1
|
Costa DVS, Shin JH, Goldbeck SM, Bolick DT, Mesquita FS, Loureiro AV, Rodrigues-Jesus MJ, Brito GAC, Warren CA. Adenosine receptors differentially mediate enteric glial cell death induced by Clostridioides difficile Toxins A and B. Front Immunol 2023; 13:956326. [PMID: 36726986 PMCID: PMC9885079 DOI: 10.3389/fimmu.2022.956326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Increased risk of intestinal dysfunction has been reported in patients after Clostridioides difficile infection (CDI). Enteric glial cells (EGCs), a component of the enteric nervous system (ENS), contribute to gut homeostasis. Previous studies showed that adenosine receptors, A2A and A2B, modulate inflammation during CDI. However, it is unknown how these receptors can modulate the EGC response to the C. difficile toxins (TcdA and TcdB). We investigated the effects of these toxins on the expression of adenosine receptors in EGCs and the role of these receptors on toxin-induced EGC death. Rat EGCs line were incubated with TcdA or TcdB alone or in combination with adenosine analogues 1h prior to toxins challenge. After incubation, EGCs were collected to evaluate gene expression (adenosine receptors and proinflammatory markers) and cell death. In vivo, WT, A2A, and A2B KO mice were infected with C. difficile, euthanized on day 3 post-infection, and cecum tissue was processed. TcdA and TcdB increased A2A and A3 transcripts, as well as decreased A2B. A2A agonist, but not A2A antagonist, decreased apoptosis induced by TcdA and TcdB in EGCs. A2B blocker, but not A2B agonist, diminished apoptosis in EGCs challenged with both toxins. A3 agonist, but not A3 blocker, reduced apoptosis in EGCs challenged with TcdA and TcdB. Inhibition of protein kinase A (PKA) and CREB, both involved in the main signaling pathway driven by activation of adenosine receptors, decreased EGC apoptosis induced by both toxins. A2A agonist and A2B antagonist decreased S100B upregulation induced by C. difficile toxins in EGCs. In vivo, infected A2B KO mice, but not A2A, exhibited a decrease in cell death, including EGCs and enteric neuron loss, compared to infected WT mice, reduced intestinal damage and decreased IL-6 and S100B levels in cecum. Our findings indicate that upregulation of A2A and A3 and downregulation of A2B in EGCs and downregulation of A2B in intestinal tissues elicit a protective response against C. difficile toxins. Adenosine receptors appear to play a regulatory role in EGCs death and proinflammatory response induced by TcdA and TcdB, and thus may be potential targets of intervention to prevent post-CDI intestinal dysmotility.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jae H Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Sophia M Goldbeck
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - David T Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Flavio S Mesquita
- Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrea V Loureiro
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mônica J Rodrigues-Jesus
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Gerly A C Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
2
|
Feliu C, Peyret H, Brassart-Pasco S, Oszust F, Poitevin G, Nguyen P, Millart H, Djerada Z. Ticagrelor Prevents Endothelial Cell Apoptosis through the Adenosine Signalling Pathway in the Early Stages of Hypoxia. Biomolecules 2020; 10:biom10050740. [PMID: 32397519 PMCID: PMC7277469 DOI: 10.3390/biom10050740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported the beneficial effects of anti-platelet drugs in cardioprotection against ischaemia-reperfusion injuries. To date, no studies have focused on the indirect cytoprotective effects of ticagrelor via adenosine receptor on the endothelium. METHOD By evaluating cell viability and cleaved caspase 3 expression, we validated a model of endothelial cell apoptosis induced by hypoxia. In hypoxic endothelial cells treated with ticagrelor, we quantified the extracellular concentration of adenosine, and then we studied the involvement of adenosine pathways in the cytoprotective effect of ticagrelor. RESULTS Our results showed that 10 µM ticagrelor induced an anti-apoptotic effect in our model associated with an increase of extracellular adenosine concentration. Similar experiments were conducted with cangrelor but did not demonstrate an anti-apoptotic effect. We also found that A2B and A3 adenosine receptors were involved in the anti-apoptotic effect of ticagrelor in endothelial cells exposed to 2 h of hypoxia stress. CONCLUSION we described an endothelial cytoprotective mechanism of ticagrelor against hypoxia stress, independent of blood elements. We highlighted a mechanism triggered mainly by the increased extracellular bioavailability of adenosine, which activates A2B and A3 receptors on the endothelium.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Hélène Peyret
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims University Hospital, SFR CAP-santé, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France;
| | - Floriane Oszust
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Gaël Poitevin
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (G.P.); (P.N.)
| | - Philippe Nguyen
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (G.P.); (P.N.)
| | - Hervé Millart
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Zoubir Djerada
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
- Correspondence: ; Tel.: +33-3-26-83-27-82; Fax: +33-3-26-78-84-56
| |
Collapse
|
3
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
4
|
Feliu C, Peyret H, Poitevin G, Cazaubon Y, Oszust F, Nguyen P, Millart H, Djerada Z. Complementary Role of P2 and Adenosine Receptors in ATP Induced-Anti-Apoptotic Effects Against Hypoxic Injury of HUVECs. Int J Mol Sci 2019; 20:ijms20061446. [PMID: 30909368 PMCID: PMC6470483 DOI: 10.3390/ijms20061446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. METHODS In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. RESULTS Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. CONCLUSIONS These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Hélène Peyret
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Gael Poitevin
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Yoann Cazaubon
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Floriane Oszust
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Philippe Nguyen
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Hervé Millart
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Zoubir Djerada
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| |
Collapse
|
5
|
The Polymorphism in ADORA3 Decreases Transcriptional Activity and Influences the Chronic Heart Failure Risk in the Chinese. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4969385. [PMID: 29955603 PMCID: PMC6000890 DOI: 10.1155/2018/4969385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
Aim To investigate the genetic contribution of adenosine A3 receptor (ADORA3) gene polymorphisms in the pathogenesis of chronic heart failure (CHF). Methods Firstly, a case-control study was performed to investigate the association of ADORA3 polymorphisms with CHF risk. Three hundred northern Chinese Han CHF patients and 400 ethnicity-matched healthy controls were included. Four polymorphisms were genotyped. This case-control study was also replicated in 304 CHF patients and 402 controls from southern China. Finally, the functional variability of positive polymorphism was analyzed using luciferase reporter assay and real-time PCR. Results Overall, the rs1544223 was significantly associated with CHF risk under the dominant model (P = 0.046, OR = 1.662, 95% CI = 1.009-2.738). But it did not affect disease severity. These results were also consistent in replicated population. In addition, the transcriptional activity for promoter with the A allele was lower than that with the G allele (n = 3, 4.501 ± 0.308 versus 0.571 ± 0.114, P < 0.01) and ADORA3 mRNA levels were significantly higher in GG homozygotes than subjects carrying GA (n = 6, 0.058 ± 0.01 versus 0.143 ± 0.068, P = 0.004) or AA genotypes (n = 6, 0.065 ± 0.01 versus 0.143 ± 0.068, P = 0.008). Conclusions Should the findings be validated by further studies with larger patient samples and in different ethnicities, they may provide novel insight into the pathogenesis of CHF.
