Smooth Muscle Cells. Sci Rep 2017. [PMID: 28623279 PMCID: PMC5473867 DOI: 10.1038/s41598-017-03337-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) or endothelial cell (ECs) promote or inhibit, respectively, restenosis after angioplasty, vein graft intimal thickening and atherogenesis. Here we investigated the effects of cAMP-induced cytoskeletal remodelling on the serum response factor (SRF) co-factors Megakaryoblastic Leukemia-1 and -2 (MKL1 and MKL2) and their role in controlling VSMC and EC proliferation and migration. Elevation of cAMP using forskolin, dibutyryl-cAMP (db-cAMP), BAY60-6583 or Cicaprost induced rapid cytoskeleton remodelling and inhibited proliferation and migration in VSMCs but not EC. Furthermore, elevated cAMP inhibited mitogen-induced nuclear-translocation of MKL1 and MKL2 in VSMCs but not ECs. Forskolin also significantly inhibited serum response factor (SRF)-dependent reporter gene (SRE-LUC) activity and mRNA expression of pro-proliferative and pro-migratory MKL1/2 target genes in VSMCs but not in ECs. In ECs, MKL1 was constitutively nuclear and MKL2 cytoplasmic, irrespective of mitogens or cAMP. Pharmacological or siRNA inhibition of MKL1 significantly inhibited the proliferation and migration of VSMC and EC. Our new data identifies and important contribution of MKL1/2 to explaining the strikingly different response of VSMCs and ECs to cAMP elevation. Elucidation of these pathways promises to identify targets for specific inhibition of VSMC migration and proliferation.
Collapse
|
11
|
Guo J, Lu L, Hua Y, Huang K, Wang I, Huang L, Fu Q, Chen A, Chan P, Fan H, Liu ZM, Wang BH. Vasculopathy in the setting of cardiorenal syndrome: roles of protein-bound uremic toxins. Am J Physiol Heart Circ Physiol 2017; 313:H1-H13. [PMID: 28411233 DOI: 10.1152/ajpheart.00787.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) often leads to and accelerates the progression of cardiovascular disease (CVD), while CVD also causes kidney dysfunction. This bidirectional interaction leads to the development of a complex syndrome known as cardiorenal syndrome (CRS). CRS not only involves both the heart and the kidney but also the vascular system through a vast array of contributing factors. In addition to hemodynamic, neurohormonal, mechanical, and biochemical factors, nondialyzable protein-bound uremic toxins (PBUTs) are also key contributing factors that have been demonstrated through in vitro, in vivo, and clinical observations. PBUTs are ineffectively removed by hemodialysis because their complexes with albumins are larger than the pores of the dialysis membranes. PBUTs such as indoxyl sulfate and p-cresyl sulfate are key determinate and predictive factors for the progression of CVD in CKD patients. In CRS, both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) exhibit significant dysfunction that is associated with the progression of CVD. PBUTs influence proliferation, calcification, senescence, migration, inflammation, and oxidative stress in VSMCs and ECs through various mechanisms. These pathological changes lead to arterial remodeling, stiffness, and atherosclerosis and thus reduce heart perfusion and impair left ventricular function, aggravating CRS. There is limited literature about the effect of PBUT on the vascular system and their contribution to CRS. This review summarizes current knowledge on how PBUTs influence vasculature, clarifies the relationship between uremic toxin-related vascular disease and CRS, and highlights the potential therapeutic strategies of uremic vasculopathy in the setting of CRS.
