1
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Hanson BE, Lee JF, Garten RS, O'Keefe ZB, Layec G, Ruple BA, Wray DW, Richardson RS, Trinity JD. Acute sympathetic activation blunts the hyperemic and vasodilatory response to passive leg movement. RESEARCH SQUARE 2024:rs.3.rs-4356062. [PMID: 38765959 PMCID: PMC11100891 DOI: 10.21203/rs.3.rs-4356062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heightened muscle sympathetic nerve activity (MSNA) contributes to impaired vasodilatory capacity and vascular dysfunction associated with aging and cardiovascular disease. The contribution of elevated MSNA to the vasodilatory response during passive leg movement (PLM) has not been adequately addressed. This study sought to test the hypothesis that elevated MSNA diminishes the vasodilatory response to PLM in healthy young males (n = 11, 25 ± 2 year). Post exercise circulatory occlusion (PECO) following 2 min of isometric handgrip (HG) exercise performed at 25% (ExPECO 25%) and 40% (ExPECO 40%) of maximum voluntary contraction was used to incrementally engage the metaboreceptors and augment MSNA. Control trials were performed without PECO (ExCON 25% and ExCON 40%) to account for changes due to HG exercise. PLM was performed 2 min after the cessation of exercise and central and peripheral hemodynamics were assessed. MSNA was directly recorded by microneurography in the peroneal nerve (n = 8). Measures of MSNA (i.e., burst incidences) increased during ExPECO 25% (+ 15 ± 5 burst/100 bpm) and ExPECO 40% (+ 22 ± 4 burst/100 bpm) and returned to pre-HG levels during ExCON trials. Vasodilation, assessed by the change in leg vascular conductance during PLM, was reduced by 16% and 44% during ExPECO 25% and ExPECO 40%, respectively. These findings indicate that elevated MSNA attenuates the vasodilatory response to PLM and that the magnitude of reduction in vasodilation during PLM is graded in relation to the degree of sympathoexcitation.
Collapse
|
3
|
Sallam NA, Wang B, Laher I. Exercise training and vascular heterogeneity in db/db mice: evidence for regional- and duration-dependent effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2421-2436. [PMID: 37843589 DOI: 10.1007/s00210-023-02775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Exercise training (ET) has several health benefits; however, our understanding of regional adaptations to ET is limited. We examined the functional and molecular adaptations to short- and long-term ET in elastic and muscular conduit arteries of db/db mice in relation to changes in cardiovascular risk factors. Diabetic mice and their controls were exercised at moderate intensity for 4 or 8 weeks. The vasodilatory and contractile responses of thoracic aortae and femoral arteries isolated from the same animals were examined. Blood and aortic samples were used to measure hyperglycemia, oxidative stress, inflammation, dyslipidemia, protein expression of SOD isoforms, COX, eNOS, and Akt. Short-term ET improved nitric oxide (NO) mediated vasorelaxation in the aortae and femoral arteries of db/db mice in parallel with increased SOD2 and SOD3 expression, reduced oxidative stress and triglycerides, and independent of weight loss, glycemia, or inflammation. Long-term ET reduced body weight in parallel with reduced systemic inflammation and improved insulin sensitivity along with increased SOD1, Akt, and eNOS expression and improved NO vasorelaxation. Exercise did not restore NOS- and COX-independent vasodilatation in femoral arteries, nor did it mitigate the hypercontractility in the aortae of db/db mice; rather ET transiently increased contractility in association with upregulated COX-2. Long-term ET differentially affected the aortae and femoral arteries contractile responses. ET improved NO-mediated vasodilation in both arteries likely due to collective systemic effects. ET did not mitigate all diabetes-induced vasculopathies. Optimization of the ET regimen can help develop comprehensive management of type 2 diabetes.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Baohua Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
4
|