Collapse
|
6
|
Li Z, Cheng Z, Haifeng Y, Chen M, Li L. PTEN signaling inhibitor VO-OHpic improves cardiac myocyte survival by mediating apoptosis resistance in vitro. Biomed Pharmacother 2018; 103:1217-1222. [PMID: 29864901 DOI: 10.1016/j.biopha.2018.04.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a server disease effecting a large population worldwide. The pathophysiological process of ischemic/reperfusion (I/R) plays an important role for heart tissue damage. VO-OHpic, a PTEN inhibitor, has been demonstrated to be cardiac protective in sudden cardiac arrest models, but its role in AMI remains unclear. METHODS An isolated AMI model was induced by dissecting the rat heart in a Langendorff system. Cardiac myocytes were extracted and induced ischemia in vitro. VO-OHpic was added into the above systems. The area of infarcted tissue in the heart was measured. Cardiac myocyte apoptosis was assessed by flow cytometry. Activation of Akt and GSK3β was quantified by flow cytometry. IL-10 levels were determined by ELISA. RESULTS VO-OHpic reduced infarcted areas in the isolated heart, and improved cultured cardiac myocyte survival. VO-OHpic induced apoptosis resistance in cardiac myocytes. Akt-GSK3β signaling was activated by VO-OHpic administration. IL-10 levels in the medium were elevated by VO-OHpic. CONCLUSION VO-OHpic protects heart tissue by apoptosis resistance via activating Akt-GSK3β signaling and increasing IL-10 levels.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhenfeng Cheng
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yu Haifeng
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Mengting Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Lifang Li
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China.
| |
Collapse
|
7
|
Sandhu H, Cooper S, Hussain A, Mee C, Maddock H. Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. Eur J Pharmacol 2017; 814:95-105. [DOI: 10.1016/j.ejphar.2017.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
|
8
|
Improved Survival in a Long-Term Rat Model of Sepsis Is Associated With Reduced Mitochondrial Calcium Uptake Despite Increased Energetic Demand. Crit Care Med 2017; 45:e840-e848. [PMID: 28410346 DOI: 10.1097/ccm.0000000000002448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To investigate the relationship between prognosis, changes in mitochondrial calcium uptake, and bioenergetic status in the heart during sepsis. DESIGN In vivo and ex vivo controlled experimental studies. SETTING University research laboratory. SUBJECTS Male adult Wistar rats. INTERVENTIONS Sepsis was induced by intraperitoneal injection of fecal slurry. Sham-operated animals served as controls. Confocal microscopy was used to study functional and bioenergetic parameters in cardiomyocytes isolated after 24-hour sepsis. Electron microscopy was used to characterize structural changes in mitochondria and sarcoplasmic reticulum. The functional response to dobutamine was assessed in vivo by echocardiography. MEASUREMENTS AND MAIN RESULTS Peak aortic blood flow velocity measured at 24 hours was a good discriminator for 72-hour survival (area under the receiver operator characteristic, 0.84 ± 0.1; p = 0.03) and was used in ex vivo experiments at 24 hours to identify septic animals with good prognosis. Measurements from animals with good prognostic showed 1) a smaller increase in mitochondrial calcium content and in nicotinamide adenine dinucleotide fluorescence following pacing and 2) increased distance between mitochondria and sarcoplasmic reticulum on electron microscopy, and 3) nicotinamide adenine dinucleotide redox potential and adenosine triphosphate/adenosine diphosphate failed to reach a new steady state following pacing, suggesting impaired matching of energy supply and demand. In vivo, good prognosis animals had a blunted response to dobutamine with respect to stroke volume and kinetic energy. CONCLUSIONS In situations of higher energetic demand decreased mitochondrial calcium uptake may constitute an adaptive cellular response that confers a survival advantage in response to sepsis at a cost of decreased oxidative capacity.
Collapse
|
9
|
Ohana G, Cohen S, Rath-Wolfson L, Fishman P. A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep 2016; 14:4335-4341. [PMID: 27666664 DOI: 10.3892/mmr.2016.5746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion (IR) injury during clinical hepatic procedures is characterized by inflammatory conditions and the apoptosis of hepatocytes. Nuclear factor‑κB (NF‑κB), nitric oxide and the expression levels of inflammatory cytokines, tumor necrosis factor‑α and interleukin‑1 were observed to increase following IR and mediate the inflammatory response in the liver. CF102 is a highly selective A3 adenosine receptor (A3AR) agonist, and has been identified to induce an anti‑inflammatory and protective effect on the liver via the downregulation of the NF‑κB signaling pathway. The present study aimed to determine the effect of CF102 on protecting the liver against IR injury. The potential protective effect of CF102 (100 µg/kg) was assessed using an IR injury model on 70% of the liver of Wistar rats, which was induced by clamping the hepatic vasculature for 30 min. The regenerative effect of CF102 was assessed by the partial hepatectomy of 70% of the liver during 10 min of IR. CF102 reduced the levels of liver enzymes following IR injury. A higher regeneration rate in the CF102 treatment group was observed compared with the control group, suggesting that CF102 had a positive effect on the proliferation of hepatocytes following hepatectomy. CF102 had a protective effect on the liver of Wistar rats subsequent to IR injury during hepatectomy. This may be due to an anti‑inflammatory and anti‑apoptotic effect mediated by the A3AR.
Collapse
Affiliation(s)
- Gil Ohana
- Department of Surgery A/B, Rabin Medical Center, Campus Golda, Sackler Faculty of Medicine Tel‑Aviv University, Petah Tikva 49100, Israel
| | - Shira Cohen
- Can‑Fite BioPharma, Ltd., Kiryat‑Matalon, Petah Tikva 49170, Israel
| | - Lea Rath-Wolfson
- Department of Pathology, Rabin Medical Center, Campus Golda, Sackler Faculty of Medicine Tel‑Aviv University, Petah Tikva 49100, Israel
| | - Pnina Fishman
- Can‑Fite BioPharma, Ltd., Kiryat‑Matalon, Petah Tikva 49170, Israel
| |
Collapse
|
10
|
Nishat S, Khan LA, Ansari ZM, Basir SF. Adenosine A3 Receptor: A promising therapeutic target in cardiovascular disease. Curr Cardiol Rev 2016; 12:18-26. [PMID: 26750723 PMCID: PMC4807713 DOI: 10.2174/1573403x12666160111125116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/28/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular complications are one of the major factors for early mortality in the present
worldwide scenario and have become a major challenge in both developing and developed nations. It
has thus become of immense importance to look for different therapeutic possibilities and treatments
for the growing burden of cardiovascular diseases. Recent advancements in research have opened
various means for better understanding of the complication and treatment of the disease. Adenosine
receptors have become tool of choice in understanding the signaling mechanism which might lead to
the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a
therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular
complications by altering the expression of A3AR. This review focuses towards the therapeutic potential of
A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor
may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR
signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular
disorder.