Collapse
Affiliation(s)
- Jingbin Guo
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, China
| | - Lu Lu
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yue Hua
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kevin Huang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ian Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia;
| | - Li Huang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Qiang Fu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, China
| | - Paul Chan
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China; and.,Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Huimin Fan
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China; and
| | - Zhong-Min Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China; and
| | - Bing Hui Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia;
| |
Collapse
|
12
|
Law NC, White MF, Hunzicker-Dunn ME. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway. J Biol Chem 2016; 291:27160-27169. [PMID: 27856640 DOI: 10.1074/jbc.m116.763235] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser318, Ser346, Ser612, and Ser789, and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| | - Morris F White
- the Division of Endocrinology, Dept. of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| |
Collapse
|
13
|
Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D, Pulido T, Correa-Jaque P, Passineau MJ, Wiener HW, Tamari M, Hirota T, Kubo M, Tiwari HK. Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2016; 192:1345-54. [PMID: 26252367 DOI: 10.1164/rccm.201501-0196oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a progressive fatal disease. Variable response and tolerability to PAH therapeutics suggests that genetic differences may influence outcomes. The endothelin pathway is central to pulmonary vascular function, and several polymorphisms and/or mutations in the genes coding for endothelin (ET)-1 and its receptors correlate with the clinical manifestations of other diseases. OBJECTIVES To examine the interaction of ET-1 pathway polymorphisms and treatment responses of patients with PAH treated with ET receptor antagonists (ERAs). METHODS A total of 1,198 patients with PAH were prospectively enrolled from 45 U.S. and Canadian pulmonary hypertension centers or retrospectively from global sites participating in the STRIDE (Sitaxsentan To Relieve Impaired Exercise) trials. Comprehensive objective measures including a 6-minute-walk test, Borg dyspnea score, functional class, and laboratory studies were completed at baseline, before the initiation of ERAs, and repeated serially. Single-nucleotide polymorphisms from ET-1 pathway candidate genes were selected from a completed genome-wide association study performed on the study cohort. MEASUREMENTS AND MAIN RESULTS Patient efficacy outcomes were analyzed for a relationship between ET-1 pathway polymorphisms and clinical efficacy using predefined, composite positive and negative outcome measures in 715 European descent samples. A single-nucleotide polymorphism (rs11157866) in the G-protein alpha and gamma subunits gene was significantly associated, accounting for multiple testing, with a combined improvement in functional class and 6-minute-walk distance at 12 and 18 months and marginally significant at 24 months. CONCLUSIONS ET-1 pathway associated polymorphisms may influence the clinical efficacy of ERA therapy for PAH. Further prospective studies are needed.
Collapse
Affiliation(s)
- Raymond L Benza
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Mardi Gomberg-Maitland
- 2 Division of Cardiovascular Disease, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Teresa Demarco
- 3 Division of Cardiovascular Disease, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Adam Torbicki
- 5 Department of Pulmonary Circulation and Thromboembolic Diseases, Centre of Postgraduate Medical Education, ECZ, Otwock, Poland
| | - David Langleben
- 6 Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Tomas Pulido
- 7 Cardiopulmonary Department, National Heart Institute, Mexico City, Mexico
| | - Priscilla Correa-Jaque
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael J Passineau
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | - Mayumi Tamari
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomomitsu Hirota
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hemant K Tiwari
- 10 Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
14
|
Santulli G. MicroRNAs and Endothelial (Dys) Function. J Cell Physiol 2015; 231:1638-44. [PMID: 26627535 DOI: 10.1002/jcp.25276] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that microRNAs (miRs)-non-coding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation-are becoming one of the most fascinating areas of physiology, given their fundamental roles in countless pathophysiological processes. The relative roles of different miRs in vascular biology as direct or indirect post-transcriptional regulators of fundamental genes implied in vascular remodeling designate miRs as potential biomarkers and/or promising drug targets. The mechanistic importance of miRs in modulating endothelial cell (EC) function in physiology and in disease is addressed here. Drawbacks of currently available therapeutic options are also discussed, pointing at the challenges and clinical opportunities provided by miR-based treatments. J. Cell. Physiol. 231: 1638-1644, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital-Manhattan, New York, New York
| |
Collapse
|
15
|
O'Leary AP, Fox JM, Pullar CE. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis. J Cell Physiol 2015; 230:356-65. [PMID: 24986762 PMCID: PMC4263239 DOI: 10.1002/jcp.24716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/26/2014] [Indexed: 12/26/2022]
Abstract
Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew P O'Leary
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | - James M Fox
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | - Christine E Pullar
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Jain M, Singh A, Singh V, Maurya P, Barthwal MK. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation. J Cardiovasc Pharmacol Ther 2015; 21:187-200. [DOI: 10.1177/1074248415598003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
Purpose: Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Method and Results: Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27Kip1 downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27Kip1 downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27Kip1 downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Conclusion: Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases.