Pedrinolla A, Isanejad M, Antognelli C, Bartolini D, Borras C, Cavedon V, Di Sante G, Migni A, Mas-Bargues C, Milanese C, Baschirotto C, Modena R, Pistilli A, Rende M, Schena F, Stabile AM, Telesa NV, Tortorella S, Hemmings K, Vina J, Wang E, McArdle A, Jackson MJ, Venturelli M, Galli F. Randomised controlled trial combining vitamin E-functionalised chocolate with physical exercise to reduce the risk of protein-energy malnutrition in predementia aged people: study protocol for Choko-Age. BMJ Open 2023; 13:e072291. [PMID: 38135320 DOI: 10.1136/bmjopen-2023-072291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Protein-energy malnutrition and the subsequent muscle wasting (sarcopenia) are common ageing complications. It is knowing to be also associated with dementia. Our programme will test the cytoprotective functions of vitamin E combined with the cortisol-lowering effect of chocolate polyphenols (PP), in combination with muscle anabolic effect of adequate dietary protein intake and physical exercise to prevent the age-dependent decline of muscle mass and its key underpinning mechanisms including mitochondrial function, and nutrient metabolism in muscle in the elderly. METHODS AND ANALYSIS In 2020, a 6-month double-blind randomised controlled trial in 75 predementia older people was launched to prevent muscle mass loss, in respond to the 'Joint Programming Initiative A healthy diet for a healthy life'. In the run-in phase, participants will be stabilised on a protein-rich diet (0.9-1.0 g protein/kg ideal body weight/day) and physical exercise programme (high-intensity interval training specifically developed for these subjects). Subsequently, they will be randomised into three groups (1:1:1). The study arms will have a similar isocaloric diet and follow a similar physical exercise programme. Control group (n=25) will maintain the baseline diet; intervention groups will consume either 30 g/day of dark chocolate containing 500 mg total PP (corresponding to 60 mg epicatechin) and 100 mg vitamin E (as RRR-alpha-tocopherol) (n=25); or the high polyphenol chocolate without additional vitamin E (n=25). Muscle mass will be the primary endpoint. Other outcomes are neurocognitive status and previously identified biomolecular indices of frailty in predementia patients. Muscle biopsies will be collected to assess myocyte contraction and mitochondrial metabolism. Blood and plasma samples will be analysed for laboratory endpoints including nutrition metabolism and omics. ETHICS AND DISSEMINATION All the ethical and regulatory approvals have been obtained by the ethical committees of the Azienda Ospedaliera Universitaria Integrata of Verona with respect to scientific content and compliance with applicable research and human subjects' regulation. Given the broader interest of the society toward undernutrition in the elderly, we identify four main target audiences for our research activity: national and local health systems, both internal and external to the project; targeted population (the elderly); general public; and academia. These activities include scientific workshops, public health awareness campaigns, project dedicated website and publication is scientific peer-review journals. TRIAL REGISTRATION NUMBER NCT05343611.
Collapse
Affiliation(s)
- Anna Pedrinolla
- Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Masoud Isanejad
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, Perugia, Italy
| | - Consuelo Borras
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Valentina Cavedon
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Gabriele Di Sante
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Anna Migni
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient, University of Perugia, Perugia, Italy
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), University of Valencia, Valencia, Spain
| | - Chiara Milanese
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Claudia Baschirotto
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Roberto Modena
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Alessandra Pistilli
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Mario Rende
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Anna Maria Stabile
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | | | | | - Kay Hemmings
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Jose Vina
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Eivind Wang
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- St Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| | - Anne McArdle
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine and Movement (DNBM), University of Verona, Verona, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Fermoyle CC, La Salle DT, Alpenglow JK, Craig JC, Jarrett CL, Broxterman RM, McKenzie AI, Morgan DE, Birgenheier NM, Wray DW, Richardson RS, Trinity JD. Pharmacological modulation of adrenergic tone alters the vasodilatory response to passive leg movement in young but not in old adults. J Appl Physiol (1985) 2023; 134:1124-1134. [PMID: 36927146 PMCID: PMC10125034 DOI: 10.1152/japplphysiol.00682.