Collapse
Affiliation(s)
| | | | | | - Seemi F Basir
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India.
| |
Collapse
|
11
|
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67:74-102. [PMID: 25387804 DOI: 10.1124/pr.113.008540] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Pier Giovanni Baraldi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Mojgan Aghazadeh Tabrizi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| |
Collapse
|
12
|
The infarct-sparing effect of IB-MECA against myocardial ischemia/reperfusion injury in mice is mediated by sequential activation of adenosine A3 and A 2A receptors. Basic Res Cardiol 2015; 110:16. [PMID: 25711314 DOI: 10.1007/s00395-015-0473-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/26/2015] [Accepted: 02/18/2015] [Indexed: 01/30/2023]
Abstract
Conflicting results exist regarding the role of A3 adenosine receptors (A3ARs) in mediating cardioprotection during reperfusion following myocardial infarction. We hypothesized that the effects of the A3AR agonist IB-MECA to produce cardioprotection might involve activation of other adenosine receptor subtypes. C57Bl/6 (B6), A3AR KO, A2AAR KO, and A2AAR KO/WT bone marrow chimeric mice were assigned to 12 groups undergoing either hemodynamic studies or 45 min of LAD occlusion and 60 min of reperfusion. IB-MECA (100 μg/kg) or vehicle was administered by iv bolus 5 min before reperfusion. Radioligand binding assays showed that IB-MECA has high affinity for the mouse A3AR (K i = 0.17 ± 0.05 nM), but also can bind with lower affinity to the A1AR (9.0 ± 2.4 nM) or the A2AAR (56.5 ± 10.2 nM). IB-MECA caused bi-phasic hemodynamic changes, which were completely absent in A3AR KO mice and were modified by A2AAR blockade or deletion. IB-MECA stimulated histamine release, increased heart rate, and significantly reduced IF size in B6 mice from 61.5 ± 1.4 to 48.6 ± 2.4% of risk region (RR; 21% reduction, p < 0.05) but not in A3AR KO mice. Compared to B6, A3AR KO mice had significantly reduced IF size (p < 0.05). In B6/B6 bone marrow chimeras, IB-MECA caused a 47% reduction of IF size (from 47.3 ± 3.9 to 24.7 ± 4.5, p < 0.05). However, no significant cardioprotective effect of IB-MECA was observed in A2AARKO/B6 mice, which lacked A2AARs only on their bone marrow-derived cells. Activation of A3ARs induces a bi-phasic hemodynamic response, which is partially mediated by activation of A2AARs. The cardioprotective effect of IB-MECA is due to the initial activation of A3AR followed by activation of A2AARs in bone marrow-derived cells.
Collapse
|
13
|
Sattur S, Brener SJ, Stone GW. Pharmacologic Therapy for Reducing Myocardial Infarct Size in Clinical Trials. J Cardiovasc Pharmacol Ther 2014; 20:21-35. [DOI: 10.1177/1074248414540799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In patients with acute ST-segment elevation myocardial infarction, early, successful, and durable reperfusion therapy optimizes the likelihood of favorable outcomes. Fibrinolysis and primary percutaneous coronary intervention improve survival compared to no reperfusion therapy in large part by reducing infarct size (IS) and preserving left ventricular ejection fraction. There is direct correlation between IS and clinical outcomes. In this article, we will review some of the more promising pharmacological agents geared toward reduction in IS, discuss the major pathways that can lead to this desirable outcome, and evaluate the results of clinical trials performed with these and other compounds.
Collapse
Affiliation(s)
| | | | - Gregg W. Stone
- Columbia University Medical Center and the Cardiovascular Research Foundation, New York, NY, USA
| |
Collapse
|
14
|
Bibli SI, Iliodromitis EK, Lambertucci C, Zoga A, Lougiakis N, Dagres N, Volpini R, Dal Ben D, Kremastinos DT, Tsantili Kakoulidou A, Cristalli G, Andreadou I. Pharmacological postconditioning of the rabbit heart with non-selective, A1, A2A and A3 adenosine receptor agonists. J Pharm Pharmacol 2014; 66:1140-9. [DOI: 10.1111/jphp.12238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/02/2014] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
We investigated the effects of novel selective and non-selective adenosine receptor agonists (ARs) on cardioprotection.
Methods
Male rabbits divided into six groups were subjected to 30-min heart ischaemia and 3-h reperfusion: (1) control group, (2) postconditioning (PostC) group, (3) group A: treated with the non-selective agonist (S)-PHPNECA, (4) group B: treated with the A1 agonist CCPA, (5) group C: treated with the A2A agonist VT 7 and (6) group D: treated with the A3 agonist AR 170. The infarcted (I) and the areas at risk (R) were estimated as %I/R. In additional rabbits of all groups, heart samples were taken for determination of Akt, eNOS and STAT 3 at the 10th reperfusion minute.
Key findings
(S)-PHPNECA and CCPA reduced the infarct size (17.2 ± 2.9% and 17.9 ± 2.0% vs 46.8 ± 1.9% in control, P < 0.05), conferring a benefit similar to PostC (26.4 ± 0.3%). Selective A2A and A3 receptor agonists did not reduce the infarct size (39.5 ± 0.8% and 38.7 ± 3.5%, P = NS vs control). Akt, eNOS and STAT 3 were significantly activated after non-selective A1 ARs and PostC.
Conclusions
Non-selective and A1 but not A2A and A3 ARs agonists are essential for triggering cardioprotection. The molecular mechanism involves both RISK and the JAK/STAT pathways.
Collapse
Affiliation(s)
- Sophia-Iris Bibli
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Anastasia Zoga
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - Nikolaos Lougiakis
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| | - Nikolaos Dagres
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Dimitrios Th Kremastinos
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | | | - Gloria Cristalli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Ioanna Andreadou
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| |
Collapse
|
15
|
Harvey KL, Hussain A, Maddock HL. Ipratropium bromide-mediated myocardial injury in in vitro models of myocardial ischaemia/reperfusion. Toxicol Sci 2014; 138:457-67. [PMID: 24431217 DOI: 10.1093/toxsci/kfu001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ipratropium bromide, a nonselective muscarinic antagonist, is widely prescribed for the treatment of chronic obstructive pulmonary disease (COPD). Analyses of COPD patients, with underlying ischaemic heart disease, receiving anticholinergics, have indicated increased risk of severity and occurrence of cardiovascular events (including myocardial infarction). The present study explored whether ipratropium bromide induces myocardial injury in nonclinical models of simulated myocardial ischaemia/reperfusion injury. Adult Sprague Dawley rat hearts/primary ventricular myocytes were exposed to simulated ischaemia/hypoxia prior to administration of ipratropium at the onset of reperfusion/reoxygenation. Infarct to risk ratio and cell viability was measured via triphenyl tetrazolium chloride staining and thiazolyl blue tetrazolium bromide (MTT) assay. The involvement of apoptosis and necrosis was evaluated by flow cytometry. Mitochondrial-associated responses were detected by tetramethylrhodamine methyl ester fluorescence and myocyte contracture. Ipratropium (1 × 10⁻¹¹ M - 1 × 10⁻⁴ M) significantly increased infarct/risk ratio and decreased cell viability in a dose-dependent manner. Increased levels of necrosis and apoptosis were observed via flow cytometry, accompanied by increased levels of cleaved caspase-3 following ipratropium treatment. Levels of endogenous myocardial acetylcholine were verified via use of an acetylcholine assay. In these experimental models, exogenous acetylcholine (1 × 10⁻⁷ M) showed protective properties, when administered alone, as well as abrogating the exacerbation of myocardial injury during ischaemia/reperfusion following ipratropium coadministration. In parallel experiments, under conditions of myocardial ischaemia/reperfusion, a similar injury was observed following atropine (1 × 10⁻⁷ M) administration. These data demonstrate for the first time in a nonclinical setting that ipratropium exacerbates ischaemia/reperfusion injury via apoptotic- and necrotic-associated pathways.