Collapse
Affiliation(s)
- Manish Jain
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ankita Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Vishal Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Preeti Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Eriksson L, Saxelin R, Röhl S, Roy J, Caidahl K, Nyström T, Hedin U, Razuvaev A. Glucagon-Like Peptide-1 Receptor Activation Does not Affect Re-Endothelialization but Reduces Intimal Hyperplasia via Direct Effects on Smooth Muscle Cells in a Nondiabetic Model of Arterial Injury. J Vasc Res 2015; 52:41-52. [PMID: 25966620 DOI: 10.1159/000381097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 02/15/2015] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Diabetic patients have an increased risk of restenosis and late stent thrombosis after angioplasty, i.e. complications that are related to a defective re-endothelialization. Exendin-4, a stable glucagon-like peptide (GLP)-1 receptor agonist, has been suggested to influence the formation of intimal hyperplasia and to increase endothelial cell proliferation in vitro. Thus, the aim of this study was to investigate the mechanisms by which treatment with exendin-4 could influence re-endothelialization and intimal hyperplasia after vascular injury. METHODS Sprague-Dawley rats were subjected to balloon injury of the left common carotid artery and treated for 4 weeks with exendin-4 or vehicle. Intimal hyperplasia and vessel wall elasticity were monitored noninvasively by high-frequency ultrasound, and re-endothelialization was evaluated upon sacrifice using Evans blue dye. RESULTS AND CONCLUSION Exendin-4 selectively reduced the proliferation of smooth muscle cells (SMCs) and intimal hyperplasia in vivo without affecting the re-endothelialization process, but treatment with exendin-4 improved arterial wall elasticity. Our data also show that exendin-4 significantly decreased the proliferation and increased the apoptosis of SMCs in vitro, effects that appear to be mediated through cAMP signaling and endothelial nitric oxide synthase following GLP-1 receptor activation. Together, these effects of exendin-4 are highly desirable and may lead to an improved outcome for patients undergoing vascular interventions.
Collapse
Affiliation(s)
- Linnea Eriksson
- Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Santulli G. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:53-77. [PMID: 26662986 PMCID: PMC4871245 DOI: 10.1007/978-3-319-22380-3_4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are the main cell types within the vasculature. We describe here how microRNAs (miRs)--noncoding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation--distinctively modulate EC and VSMC function in physiology and disease. In particular, the specific roles of miR-126 and miR-143/145, master regulators of EC and VSMC function, respectively, are deeply explored. We also describe the mechanistic role of miRs in the regulation of the pathophysiology of key cardiovascular processes including angiogenesis, atherosclerosis, and in-stent restenosis post-angioplasty. Drawbacks of currently available therapeutic options are discussed, pointing at the challenges and potential clinical opportunities provided by miR-based treatments.
Collapse
MESH Headings
- Angioplasty
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/metabolism
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Stents/adverse effects
- Vascular Remodeling
Collapse
|
19
|
The p85 regulatory subunit of PI3K mediates cAMP-PKA and insulin biological effects on MCF-7 cell growth and motility. ScientificWorldJournal 2014; 2014:565839. [PMID: 25114970 PMCID: PMC4119716 DOI: 10.1155/2014/565839] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Recent studies have shown that hyperinsulinemia may increase the cancer risk. Moreover, many tumors demonstrate an increased activation of IR signaling pathways. Phosphatidylinositol 3-kinase (PI3K) is necessary for insulin action. In epithelial cells, which do not express GLUT4 and gluconeogenic enzymes, insulin-mediated PI3K activation regulates cell survival, growth, and motility. Although the involvement of the regulatory subunit of PI3K (p85α (PI3K)) in insulin signal transduction has been extensively studied, the function of its N-terminus remains elusive. It has been identified as a serine (S83) in the p85α (PI3K) that is phosphorylated by protein kinase A (PKA). To determine the molecular mechanism linking PKA to insulin-mediated PI3K activation, we used p85α (PI3K) mutated forms to prevent phosphorylation (p85A) or to mimic the phosphorylated residue (p85D). We demonstrated that phosphorylation of p85α (PI3K)S83 modulates the formation of the p85α (PI3K)/IRS-1 complex and its subcellular localization influencing the kinetics of the insulin signaling both on MAPK-ERK and AKT pathways. Furthermore, the p85α (PI3K)S83 phosphorylation plays a central role in the control of insulin-mediated cell proliferation, cell migration, and adhesion. This study highlights the p85α (PI3K)S83 role as a key regulator of cell proliferation and motility induced by insulin in MCF-7 cells breast cancer model.