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The age-related increase in α-adrenergic tone may contribute to decreased leg vascular conductance (LVC) both at rest and during exercise in the old. However, the effect on passive leg movement (PLM)-induced LVC, a measure of vascular function, which is markedly attenuated in this population, is unknown. Thus, in eight young (25 ± 5 yr) and seven old (65 ± 7 yr) subjects, this investigation examined the impact of systemic β-adrenergic blockade (propanalol, PROP) alone, and PROP combined with either α1-adrenergic stimulation (phenylephrine, PE) or α-adrenergic inhibition (phentolamine, PHEN), on PLM-induced vasodilation. LVC, calculated from femoral artery blood flow and pressure, was determined and PLM-induced Δ peak (LVCΔpeak) and total vasodilation (LVCAUC, area under curve) were documented. PROP decreased LVCΔpeak (PROP: 4.8 ± 1.8, Saline: 7.7 ± 2.7 mL·mmHg-1, P < 0.001) and LVCAUC (PROP: 1.1 ± 0.7, Saline: 2.4 ± 1.6 mL·mmHg-1, P = 0.002) in the young, but not in the old (LVCΔpeak, P = 0.931; LVCAUC, P = 0.999). PE reduced baseline LVC (PE: 1.6 ± 0.4, PROP: 2.3 ± 0.4 mL·min-1·mmHg-1, P < 0.01), LVCΔpeak (PE: 3.2 ± 1.3, PROP: 4.8 ± 1.8 mL·min-1·mmHg-1, P = 0.004), and LVCAUC (PE: 0.5 ± 0.4, PROP: 1.1 ± 0.7 mL·mmHg-1, P = 0.011) in the young, but not in the old (baseline LVC, P = 0.199; LVCΔpeak, P = 0.904; LVCAUC, P = 0.823). PHEN increased LVC at rest and throughout PLM in both groups (drug effect: P < 0.05), however LVCΔpeak was only improved in the young (PHEN: 6.4 ± 3.1, PROP: 4.4 ± 1.5 mL·min-1·mmHg-1, P = 0.004), and not in the old (P = 0.904). Furthermore, the magnitude of α-adrenergic modulation (PHEN - PE) of LVCΔpeak was greater in the young compared with the old (Young: 3.35 ± 2.32, Old: 0.40 ± 1.59 mL·min-1·mmHg-1, P = 0.019). Therefore, elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.NEW & NOTEWORTHY Stimulation of α1-adrenergic receptors eliminated age-related differences in passive leg movement (PLM) by decreasing PLM-induced vasodilation in the young. Systemic β-blockade attenuated the central hemodynamic component of the PLM response in young individuals. Inhibition of α-adrenergic receptors did not improve the PLM response in older individuals, though withdrawal of α-adrenergic modulation augmented baseline and maximal vasodilation in both groups. Accordingly, α-adrenergic signaling plays a role in modulating the PLM vasodilatory response in young but not in old adults, and elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.
Collapse
Affiliation(s)
- Caitlin C Fermoyle
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - Catherine L Jarrett
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - Ryan M Broxterman
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - David E Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Nathaniel M Birgenheier
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Weggen JB, Hogwood AC, Decker KP, Darling AM, Chiu A, Richardson J, Garten RS. Vascular Responses to Passive and Active Movement in Premenopausal Females: Comparisons across Sex and Menstrual Cycle Phase. Med Sci Sports Exerc 2023; 55:900-910. [PMID: 36728956 DOI: 10.1249/mss.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adequate, robust vascular responses to passive and active movement represent two distinct components linked to normal, healthy cardiovascular function. Currently, limited research exists determining if these vascular responses are altered in premenopausal females (PMF) when compared across sex or menstrual cycle phase. METHODS Vascular responses to passive leg movement (PLM) and handgrip (HG) exercise were assessed in PMF ( n = 21) and age-matched men ( n = 21). A subset of PMF subjects ( n = 11) completed both assessments during the early and late follicular phase of their menstrual cycle. Microvascular function was assessed during PLM via changes in leg blood flow, and during HG exercise, via steady-state arm vascular conductance. Macrovascular (brachial artery [BA]) function was assessed during HG exercise via BA dilation responses as well as BA shear rate-dilation slopes. RESULTS Leg microvascular function, determined by PLM, was not different between sexes or across menstrual cycle phase. However, arm microvascular function, demonstrated by arm vascular conductance, was lower in PMF compared with men at rest and during HG exercise. Macrovascular function was not different between sexes or across menstrual cycle phase. CONCLUSIONS This study identified similar vascular function across sex and menstrual cycle phase seen in microvasculature of the leg and macrovascular (BA) of the arm. Although arm microvascular function was unaltered by menstrual cycle phase in PMF, it was revealed to be significantly lower when compared with age-matched men highlighting a sex difference in vascular/blood flow regulation during small muscle mass exercise.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | - Kevin P Decker
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Jacob Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
7
|