Collapse
Affiliation(s)
- Kate L Harvey
- Department of Biomolecular and Sports Sciences, Coventry University, Cox Street, Coventry, CV1 5FB, UK
| | | | | |
Collapse
|
16
|
Caspase Inhibition Via A3 Adenosine Receptors: A New Cardioprotective Mechanism Against Myocardial Infarction. Cardiovasc Drugs Ther 2013; 28:19-32. [DOI: 10.1007/s10557-013-6500-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor. PLoS One 2013; 8:e77713. [PMID: 24147064 PMCID: PMC3798380 DOI: 10.1371/journal.pone.0077713] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
Doxorubicin is one of the most effective anti-cancer agents. However, its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Given the multiple beneficial effects of the mitochondrial division inhibitor (mdivi-1) in a variety of pathological conditions including heart failure and ischaemia and reperfusion injury, we investigated the effects of mdivi-1 on doxorubicin-induced cardiac dysfunction in naïve and stressed conditions using Langendorff perfused heart models and a model of oxidative stress was used to assess the effects of drug treatments on the mitochondrial depolarisation and hypercontracture of cardiac myocytes. Western blot analysis was used to measure the levels of p-Akt and p-Erk 1/2 and flow cytometry analysis was used to measure the levels p-Drp1 and p-p53 upon drug treatment. The HL60 leukaemia cell line was used to evaluate the effects of pharmacological inhibition of mitochondrial division on the cytotoxicity of doxorubicin in a cancer cell line. Doxorubicin caused a significant impairment of cardiac function and increased the infarct size to risk ratio in both naïve conditions and during ischaemia/reperfusion injury. Interestingly, co-treatment of doxorubicin with mdivi-1 attenuated these detrimental effects of doxorubicin. Doxorubicin also caused a reduction in the time taken to depolarisation and hypercontracture of cardiac myocytes, which were reversed with mdivi-1. Finally, doxorubicin caused a significant elevation in the levels of signalling proteins p-Akt, p-Erk 1/2, p-Drp1 and p-p53. Co-incubation of mdivi-1 with doxorubicin did not reduce the cytotoxicity of doxorubicin against HL-60 cells. These data suggest that the inhibition of mitochondrial fission protects the heart against doxorubicin-induced cardiac injury and identify mitochondrial fission as a new therapeutic target in ameliorating doxorubicin-induced cardiotoxicity without affecting its anti-cancer properties.
Collapse
|
18
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
19
|
Gharanei M, Hussain A, Janneh O, Maddock H. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore. Toxicol Appl Pharmacol 2013; 268:149-56. [DOI: 10.1016/j.taap.2012.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
20
|
Lee SK, Kim JH, Kim JS, Jang Y, Kim J, Park YH, Chun KJ, Lee MY. Polyphenol (-)-epigallocatechin gallate-induced cardioprotection may attenuate ischemia-reperfusion injury through adenosine receptor activation: a preliminary study. Korean J Anesthesiol 2012; 63:340-5. [PMID: 23115687 PMCID: PMC3483493 DOI: 10.4097/kjae.2012.63.4.340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/12/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
Background The activation of guanine nucleotide binding protein-coupled receptors, such as adenosine receptor (ADR) and opioid receptor (OPR), protects the heart against ischemia and reperfusion injury. We hypothesized that ADR or OPR might be involved in polyphenol (-)-epigallocatechin gallate (EGCG)-induced cardioprotection. Methods Langendorff perfused rat hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. Hearts were treated with 10 µM of EGCG, with or without the ADR or OPR antagonist at early reperfusion. Infarct size measured with 2,3,5-triphenyltetrazolium chloride staining was chosen as end-point. Results EGCG significantly reduced infarct volume as a percentage of ischemic volume (33.5 ± 4.1%) compared to control hearts (14.4 ± 1.1%, P < 0.001). A nonspecific ADR antagonist 8-(p-sulfophenyl) theophylline hydrate (27.1 ± 1.9%, P < 0.05 vs. EGCG) but not a nonspecific OPR antagonist naloxone (14.3 ± 1.3%, P > 0.05 vs. EGCG) blocked the anti-infarct effect by EGCG. The infarct reducing effect of EGCG was significantly reversed by 200 nM of the A1 ADR antagonist DPCPX (25.9 ± 1.1%, P < 0.05) and 15 nM of the A2B ADR antagonist MRS1706 (29.3 ± 1.7%, P < 0.01) but not by 10 µM of the A2A ADR antagonist ZM241385 (23.9 ± 1.9%. P > 0.05 vs. EGCG) and 100 nM of the A3 ADR antagonist MRS1334 (24.1 ± 1.8%, P > 0.05). Conclusions The infarct reducing effect of EGCG appears to involve activation of ADR, especially A1 and A2B ADR, but not OPR.
Collapse
Affiliation(s)
- Sang Kwon Lee
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Yangsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Antihypertensive profile of 2-thienyl-3,4-methylenedioxybenzoylhydrazone is mediated by activation of the A2A adenosine receptor. Eur J Med Chem 2012; 55:49-57. [DOI: 10.1016/j.ejmech.2012.06.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 02/08/2023]
|
22
|
Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 2012; 69:2245-60. [PMID: 22311064 PMCID: PMC11114949 DOI: 10.1007/s00018-012-0925-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/21/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
SIRT1, an ubiquitous NAD(+)-dependent deacetylase that plays a role in biological processes such as longevity and stress response, is significantly activated in response to reactive oxygen species (ROS) production. Resveratrol (Resv), an important activator of SIRT1, has been shown to exert major health benefits in diseases associated with oxidative stress. In ischemia-reperfusion (IR) injury, a major role has been attributed to the mitogen-activated protein kinase (MAPK) pathway, which is upregulated in response to a variety of stress stimuli, including oxidative stress. In neonatal rat ventricular cardiomyocytes subjected to simulated IR, the effect of Resv-induced SIRT1 activation and the relationships with the MAPK pathway were investigated. Resv-induced SIRT1 overexpression protected cardiomyocytes from oxidative injury, mitochondrial dysfunction, and cell death induced by IR. For the first time, we demonstrate that SIRT1 overexpression positively affects the MAPK pathway-via Akt/ASK1 signaling-by reducing p38 and JNK phosphorylation and increasing ERK phosphorylation. These results reveal a new protective mechanism elicited by Resv-induced SIRT1 activation in IR tissues and suggest novel potential therapeutic targets to manage IR-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Matteo Becatti
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Niccolò Taddei
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Cristina Cecchi
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Niccolò Nassi
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Paolo Antonio Nassi
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Claudia Fiorillo
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
23
|
Gerczuk PZ, Kloner RA. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 2012; 59:969-78. [PMID: 22402067 DOI: 10.1016/j.jacc.2011.07.054] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/13/2011] [Accepted: 07/19/2011] [Indexed: 12/13/2022]
Abstract
Acute myocardial infarction (AMI) with subsequent left ventricular dysfunction and heart failure continues to be a major cause of morbidity and mortality in the Western world. Rapid advances in the treatment of AMI, mainly through timely reperfusion, have substantially improved outcomes in patients presenting with acute coronary syndrome and particularly ST-segment elevation myocardial infarction. A vast amount of research, both translational and clinical, has been published on various pharmacological and interventional techniques to prevent myocardial cell death during the time of ischemia and subsequent reperfusion. Several methods of cardioprotection have shown the ability to limit myocardial infarction size in clinical trials. Examples of interventional techniques that have proven beneficial are ischemic post-conditioning and remote ischemic per-conditioning, both of which can reduce infarction size. Lowering core body temperature with cold saline infusion and cooling catheters have also been shown to be effective in certain circumstances. The most promising pharmaceutical cardioprotective agents at this time appear to be adenosine, atrial natriuretic peptide, and cyclosporine, with other potentially effective medications in the pipeline. Additional pre-clinical and clinical research is needed to further investigate newer cardioprotective strategies to continue the current trend of improving outcomes following AMI.