Collapse
|
20
|
Holy EW, Jakob P, Eickner T, Camici GG, Beer JH, Akhmedov A, Sternberg K, Schmitz KP, Lüscher TF, Tanner FC. PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. Eur Heart J 2014; 35:808-20. [PMID: 24334406 DOI: 10.1093/eurheartj/eht496] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Impaired re-endothelialization and stent thrombosis are a safety concern associated with drug-eluting stents (DES). PI3K/p110α controls cellular wound healing pathways, thereby representing an emerging drug target to modulate vascular homoeostasis after injury. METHODS AND RESULTS PI3K/p110α was inhibited by treatment with the small molecule inhibitor PIK75 or a specific siRNA. Arterial thrombosis, neointima formation, and re-endothelialization were studied in a murine carotid artery injury model. Proliferation and migration of human vascular smooth muscle cell (VSMC) and endothelial cell (EC) were assessed by cell number and Boyden chamber, respectively. Endothelial senescence was evaluated by the β-galactosidase assay, endothelial dysfunction by organ chambers for isometric tension. Arterial thrombus formation was delayed in mice treated with PIK75 when compared with controls. PIK75 impaired arterial expression and activity of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1); in contrast, plasma clotting and platelet aggregation did not differ. In VSMC and EC, PIK75 inhibited expression and activity of TF and PAI-1. These effects occurred at the transcriptional level via the RhoA signalling cascade and the transcription factor NFkB. Furthermore, inhibition of PI3K/p110α with PIK75 or a specific siRNA selectively impaired proliferation and migration of VSMC while sparing EC completely. Treatment with PIK75 did not induce endothelial senescence nor inhibit endothelium-dependent relaxations. In line with this observation, treatment with PIK75 selectively inhibited neointima formation without affecting re-endothelialization following vascular injury. CONCLUSION Following vascular injury, PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization. Hence, PI3K/p110α represents an attractive new target in DES design.
Collapse
Affiliation(s)
- Erik W Holy
- Cardiology, Cardiovascular Center, University Hospital Zürich, Rämistrasse 100, Zurich 8091, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation. PLoS One 2014; 9:e89349. [PMID: 24586708 PMCID: PMC3933427 DOI: 10.1371/journal.pone.0089349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/20/2014] [Indexed: 01/21/2023] Open
Abstract
Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis). Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC) proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC) lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS) format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection). We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.
Collapse
|
22
|
Abstract
The occurrence of stent thrombosis is one of the major obstacles limiting the long-term clinical efficacy of percutaneous coronary intervention. The anti-smooth muscle proliferation drugs coated on drug-eluting stents (DES) often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, due to their nonspecific effect on endothelial cells (ECs). Therefore, identification of therapeutic targets that differentially regulate vascular smooth muscle cell (VSMC) and EC proliferation may lead to the development of ideal drugs for the next-generation DES. Our recent studies have shown that CTP synthase 1 (CTPS1) differentially regulates the proliferation of VSMC and EC after vascular injury. Therefore, CTPS1 inhibitors are promising agents for DES. In addition to CTPS1, other factors have also shown cell-specific effects on VSMC and/or EC proliferation and thus may become potential molecular targets for developing drugs to coat stents.