D'Agata MN, Hoopes EK, Witman MA. Associations between noninvasive upper- and lower-limb vascular function assessments: extending the evidence to young women. J Appl Physiol (1985) 2022; 133:886-892. [PMID: 36007894 PMCID: PMC9529273 DOI: 10.1152/japplphysiol.00177.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Brachial artery (BA) flow-mediated dilation (FMD) is a well-established measure of peripheral vascular function prognostic of future cardiovascular events. The vasodilatory response to FMD (FMD%) reflects upper-limb conduit artery function, whereas reactive hyperemia (RH) following cuff-occlusion release reflects upper-limb resistance artery function. Comparatively, passive leg movement (PLM) is a newer, increasingly utilized assessment of lower-limb resistance artery function. To increase its clinical utility, PLM-induced leg blood flow (LBF) responses have been compared with hemodynamic responses to FMD, but only in men. Therefore, the purpose of this study was to retrospectively compare LBF responses to FMD% and RH responses in women. We hypothesized that LBF responses would be positively associated with both FMD% and RH, but to a greater extent with RH. FMD and PLM were performed on 72 women (23 ± 4 yr). Arterial diameter and blood velocity were assessed using Doppler ultrasound. Pearson correlation coefficients were used to evaluate associations. Measures of resistance artery function were weakly positively associated: change in BA blood flow ΔBABF and ΔLBF (r = 0.33, P < 0.01), BABF area under the curve (BABF AUC) and LBF AUC (r = 0.33, P < 0.01), and BABFpeak and LBFpeak (r = 0.37, P < 0.01). However, FMD% was not associated with any index of PLM (all P > 0.30). In women, indices of resistance artery function in the upper- and lower limbs were positively associated. However, contrary to the previous work in men, upper-limb conduit artery function was not associated with lower-limb resistance artery function suggesting these assessments capture different aspects of vascular function and should not be used interchangeably in women.NEW & NOTEWORTHY Upper- and lower-limb indices of resistance artery function are positively associated in young women when assessed by reactive hyperemia following brachial artery flow-mediated dilation (FMD) cuff-occlusion release and leg blood flow responses to passive leg movement (PLM), respectively. However, despite previous data demonstrating a positive association between upper-limb conduit artery function assessed by FMD and lower-limb resistance artery function assessed by PLM in young men, these measures do not appear to be related in young women.
Collapse
Affiliation(s)
- Michele N D'Agata
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Elissa K Hoopes
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
8
|
Adams JA, Lopez JR, Nadkarni V, Zolkipli‐Cunningham Z, Ischiropoulos H, Sackner MA. The effects of a motorized passive simulated jogging device on descent of the arterial pulse waveform dicrotic notch: A single arm placebo-controlled cross-over trial. Physiol Rep 2022; 10:e15418. [PMID: 35924333 PMCID: PMC9350470 DOI: 10.14814/phy2.15418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2023] Open
Abstract
Whole Body Periodic Acceleration (WBPA, pGz), is a bed that moves the body headward to forward, adds pulses to the circulation inducing descent of the dicrotic notch (DN) on the pulse waveform with an increase in a/b ratio (a = the height of the pulse waveform and b = the height of the secondary wave). Since the WBPA is large, heavy, and non-portable, we engineered a portable device (Jogging Device, JD). JD simulates passive jogging and introduces pulsations to the circulation. We hypothesized that JD would increase the a/b ratio during and after its use. In Study A, a single-arm placebo-controlled cross-over trial was conducted in24 adults (53.8 ± 14.4 years) using JD or control (CONT) for 30 min. Blood pressure (BPs and BPd) and photoplethysmograph pulse (a/b) were measured at baseline (BL), during 30 min of JD or CONT, and 5 and 60 min after. In Study B (n = 20, 52.2 ± 7 years), a single-arm observational trial of 7 consecutive days of JD on BP and a/b, measured at BL, and after 7 days of JD and 48 and 72 hr after its discontinuation. In Study A, BPs, and BPd decreased during JD by 13% and 16%, respectively, while in CONT both increased by 2% and 2.5%, respectively. The a/b increased by 2-fold and remained greater than 2-fold at all-time points, with no change in a/b during CONT. In Study B, BPs and BPd decreased by 9% and remained below BL, at 72 hr after discontinuation of JD. DN descent also occurred after 7 days of JD with a/b increase of 80% and remained elevated by 60% for at least 72 h. JD improves acute and longer-term vascular hemodynamics with an increase in a/b, consistent with increased effects of nitric oxide (NO). JD may have significant clinical and public health implications.