Collapse
Affiliation(s)
- Paul Z Gerczuk
- Heart Institute, Good Samaritan Hospital, Wilshire Boulevard, Los Angeles, CA 90017, USA
| | | |
Collapse
|
24
|
Adenosine-mediated inhibition of 5'-AMP-activated protein kinase and p38 mitogen-activated protein kinase during reperfusion enhances recovery of left ventricular mechanical function. J Mol Cell Cardiol 2012; 52:1308-18. [PMID: 22484620 DOI: 10.1016/j.yjmcc.2012.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 11/24/2022]
Abstract
Attenuation of excessive rates of myocardial glycolysis limits proton production and Ca(2+) overload during reperfusion and improves recovery of post-ischemic left ventricular (LV) function. In order to elucidate mechanisms underlying glycolytic inhibition by adenosine (ADO), this study tested the hypothesis that the beneficial effects of ADO are due to Ser/Thr protein phosphatase (PP)-mediated inhibition of 5'-AMP-activated protein kinase (AMPK) and phosphofructokinase-2 (PFK-2). In isolated perfused working rat hearts subjected to global ischemia (GI) and reperfusion, ADO (500μmol/l), added 5min prior to the onset of GI and present throughout reperfusion, inhibits glycolysis and proton production during reperfusion and improves post-ischemic LV work. These metabolic effects of ADO are also evident during aerobic perfusion. Assays of glycolytic intermediates show that ADO-induced glycolytic inhibition occurs at the step catalyzed by PFK-1, an effect mediated by reduced activation of PFK-2 by AMPK. The PP1 and PP2A inhibitors, cantharidin (5μmol/l) or okadaic acid (0.1μmol/l), added 10min prior to ADO prevent ADO-induced inhibition of glycolysis and AMPK, as well as ADO-induced cardioprotection. ADO also inhibits p38 MAPK phosphorylation during reperfusion in a cantharidin-sensitive manner, and pharmacological inhibition of p38 MAPK (by SB202190, 10μmol/l) during reperfusion also reduces glycolysis and is cardioprotective. These results indicate that attenuation of glycolysis during reperfusion and cardioprotection can be achieved by inhibition of the stress kinases, AMPK and p38 MAPK.
Collapse
|
25
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wan TC, Tosh DK, Du L, Gizewski ET, Jacobson KA, Auchampach JA. Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacol 2011; 11:11. [PMID: 22039965 PMCID: PMC3247180 DOI: 10.1186/1471-2210-11-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/31/2011] [Indexed: 02/07/2023] Open
Abstract
Background When stimulated by small molecular agonists, the A3 adenosine receptor (AR) mediates cardioprotective effects without inducing detrimental hemodynamic side effects. We have examined pharmacologically the protective properties of a multivalent dendrimeric conjugate of a nucleoside as a selective multivalent agonist for the mouse A3AR. Results A PAMAM dendrimer fully substituted by click chemistry on its peripheral groups with 64 moieties of a nucleoside agonist was shown to be potent and selective in binding to the mouse A3AR and effective in cardioprotection in an isolated mouse heart model of ischemia/reperfusion (I/R) injury. This conjugate MRS5246 and a structurally related model compound MRS5233 displayed binding Ki values of 0.04 and 3.94 nM, respectively, and were potent in in vitro functional assays to inhibit cAMP production. A methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose maintained a North conformation that is preferred at the A3AR. These analogues also contained a triazole linker along with 5'-N-methyl-carboxamido and 2-alkynyl substitution, previously shown to be associated with species-independent A3AR selectivity. Both MRS5233 and MRS5246 (1 and 10 nM) were effective at increasing functional recovery of isolated mouse hearts after 20 min ischemia followed by 45 min reperfusion. A statistically significant greater improvement in the left ventricular developed pressure (LVDP) by MRS5246 compared to MRS5233 occurred when the hearts were observed throughout reperfusion. Unliganded PAMAM dendrimer alone did not have any effect on functional recovery of isolated perfused mouse hearts. 10 nM MRS5246 did not improve functional recovery after I/R in hearts from A3AR gene "knock-out" (A3KO) mice compared to control, indicating the effects of MRS5246 were A3AR-specific. Conclusions Covalent conjugation to a versatile drug carrier enhanced the functional potency and selectivity at the mouse A3AR and maintained the cardioprotective properties. Thus, this large molecular weight conjugate is not prevented from extravasation through the coronary microvasculature.
Collapse
Affiliation(s)
- Tina C Wan
- Department of Pharmacology/Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
27
|
Xin W, Yang X, Rich TC, Krieg T, Barrington R, Cohen MV, Downey JM. All preconditioning-related G protein-coupled receptors can be demonstrated in the rabbit cardiomyocyte. J Cardiovasc Pharmacol Ther 2011; 17:190-8. [PMID: 21828281 DOI: 10.1177/1074248411416815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors for adenosine (A(1), A(3), A(2A), and A(2B)), bradykinin (B(1)) and opioids (δ) are all involved in the mechanism of ischemic preconditioning. Although the heart is comprised of many tissue types, it has been assumed that preconditioning's protective signaling occurs in the cardiomyocyte. We critically tested that hypothesis by testing for the presence of each of these receptors in isolated adult rabbit ventricular myocytes that had been transfected with cyclic nucleotide-gated (CNG) ion channels. Because subsarcolemmal cyclic adenosine monophosphate (cAMP) opens the CNG channels, we could monitor cAMP levels within a single cardiomyocyte by measuring channel current with a patch pipette. The presence of a receptor would be confirmed if we could alter cAMP in the cell with a selective agonist to the receptor being studied. Superfusion with the β-adrenergic G(s)-coupled receptor agonist isoproterenol (50 nmol/L) transiently increased cAMP levels and, therefore, channel current. Pretreatment with selective agonists to A(1) or A(3) adenosine receptors (ARs) that are G(i)-coupled markedly attenuated the response to isoproterenol, indicating inhibition of adenylyl cyclase by increased G(i) activity. Agonists to bradykinin or δ-opioid receptors also attenuated isoproterenol's response. A(2A)AR and A(2B)AR are G(s)-coupled. The A(2A)AR-selective agonist CGS21680 increased current through CNG channels but only in the presence of phosphodiesterase (PDE) inhibitors, indicating low surface receptor activity and high intracellular PDE activity. As we previously reported, BAY 60-6583, an A(2B)AR-selective agonist which mimics preconditioning's protection in rabbit heart, neither increased nor decreased membrane current in transfected cardiomyocytes, suggesting the absence or a markedly limited number of A(2B)AR in the sarcolemma. However, reverse transcription polymerase chain reaction (RT-PCR) of purified cardiomyocytes yielded an A(2B)AR band, implying that rabbit cardiomyocytes do indeed express A(2B)AR. These data reveal that all receptors reported to be involved in ischemic preconditioning do exist on or within the cardiomyocyte.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cooperative cardioprotection through adenosine A1 and A2A receptor agonism in ischemia-reperfused isolated mouse heart. J Cardiovasc Pharmacol 2011; 56:379-88. [PMID: 20930592 DOI: 10.1097/fjc.0b013e3181f03d05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent reports have shown that adenosine A1 receptor-mediated cardioprotection requires concomitant A2 receptor activation, but no study thus far has shown that this phenomenon occurs using A1 agonists at reperfusion. Thus, we compared adenosine A2A receptor knockout (A2AKO) and wild-type mouse hearts (n = 9-11) subjected to global ischemia (30 minutes) and reperfusion (60 minutes) in the presence and absence of the A1 agonist N-cyclopentlyadenosine (CPA). We also determined the effects of selective antagonists at A2A and A2B receptors on CPA-induced protection. In wild-type hearts, CPA (100 nM) significantly (P < 0.05) improved contractility (52.7 ± 6.2% versus 23.9 ± 4.9% of preischemia), left ventricular developed pressure, end diastolic pressure; reduced infarct size (7.9 ± 1.7% versus 23.9 ± 6.6% area at risk); decreased lactate dehydrogenase efflux; and increased ERK1/2 phosphorylation at 60 minutes of reperfusion. Adenosine A2A (ZM241385, 50 nM) and A2B (MRS1754, 100 nM) receptor antagonists abolished CPA-mediated cardioprotection in wild-type groups as did the A1 receptor antagonist DPCPX (P < 0.05). In A2AKO hearts, CPA did not improve functional parameters and protective signaling with the exception of end diastolic pressure. In this model, using a clinically relevant mode of pharmacologic intervention, pERK 1/2-dependent A1-mediated cardioprotection requires a cooperative activation of A2 receptors, presumably through endogenous adenosine.