Collapse
Affiliation(s)
- Rui Tang
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Shiyou Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
23
|
Curcio A, Torella D, Iaconetti C, Pasceri E, Sabatino J, Sorrentino S, Giampà S, Micieli M, Polimeni A, Henning BJ, Leone A, Catalucci D, Ellison GM, Condorelli G, Indolfi C. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One 2013; 8:e70158. [PMID: 23922949 PMCID: PMC3724819 DOI: 10.1371/journal.pone.0070158] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/19/2013] [Indexed: 01/11/2023] Open
Abstract
Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Torella
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claudio Iaconetti
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Eugenia Pasceri
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jolanda Sabatino
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Sabato Sorrentino
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Salvatore Giampà
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Mariella Micieli
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Alberto Polimeni
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Beverley J. Henning
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Angelo Leone
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Milan, and National Research Council, Italy
| | - Georgina M. Ellison
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Rozzano, Milan, and National Research Council, Italy
| | - Ciro Indolfi
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- URT - National Research Council, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
24
|
Sciarretta S, Marchitti S, Bianchi F, Moyes A, Barbato E, Di Castro S, Stanzione R, Cotugno M, Castello L, Calvieri C, Eberini I, Sadoshima J, Hobbs AJ, Volpe M, Rubattu S. C2238 atrial natriuretic peptide molecular variant is associated with endothelial damage and dysfunction through natriuretic peptide receptor C signaling. Circ Res 2013; 112:1355-64. [PMID: 23529183 DOI: 10.1161/circresaha.113.301325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE C2238 atrial natriuretic peptide (ANP) minor allele (substitution of thymidine with cytosine in position 2238) associates with increased risk of cardiovascular events. OBJECTIVE We investigated the mechanisms underlying the vascular effects of C2238-αANP. METHODS AND RESULTS In vitro, human umbilical vein endothelial cell were exposed to either wild-type (T2238)- or mutant (C2238)-αANP. Cell survival and apoptosis were tested by Trypan blue, annexin V, and cleaved caspase-3 assays. C2238-αANP significantly reduced human umbilical vein endothelial cell survival and increased apoptosis. In addition, C2238-αANP reduced endothelial tube formation, as assessed by matrigel. C2238-αANP did not differentially modulate natriuretic peptide receptor (NPR)-A/B activity with respect to T2238-αANP, as evaluated by intracellular cGMP levels. In contrast, C2238-αANP, but not T2238-αANP, markedly reduced intracellular cAMP levels in an NPR-C-dependent manner. Accordingly, C2238-αANP showed higher affinity binding to NPR-C, than T2238-αANP. Either NPR-C inhibition by antisense oligonucleotide or NPR-C gene silencing by small interfering RNA rescued survival and tube formation of human umbilical vein endothelial cell exposed to C2238-αANP. Similar data were obtained in human aortic endothelial cell with NPR-C knockdown. NPR-C activation by C2238-αANP inhibited the protein kinase A/Akt1 pathway and increased reactive oxygen species. Adenovirus-mediated Akt1 reactivation rescued the detrimental effects of C2238-αANP. Overall, these data indicate that C2238-αANP affects endothelial cell integrity through NPR-C-dependent inhibition of the cAMP/protein kinase A/Akt1 pathway and increased reactive oxygen species production. Accordingly, C2238-αANP caused impairment of acetylcholine-dependent vasorelaxation ex vivo, which was rescued by NPR-C pharmacological inhibition. Finally, subjects carrying C2238 minor allele showed early endothelial dysfunction, which highlights the clinical relevance of our results. CONCLUSIONS C2238-αANP reduces endothelial cell survival and impairs endothelial function through NPR-C signaling. NPR-C targeting represents a potential strategy to reduce cardiovascular risk in C2238 minor-allele carriers.
Collapse
|
25
|
Matsumiya W, Kusuhara S, Hayashibe K, Maruyama K, Kusuhara H, Tagami M, Schuetz JD, Negi A. Forskolin modifies retinal vascular development in Mrp4-knockout mice. Invest Ophthalmol Vis Sci 2012; 53:8029-35. [PMID: 23154460 DOI: 10.1167/iovs.12-10781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. METHODS The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. RESULTS The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. CONCLUSIONS Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.