Collapse
Affiliation(s)
- Jose A. Adams
- Division NeonatologyMt Sinai Medical Center of Greater MiamiMiami BeachFloridaUSA
| | - Jose R. Lopez
- Department of ResearchMt Sinai Medical Center of Greater MiamiMiami BeachFloridaUSA
| | - Vinay Nadkarni
- Anesthesiology, Critical Care, and Pediatrics, The Children's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program (MMFP), Center for Mitochondrial and Epigenomic Medicine (CMEM), Division of Human Genetics, The Children's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marvin A. Sackner
- Department of ResearchMt Sinai Medical Center of Greater MiamiMiami BeachFloridaUSA
| |
Collapse
|
9
|
D'Agata MN, Hoopes EK, Berube FR, Hirt AE, Kuczmarski AV, Ranadive SM, Wenner MM, Witman MA. Evidence of reduced peripheral microvascular function in young Black women across the menstrual cycle. J Appl Physiol (1985) 2021; 131:1783-1791. [PMID: 34709068 PMCID: PMC8714980 DOI: 10.1152/japplphysiol.00452.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Black women (BLW) have a higher prevalence of cardiovascular disease (CVD) morbidity and mortality compared with White women (WHW). A racial disparity in CVD risk has been identified early in life as young adult BLW demonstrate attenuated vascular function compared with WHW. Previous studies comparing vascular function between premenopausal WHW and BLW have been limited to the early follicular (EF) phase of the menstrual cycle, which may not reflect their vascular function during other menstrual phases. Therefore, we evaluated peripheral microvascular function in premenopausal WHW and BLW using passive leg movement (PLM) during three menstrual phases: EF, ovulation (OV), and mid-luteal (ML). We hypothesized that microvascular function would be augmented during the OV and ML phases compared with the EF phase in both groups, but would be attenuated in BLW compared with WHW at all three phases. PLM was performed on 26 apparently healthy premenopausal women not using hormonal contraceptives: 15 WHW (23 ± 3 yr), 11 BLW (24 ± 5 yr). There was a main effect of race on the overall change in leg blood flow (ΔLBF) (P = 0.01) and leg blood flow area under the curve (LBF AUC) (P = 0.02), such that LBF was lower in BLW. However, there was no effect of phase on ΔLBF (P = 0.69) or LBF AUC (P = 0.65), nor an interaction between race and phase on ΔLBF (P = 0.37) or LBF AUC (P = 0.75). Despite peripheral microvascular function being unchanged across the menstrual cycle, a racial disparity was apparent as microvascular function was attenuated in BLW compared with WHW across the menstrual cycle.NEW & NOTEWORTHY This is the first study to compare peripheral microvascular function between young, otherwise healthy Black women and White women at multiple phases of the menstrual cycle. Our novel findings demonstrate a significant effect of race on peripheral microvascular function such that Black women exhibit significant attenuations in microvascular function across the menstrual cycle compared with White women.