Collapse
|
29
|
McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 2011; 17:21-33. [PMID: 21335481 DOI: 10.1177/1074248410396877] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adenosine is a purine nucleoside, which is produced primarily through the metabolism of adenosine triphosphate (ATP), therefore its levels increase during stressful situations when ATP utilization increases. Adenosine exerts potent cardioprotective effects on the ischemic/reperfused heart, reducing reversible and irreversible myocardial injury. Adenosine receptors (ARs) are G-protein-coupled receptors, and 4 subtypes exist--A(1), A(2A), A(2B), and A(3), all of which have been shown to be cardioprotective. Adenosine receptors are expressed on multiple cardiac cells, including fibroblasts, endothelial cells, smooth muscle cells, and myocytes. Activation of both A(1) and A(3) receptors prior to ischemia has been shown in multiple experimental models to reduce ischemia/reperfusion-induced cardiac injury. Additionally, activation of the A(2A) receptor at the onset of reperfusion has been shown to reduce injury. Most recently, there is evidence that the A(2B) receptor has cardioprotective effects upon its activation. However, controversy remains regarding the precise timing of activation of these receptors required to induce cardioprotection, as well as their involvement in ischemic preconditioning and postconditioning. Adenosine receptors have been suggested to reduce cell death through actions at the mitochondrial ATP-dependent potassium (K(ATP)) channel, as well as protein kinase C and mitogen-activated protein kinase (MAPK) signaling. Additionally, the ability of ARs to interact has been documented, and several recent reports suggest that these interactions play a role in AR-mediated cardioprotection. This review summarizes the current knowledge of the cardioprotective effects of each AR subtype, as well as the proposed mechanisms of AR cardioprotection. Additionally, the role of AR interactions in cardioprotection is discussed.
Collapse
Affiliation(s)
- Victoria J McIntosh
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
30
|
Cardioprotective Effects of 2-octynyladenosine (YT-146) in Ischemic/Reperfused Rat Hearts. J Cardiovasc Pharmacol 2011; 57:166-73. [DOI: 10.1097/fjc.0b013e318201c264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Yu M, Wen N, Wenzhong Z, Yuanchang X, Xiaoming D, Yongjin L. Effect of repeated ischaemic preconditioning on TLR4 and proinflammatory cytokines TNF-α and IL-1β in myocardial ischaemia-reperfusion injury in a rat model. Arch Med Sci 2010; 6:843-7. [PMID: 22427755 PMCID: PMC3302693 DOI: 10.5114/aoms.2010.19289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/12/2010] [Accepted: 10/05/2010] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The role of TLR4 in ischaemic preconditioning is still unclear; we do not know the change of the expression of TLR4 in the process. In this study, we used ischaemic preconditioning models to observe the change of TLR4 expression and the level of proinflammatory cytokines TNF-α and IL-1β to investigate the protective mechanism of TLR4 in ischaemic preconditioning for myocardial ischaemia-reperfusion injury (MI/RI) in rats. MATERIAL AND METHODS Eighteen male Sprague-Dawley (SD) rats were randomly separated into sham, ischaemic reperfusion (IR) and ischaemic preconditioning (IP) groups (6/group). Peripheral blood and cardiac muscle with pathological changes were collected after the establishment of the above three animal models. We used ELISA to determine proinflammatory cytokines TNF-α and IL-1β production in serum of these animals. RT-PCR and Western blot were used to assay the transcriptional level and protein level of TLR4 in cardiac muscle tissue with pathological changes, respectively. RESULTS We found that compared with the IR group, ischaemic preconditioning could effectively reduce the expression levels of TNF-α and IL-1β in sera of rats in the IP group (p < 0.01). Meanwhile, TLR4 mRNA and protein levels were down-regulated (p < 0.01 and p < 0.05, respectively). We also found that infarct size decreased in the IP group compared with the IR group (p < 0.05). CONCLUSIONS Based on the results, we can conclude that the specific mechanism of ischaemic preconditioning for RI might be closely associated with decreasing expression levels of TLR4 and proinflammatory cytokines such as TNF-α and IL-1β.
Collapse
Affiliation(s)
- Ma Yu
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ni Wen
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhu Wenzhong
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiong Yuanchang
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Deng Xiaoming
- Department of Anesthesia, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Luo Yongjin
- Department of Cerebral Surgery, Changhai Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Laubach VE, French BA, Okusa MD. Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets 2010; 15:103-18. [PMID: 21110787 DOI: 10.1517/14728222.2011.541441] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE OF THE FIELD Ischemia-reperfusion (IR) injury is a common problem after transplantation as well as myocardial infarction and stroke. IR initiates an inflammatory response leading to rapid tissue damage. Adenosine, produced in response to IR, is generally considered a protective signaling molecule and elicits its physiological responses through four distinct adenosine receptors. The short half-life, lack of specificity and rapid metabolism limits the use of adenosine as a therapeutic agent. Thus, intense research efforts have focused on the synthesis and implementation of specific adenosine receptor agonists and antagonists as potential therapeutic agents for a variety of inflammatory conditions including IR injury. AREAS COVERED IN THIS REVIEW Current knowledge on IR injury with a focus on lung, heart and kidney and studies that have advanced our understanding of the role of adenosine receptors and the therapeutic potential of adenosine receptor agonists and antagonists for the prevention of IR injury. WHAT THE READER WILL GAIN Insight into the role of adenosine receptor signaling in IR injury. TAKE HOME MESSAGE No therapies are currently available that specifically target IR injury; however, targeting of specific adenosine receptors may offer therapeutic strategies in this regard.