Collapse
Affiliation(s)
- Wataru Matsumiya
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci U S A 2012; 109:E2979-88. [PMID: 23045700 DOI: 10.1073/pnas.1205661109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Controlled maturation of ovarian follicles is necessary for fertility. Follicles are restrained at an immature stage until stimulated by FSH secreted by pituitary gonadotropes. FSH acts on granulosa cells within the immature follicle to inhibit apoptosis, promote proliferation, stimulate production of steroid and protein hormones, and induce ligand receptors and signaling intermediates. The phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway is a pivotal signaling corridor necessary for transducing the FSH signal. We report that protein kinase A (PKA) mediates the actions of FSH by signaling through multiple targets to activate PI3K/AKT. PKA uses a route that promotes phosphorylation of insulin receptor substrate-1 (IRS-1) on Tyr(989), a canonical binding site for the 85-kDa regulatory subunit of PI3K that allosterically activates the catalytic subunit. PI3K activation leads to activation of AKT through phosphorylation of AKT on Thr(308) and Ser(473). The adaptor growth factor receptor bound protein 2-associated binding protein 2 (GAB2) is present in a preformed complex with PI3K heterodimer and IRS-1, it is an A-kinase anchoring protein that binds the type I regulatory subunit of PKA, and it is phosphorylated by PKA on Ser(159). Overexpression of GAB2 enhances FSH-stimulated AKT phosphorylation. GAB2, thus, seems to coordinate signals from the FSH-stimulated rise in cAMP that leads to activation of PI3K/AKT. The ability of PKA to commandeer IRS-1 and GAB2, adaptors that normally integrate receptor/nonreceptor tyrosine kinase signaling into PI3K/AKT, reveals a previously unrecognized route for PKA to activate a pathway that promotes proliferation, inhibits apoptosis, enhances translation, and initiates differentiation of granulosa cells.
Collapse
|
27
|
Ji H, Shen X, Zhang Y, Gao F, Huang CY, Chang WW, Lee C, Ke B, Busuttil RW, Kupiec-Weglinski JW. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transpl 2012; 18:659-70. [PMID: 22290937 PMCID: PMC4186257 DOI: 10.1002/lt.23399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) occurs in multiple clinical settings, including liver transplantation. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway inhibits hepatocellular apoptosis and regulates toll-like receptor 4-triggered inflammation responses in vitro. Here we examined the function and therapeutic potential of cAMP-PKA activation in a murine (C57/BL6) model of liver warm ischemia (90 minutes) followed by reperfusion. Liver IRI triggered cAMP-PKA activation, whereas the administration of its specific inhibitor, H89, exacerbated hepatocellular damage. Conversely, forskolin therapy, which activates PKA by elevating cAMP levels, protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture. Liver protection due to cAMP-PKA stimulation was accompanied by diminished neutrophil and macrophage infiltration/activation, reduced hepatocyte necrosis/apoptosis, and increased cAMP response element-binding protein (CREB) expression and augmented interleukin-10 (IL-10) expression. The neutralization of IL-10 restored liver damage in otherwise ischemia/reperfusion-resistant, forskolin-treated mice. In vitro, cAMP-PKA activation diminished macrophage tumor necrosis factor α, IL-6, and IL-12 in an IL-10-dependent manner and prevented necrosis/apoptosis in primary mouse hepatocyte cultures. Our novel findings in a mouse model of liver IRI document the importance of cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. The activation of cAMP-PKA signaling differentially regulates local inflammation and prevents hepatocyte death, and this provides a rationale for novel therapeutic approaches to combating liver IRI in transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jerzy W. Kupiec-Weglinski
- Corresponding Author: Jerzy W. Kupiec-Weglinski, MD, PhD. Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-4196; Fax: (310) 267-2358;
| |
Collapse
|
28
|
Bir SC, Xiong Y, Kevil CG, Luo J. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovasc Res 2012; 95:7-18. [PMID: 22492672 DOI: 10.1093/cvr/cvs143] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although an abundant amount of research has been devoted to the study of angiogenesis, its precise mechanisms are incompletely understood. Numerous clinical trials focused on therapeutic angiogenesis for the treatment of tissue ischaemia have not been as successful as those of preclinical studies. Thus, additional studies are needed to better understand critical molecular mechanisms regulating ischaemic neovascularization to identify novel therapeutic agents. Nitric oxide (NO) plays a central role in ischaemic neovascularization through the generation of cyclic guanosine monophosphate (cGMP) and the activation of several other signalling responses. Accumulated evidence suggests that endothelial protein kinase A/endothelial NO synthase (PKA/eNOS) signalling may play an important role in ischaemic disorders by promoting neovascularization. This review highlights recent advances in the role of the PKA/eNOS and NO-cGMP-kinase cascade pathway in ischaemic neovascularization. We also discuss molecular relationships of PKA/eNOS with other angiogenic pathways and explore the possibility of activation of the NO/nitrite endocrine system as potential therapeutic targets for ischaemic angiogenesis.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, LA, USA