Collapse
Affiliation(s)
- Michele N D'Agata
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Elissa K Hoopes
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Felicia R Berube
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Alexandra E Hirt
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
10
|
Lew LA, Liu KR, Pyke KE. Reliability of the hyperaemic response to passive leg movement in young, healthy women. Exp Physiol 2021; 106:2013-2023. [PMID: 34216162 DOI: 10.1113/ep089629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? This is the first study to assess the day-to-day reliability of passive leg movement-induced hyperaemia (PLM-H), an index of lower-limb microvascular function, in young, healthy women. What is the main finding and its importance? Passive leg movement-induced hyperaemia demonstrated good day-to-day reliability, comparable to other common indices of endothelial function, supporting the use of PLM-H to assess lower-limb microvascular function in women. ABSTRACT Passive leg movement-elicited hyperaemia (PLM-H) provides an index of lower-limb microvascular function. However, there is currently limited information regarding the reliability of PLM-H and no reliability information specific to women. The purpose of this study was to determine the reliability of PLM-H in women on two separate days. Seventeen young, healthy women [22 ± 3 years old (mean ± SD)] participated in two identical visits including three trials of PLM. Using duplex ultrasound, PLM-H was characterized by six indices: peak leg blood flow (LBF) and vascular conductance (LVC), peak change above baseline (Δpeak) for LBF and LVC, and area under the curve above baseline (AUC) during the first 60 s of PLM for LBF and LVC. The results demonstrated good day-to-day reliability of PLM-H characterized as peak LBF [r = 0.84, P < 0.001; intraclass correlation coefficient (ICC) = 0.84; coefficient of variation (CV) = 13.2%], peak LVC (r = 0.82, P < 0.001; ICC = 0.79; CV = 14.4%), Δpeak LBF (r = 0.83, P < 0.001; ICC = 0.82; CV = 17.8%) and Δpeak LVC (r = 0.83, P < 0.001; ICC = 0.80; CV = 16.5%). Characterization of PLM as AUC demonstrated moderate day-to-day reliability: AUC LBF (r = 0.71, P < 0.05; ICC = 0.70; CV = 31.2%) and AUC LVC (r = 0.78, P < 0.001; ICC = 0.74; CV = 27.1%). In conclusion, this study demonstrates that PLM-H has good reliability as an index of microvascular function; however, characterization of PLM-H as peak, Δpeak LBF and LVC is more reliable than AUC.
Collapse
Affiliation(s)
- Lindsay A Lew
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Kaitlyn R Liu
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Paneroni M, Pasini E, Vitacca M, Scalvini S, Comini L, Pedrinolla A, Venturelli M. Altered Vascular Endothelium-Dependent Responsiveness in Frail Elderly Patients Recovering from COVID-19 Pneumonia: Preliminary Evidence. J Clin Med 2021; 10:jcm10122558. [PMID: 34207876 PMCID: PMC8228458 DOI: 10.3390/jcm10122558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
We evaluated vascular dysfunction with the single passive leg movement test (sPLM) in 22 frail elderly patients at 84 + 31 days after hospitalization for COVID-19 pneumonia, compared to 22 age-, sex- and comorbidity-matched controls (CTRL). At rest, all COVID-19 patients were in stable clinical condition without severe comorbidities. Patients (aged 72 ± 6 years, 73% male) had moderate disability (Barthel index score 77 ± 26), hypoxemia and normocapnia at arterial blood gas analysis and mild pulmonary restriction at spirometry. Values of circulating markers of inflammation (C-reactive protein: CRP; erythrocyte sedimentation rate: ESR) and coagulation (D-dimer) were: 27.13 ± 37.52 mg/dL, 64.24 ± 32.37 mm/1 h and 1043 ± 729 ng/mL, respectively. At rest, femoral artery diameter was similar in COVID-19 and CTRL (p = 0.16). On the contrary, COVID-19 infection deeply impacted blood velocity (p = 0.001) and femoral blood flow (p < 0.0001). After sPLM, peak femoral blood flow was dramatically reduced in COVID-19 compared to CTRL (p = 0.001), as was blood flow ∆peak (p = 0.05) and the area under the curve (p < 0.0001). This altered vascular responsiveness could be one of the unknown components of long COVID-19 syndrome leading to fatigue, changes in muscle metabolism and fibers’ composition, exercise intolerance and increased cardiovascular risk. Impact of specific treatments, such as exercise training, dietary supplements or drugs, should be evaluated.
Collapse
Affiliation(s)
- Mara Paneroni
- Respiratory Rehabilitation of the Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, 25065 Lumezzane, Italy;
- Correspondence: ; Tel.: +39-030-825-3122
| | - Evasio Pasini
- Cardiac Rehabilitation of the Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, 25065 Lumezzane, Italy; (E.P.); (S.S.)
| | - Michele Vitacca
- Respiratory Rehabilitation of the Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, 25065 Lumezzane, Italy;
| | - Simonetta Scalvini
- Cardiac Rehabilitation of the Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, 25065 Lumezzane, Italy; (E.P.); (S.S.)
| | - Laura Comini
- Scientific Direction of the Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, 25065 Lumezzane, Italy;
| | - Anna Pedrinolla
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, 37100 Verona, Italy; (A.P.); (M.V.)
| | - Massimo Venturelli
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, 37100 Verona, Italy; (A.P.); (M.V.)
- Section of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|