Collapse
Affiliation(s)
- Victor E Laubach
- University of Virginia Health System, Charlottesville, 22908, USA.
| | | | | |
Collapse
|
33
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
34
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
35
|
Bell RM, Yellon DM. There is More to Life than Revascularization: Therapeutic Targeting of Myocardial Ischemia/Reperfusion Injury. Cardiovasc Ther 2010; 29:e67-79. [DOI: 10.1111/j.1755-5922.2010.00190.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Abstract
The study of the A(3) adenosine receptor (A(3)AR) represents a rapidly growing and intense area of research in the adenosine field. The present chapter will provide an overview of the expression patterns, molecular pharmacology and functional role of this A(3)AR subtype under pathophysiological conditions. Through studies utilizing selective A(3)AR agonists and antagonists, or A(3)AR knockout mice, it is now clear that this receptor plays a critical role in the modulation of ischemic diseases as well as in inflammatory and autoimmune pathologies. Therefore, the potential therapeutic use of agonists and antagonists will also be described. The discussion will principally address the use of such compounds in the treatment of brain and heart ischemia, asthma, sepsis and glaucoma. The final part concentrates on the molecular basis of A(3)ARs in autoimmune diseases such as rheumatoid arthritis, and includes a description of clinical trials with the selective agonist CF101. Based on this chapter, it is evident that continued research to discover agonists and antagonists for the A(3)AR subtype is warranted.
Collapse
|
37
|
Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell ischemia model involves cooperative activation of adenosine A2A and A2B receptors by endogenous adenosine. J Cardiovasc Pharmacol 2009; 53:424-33. [PMID: 19333129 DOI: 10.1097/fjc.0b013e3181a443e2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular adenosine concentrations increase within the heart during ischemia, and any exogenous adenosine receptor agonists therefore work in the context of significant local agonist concentrations. We evaluated the interactions between A1, A2A, A2B, and A3 receptors in the presence and absence of adenosine deaminase (ADA, which is used to remove endogenous adenosine) in a cardiac cell ischemia model. Simulated ischemia (SI) was induced by incubating H9c2(2-1) cells in SI medium for 12 hours in 100% N2 gas before assessment of necrosis using propidium iodide (5 microM) or apoptosis using AnnexinV-PE flow cytometry. N6-Cyclopentyladenosine (CPA; 10(-7)M) and N6-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA; 10(-7)M) reduced the proportion of nonviable cells to 30.87 +/- 2.49% and 35.18 +/- 10.30%, respectively (% of SI group). In the presence of ADA, the protective effect of CPA was reduced (62.82 +/- 3.52% nonviable), whereas the efficacy of IB-MECA was unchanged (35.81 +/- 3.84% nonviable; P < 0.05, n = 3-5, SI vs. SI + ADA). The protective effects of CPA and IB-MECA were abrogated in the presence of their respective antagonists DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and MRS1191 [3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate], whereas A2A and A2B agonists had no significant effect. CPA-mediated protection was abrogated in the presence of both A2A (ZM241385, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-lamino]ethyl)phenol; 50 nM) and A2B (MRS1754, 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine; 200 nM) antagonists (n = 3-5, P < 0.05). In the absence of endogenous adenosine, significant protection was observed with CPA in presence of CGS21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid) or LUF5834 [2-amino-4-(4-hydroxyphenyl)-6-(1H-imidazol-2-ylmethylsulfanyl)pyridine-3,5-dicarbonitrile] (P < 0.05 vs. SI + ADA + CPA). Apoptosis (14.35 +/- 0.15% of cells in SI + ADA group; P < 0.05 vs. control) was not significantly reduced by CPA or IB-MECA. In conclusion, endogenous adenosine makes a significant contribution to A1 agonist-mediated prevention of necrosis in this SI model by cooperative interactions with both A2A and A2B receptors but does not play a role in A3 agonist-mediated protection.
Collapse
|
38
|
Hussain A, Karjian P, Maddock H. The role of nitric oxide in A3 adenosine receptor-mediated cardioprotection. ACTA ACUST UNITED AC 2009; 29:97-104. [DOI: 10.1111/j.1474-8673.2009.00438.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Ludman A, Venugopal V, Yellon DM, Hausenloy DJ. Statins and cardioprotection — More than just lipid lowering? Pharmacol Ther 2009; 122:30-43. [DOI: 10.1016/j.pharmthera.2009.01.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Indexed: 11/29/2022]
|
40
|
Pharmacological targets revealed by myocardial postconditioning. Curr Opin Pharmacol 2009; 9:177-88. [DOI: 10.1016/j.coph.2008.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 12/22/2022]
|
41
|
Abstract
Adenosine, a catabolite of ATP, exerts numerous effects in the heart, including modulation of the cardiac response to stress, such as that which occurs during myocardial ischemia and reperfusion. Over the past 20 years, substantial evidence has accumulated that adenosine, administered either prior to ischemia or during reperfusion, reduces both reversible and irreversible myocardial injury. The latter effect results in a reduction of both necrosis or myocardial infarction (MI) and apoptosis. These effects appear to be mediated via the activation of one or more G-protein-coupled receptors (GPCRs), referred to as A(1), A(2A), A(2B) and A(3) adenosine receptor (AR) subtypes. Experimental studies in different species and models suggest that activation of the A(1) or A(3)ARs prior to ischemia is cardioprotective. Further experimental studies reveal that the administration of A(2A)AR agonists during reperfusion can also reduce MI, and recent reports suggest that A(2B)ARs may also play an important role in modulating myocardial reperfusion injury. Despite convincing experimental evidence for AR-mediated cardioprotection, there have been only a limited number of clinical trials examining the beneficial effects of adenosine or adenosine-based therapeutics in humans, and the results of these studies have been equivocal. This review summarizes our current knowledge of AR-mediated cardioprotection, and the roles of the four known ARs in experimental models of ischemia-reperfusion. The chapter concludes with an examination of the clinical trials to date assessing the safety and efficacy of adenosine as a cardioprotective agent during coronary thrombolysis in humans.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, 4217, Australia.
| | | |
Collapse
|
42
|
Hasegawa T, Bouïs D, Liao H, Visovatti SH, Pinsky DJ. Ecto-5' nucleotidase (CD73)-mediated adenosine generation and signaling in murine cardiac allograft vasculopathy. Circ Res 2008; 103:1410-21. [PMID: 19008478 DOI: 10.1161/circresaha.108.180059] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ecto-5'-nucleotidase (CD73) catalyzes the terminal phosphohydrolysis of 5'-adenosine monophosphate and is widely expressed on endothelial cells where it regulates barrier function. Because it is also expressed on lymphocytes, we hypothesized that it modulates vascular immune regulation under homeostatic conditions and dysregulation under stress conditions such as cardiac allotransplantation. In a heterotopic cardiac allotransplantation model, CD73 deficiency in either donors or recipients resulted in decreased graft survival and the development of cardiac allograft vasculopathy, suggesting a contribution of CD73 on both graft-resident and circulating cells in vasculopathy pathogenesis. Vascular perturbations incited by lack of CD73 included loss of graft barrier function and diminished graft expression of the A(2B) adenosine receptor (A(2B)AR), with a concordant exacerbation of the acute inflammatory and immune responses. The importance of CD73 in modulating endothelial-lymphocyte interaction was further demonstrated in allomismatched in vitro coculture experiments. Either genetic deletion or pharmacological blockade of CD73 increased transendothelial lymphocyte migration and inflammatory responses, suggesting that CD73 plays a critical role to suppress transendothelial leukocyte trafficking through its enzymatic activity. In addition, antagonism of A(2B)AR caused a significant increase in vascular leakage, and agonism of A(2B)AR resulted in marked prolongation of graft survival and suppression of cardiac allograft vasculopathy development. These data suggest a new paradigm in which phosphohydrolysis of adenosine monophosphate by CD73 on graft-resident or circulating cells diminishes transendothelial leukocyte trafficking and mitigates inflammatory and immune sequelae of cardiac transplantation via the A(2B)AR.