| | | | | | | |
Collapse
|
29
|
Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf) 2012; 204:277-87. [PMID: 21385327 DOI: 10.1111/j.1748-1716.2011.02273.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The second messenger cyclic AMP (cAMP) can either stimulate or inhibit programmed cell death (apoptosis). Here, we review examples of cell types that show pro-apoptotic or anti-apoptotic responses to increases in cAMP. We also show that cells can have both such responses, although predominantly having one or the other. Protein kinase A (PKA)-promoted changes in phosphorylation and gene expression can mediate pro-apoptotic responses, such as in murine S49 lymphoma cells, based on evidence that mutants lacking PKA fail to undergo cAMP-promoted, mitochondria-dependent apoptosis. Mechanisms for the anti-apoptotic response to cAMP likely involve Epac (Exchange protein activated by cAMP), a cAMP-regulated effector that is a guanine nucleotide exchange factor (GEF) for the low molecular weight G-protein, Rap1. Therapeutic approaches that activate PKA-mediated pro-apoptosis or block Epac-mediated anti-apoptotisis may provide a means to enhance cell killing, such as in certain cancers. In contrast, efforts to block PKA or stimulate Epac have the potential to be useful in diseases settings (such as heart failure) associated with cAMP-promoted apoptosis.
Collapse
Affiliation(s)
- P A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, 92093-0636, USA.
| | | | | | | | | |
Collapse
|
30
|
Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C. MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circ Res 2011; 109:880-93. [DOI: 10.1161/circresaha.111.240150] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniele Torella
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Claudio Iaconetti
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Daniele Catalucci
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Georgina M. Ellison
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Angelo Leone
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Cheryl D. Waring
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Angela Bochicchio
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Carla Vicinanza
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Iolanda Aquila
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Antonio Curcio
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Gianluigi Condorelli
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| | - Ciro Indolfi
- From the Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute (D.T., C. Iaconetti, G.M.E., A.L., A.B., C.V., I.A., A.C., C. Indolfi), Magna Graecia University, Catanzaro, Italy; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University (D.T., G.M.E., C.D.W.), Liverpool, United Kingdom; Istituto di Ricovero e Cura a Carattere Scientifico Multimedica (D.C., G.C.), Milan, Italy; (G.C.), Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
| |
Collapse
|
31
|
Curcio A, Torella D, Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 2011; 75:1287-96. [PMID: 21532177 DOI: 10.1253/circj.cj-11-0366] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bare metal stents (BMS) successfully prevented abrupt artery closure and reduced the restenosis rate compared with balloon angioplasty. This review summarizes laboratory and recent clinical investigations concerning neointimal formation and endothelial regeneration after vascular injury. BMS efficacy was severely hampered by proliferating vascular smooth muscle cells (VSMCs), and the resultant neointimal hyperplasia, which is the only mechanism responsible for restenosis after metal stent placement. The advent of drug-eluting stents (DES) in 2002 have since then revolutionized interventional cardiology. By using the stent struts as a platform coated with polymers to elute drugs targeting VSMC proliferation, a substantial attenuation of in-stent restenosis is feasible. As with any medical innovation this technology still has restrictive factors, and novel approaches are promoted to improve the safety and efficacy of DES. Indeed, the antiproliferative properties of DES impair and/or delay endothelialization, hence leading to late stent thrombosis. Improvements in percutaneous coronary intervention procedures include the use of the so-called "second-generation DES", together with new coating technologies, bioabsorbable stents, and non-drug-based stent coatings. Particular emphasis will be placed on the concept that endothelial regeneration might be pursued as well as reduction of VSMC proliferation to allow stable successful revascularization after DES deployment.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | | | | |
Collapse
|
32
|
Tagami M, Kusuhara S, Imai H, Uemura A, Honda S, Tsukahara Y, Negi A. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells. Biochem Biophys Res Commun 2010; 400:593-8. [DOI: 10.1016/j.bbrc.2010.08.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/25/2010] [Indexed: 01/04/2023]
|
33
|
Erdogdu O, Nathanson D, Sjöholm A, Nyström T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol 2010; 325:26-35. [PMID: 20452396 DOI: 10.1016/j.mce.2010.04.022] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 12/20/2022]
Abstract
Endothelial cells have a robust capacity to proliferate and participate in angiogenesis, which underlies the maintenance of intimal layer integrity. We previously showed the presence of the GLP-1 receptor in human coronary artery endothelial cells (HCAECs) and the ameliorative actions of GLP-1 on endothelial dysfunction in type 2 diabetic patients. Here, we have studied the effect of exendin-4 on cell proliferation and its underlying mechanisms in HCAECs. Incubation of HCAECs with exendin-4 resulted in a dose-dependent increase in DNA synthesis and an increased cell number, associated with an enhanced eNOS and Akt activation, which were inhibited by PKA, PI3K, Akt or eNOS inhibitors and abolished by a GLP-1 receptor antagonist. Similar effects were obtained by applying GLP-1 (7-36) or GLP-1 (9-36). Co-incubation of exendin-4 and GLP-1 did not show additive effects. Our results suggest that exendin-4 stimulates proliferation of HCAECs through PKA-PI3K/Akt-eNOS activation pathways via a GLP-1 receptor-dependent mechanism.
Collapse
Affiliation(s)
- O Erdogdu
- Karolinska Institutet, Department of Clinical Science and Education, Unit for Diabetes Research, Södersjukhuset, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
34
|
Jia G, Mitra AK, Gangahar DM, Agrawal DK. Insulin-like growth factor-1 induces phosphorylation of PI3K-Akt/PKB to potentiate proliferation of smooth muscle cells in human saphenous vein. Exp Mol Pathol 2010; 89:20-6. [PMID: 20471974 DOI: 10.1016/j.yexmp.2010.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 11/26/2022]
Abstract
Coronary revascularization by coronary artery bypass grafting (CABG) is recommended in patients with recurrent myocardial ischemia. However, the long-term results of CABG using saphenous vein (SV) graft, compared to internal mammary artery (IMA) graft, have not been satisfactory. The SV graft failure is due to the development of intimal hyperplasia, a process characterized by abnormal migration and proliferation of smooth muscle cells (SMCs) in the intimal layer of the vein graft. Insulin growth factor 1 (IGF-1) is a major mitogenic growth factor released at the site of the shear stress-induced graft injury. This study, for the first time, compares the extent of IGF-1-PI3K-Akt activation in isolated human bypass graft conduits. Human SV and IMA vessels were collected and SMCs isolated and cultured. In cultured SMCs, effect of IGF-1 was examined on total and phosphorylated PI3K, Akt and IGF-1R by Western blot analysis. Cell proliferation was measured using BrdU ELISA. There was no significant difference in the basal expression of phosphorylated PI3K, Akt and IGF-1R in SV and IMA SMCs from human bypass conduits. However, we observed an upregulation of IGF-1 receptors in the SV SMCs in response to IGF-1 stimulation with no effect in IMA SMCs. Furthermore, the immunoblotting and cellular activation of signaling ELISA (CASE) assay demonstrated a significantly higher activity of both PI3K and Akt in IGF-1-stimulated SV SMCs than IMA. This was inhibited by an IGF-1R blocking antibody. IGF-1 induced proliferation in both SV and IMA SMCs was inhibited by a PI3K inhibitor, wortmannin. These data demonstrate differential activity of IGF-1-induced PI3K-Akt activation, which was quantitatively and temporally greater in SV SMCs than in the IMA. This, at least in part, could explain the greater propensity of the SV conduits than the IMA to undergo intimal hyperplasia following CABG.
Collapse
Affiliation(s)
- Guanghong Jia
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | | | |
Collapse
|
35
|
Rocic P. Differential phosphoinositide 3-kinase signaling: implications for PTCA? Am J Physiol Heart Circ Physiol 2009; 297:H1970-1. [PMID: 19837947 DOI: 10.1152/ajpheart.00952.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|