Collapse
Affiliation(s)
- Tomomi Hasegawa
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
43
|
Pagel PS. Postconditioning by volatile anesthetics: salvaging ischemic myocardium at reperfusion by activation of prosurvival signaling. J Cardiothorac Vasc Anesth 2008; 22:753-65. [PMID: 18922439 DOI: 10.1053/j.jvca.2008.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Indexed: 12/26/2022]
Affiliation(s)
- Paul S Pagel
- Anesthesia Service, Clement J Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
44
|
Zheng J, Wang R, Zambraski E, Wu D, Jacobson KA, Liang BT. Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury. Am J Physiol Heart Circ Physiol 2007; 293:H3685-91. [PMID: 17921328 DOI: 10.1152/ajpheart.00819.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although adenosine exerts cardio-and vasculoprotective effects, the roles and signaling mechanisms of different adenosine receptors in mediating skeletal muscle protection are not well understood. We used a mouse hindlimb ischemia-reperfusion model to delineate the function of three adenosine receptor subtypes. Adenosine A(3) receptor-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IBMECA; 0.07 mg/kg ip) reduced skeletal muscle injury with a significant decrease in both Evans blue dye staining (5.4 +/- 2.6%, n = 8 mice vs. vehicle-treated 28 +/- 6%, n = 7 mice, P < 0.05) and serum creatine kinase level (1,840 +/- 910 U/l, n = 13 vs. vehicle-treated 12,600 +/- 3,300 U/l, n = 14, P < 0.05), an effect that was selectively blocked by an A(3) receptor antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; 0.05 mg/kg). The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.05 mg/kg) also exerted a cytoprotective effect, which was selectively blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 mg/kg). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.07 mg/kg)-induced decrease in skeletal muscle injury was selectively blocked by the A(2A) antagonist 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-C]pyrimidin-5-amine (SCH-442416; 0.017 mg/kg). The protection induced by the A(3) receptor was abrogated in phospholipase C-beta2/beta3 null mice, but the protection mediated by the A(1) or A(2A) receptor remained unaffected in these animals. The adenosine A(3) receptor is a novel cytoprotective receptor that signals selectively via phospholipase C-beta and represents a new target for ameliorating skeletal muscle injury.
Collapse
Affiliation(s)
- Jingang Zheng
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in industrial societies, with myocardial infarction as the primary assassin. Pharmacologic agents, including the myocardial cell membrane receptor agonists adenosine, bradykinin/angiotensin-converting enzyme inhibitors, opioids and erythropoietin or the mixed cell membrane and intracellular agonists, glucose insulin potassium, and volatile anesthetics, either clinically or experimentally reduce the extent of myocardial injury when administered just prior to reperfusion. Agents that specifically target proteins, transcription factors or ion channels, including PKC agonists/antagonists, PPAR, Phosphodiesterase-5 inhibitors, 3-Hydroxy-3-methyl glutaryl coenzyme A reductase and the ATP-dependent potassium channel are also promising. However, no agent has been specifically approved to reduce reperfusion injury clinically. In this review, we will discuss the advantages and limitations of agents to combat reperfusion injury, their market development status and findings reported in both clinical and preclinical studies. The molecular pathways activated by these agents that preserve myocardium from reperfusion injury, which appear to commonly involve glycogen synthase kinase 3beta and mitochondrial permeability transition pore inhibition, are also described.
Collapse
Affiliation(s)
- Eric R Gross
- Medical College of Wisconsin, Department of Pharmacology and Toxicology, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
46
|
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2007; 117:123-40. [PMID: 18029023 DOI: 10.1016/j.pharmthera.2007.09.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Adenosine is a primordial signaling molecule present in every cell of the human body that mediates its physiological functions by interacting with 4 subtypes of G-protein-coupled receptors, termed A1, A2A, A2B and A3. The A3 subtype is perhaps the most enigmatic among adenosine receptors since, although several studies have been performed in the years to elucidate its physiological function, it still presents in several cases a double nature in different pathophysiological conditions. The 2 personalities of A3 often come into direct conflict, e.g., in ischemia, inflammation and cancer, rendering this receptor as a single entity behaving in 2 different ways. This review focuses on the most relevant aspects of A3 adenosine subtype activation and summarizes the pharmacological evidence as the basis of the dichotomy of this receptor in different therapeutic fields. Although much is still to be learned about the function of the A3 receptor and in spite of its duality, at the present time it can be speculated that A3 receptor selective ligands might show utility in the treatment of ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The biggest and most intriguing challenge for the future is therefore to understand whether and where selective A3 agonists or antagonists are the best choice.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 2007; 116:173-91. [PMID: 17681609 DOI: 10.1016/j.pharmthera.2007.06.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 01/17/2023]
Abstract
Despite current optimal treatment, the morbidity and mortality of coronary heart disease (CHD), the leading cause of death worldwide, remains significant, paving the way for the development of novel cardioprotective therapies. Two potential strategies for protecting the heart are ischemic preconditioning (IPC) and ischemic postconditioning (IPost), which describe the cardioprotection obtained from applying transient episodes of myocardial ischemia and reperfusion either before or after the index ischemic event, respectively. Much progress has been made in elucidating the signal transduction pathway, which underlies their protection. Intriguingly, it is the first few minutes of myocardial reperfusion following the index ischemic period, which appear crucial to both IPC- and IPost-induced protection. Emerging evidence suggests that they appear to recruit a similar signaling pathway at time of myocardial reperfusion, comprising cell-surface receptors, a diverse array of protein kinase cascades including the reperfusion injury salvage kinase (RISK) pathway, redox signaling, and the mitochondrial permeability transition pore (mPTP). The common signaling pathway that appears to unite these 2 cardioprotective strategies at the time of reperfusion is the subject of this review. Importantly, this common cardioprotective pathway can be activated at the time of myocardial reperfusion in the clinical setting using pharmacological agents to target the essential signaling components, which should lead to the development of novel treatment strategies for improving the clinical outcomes of patients with CHD.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | | |
Collapse
|
48
|
Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM. Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol 2007; 43:262-71. [PMID: 17632123 PMCID: PMC2729547 DOI: 10.1016/j.yjmcc.2007.05.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 11/28/2022]
Abstract
Although protein kinase C (PKC) plays a key role in ischemic preconditioning (IPC), the actual mechanism of that protection is unknown. We recently found that protection from IPC requires activation of adenosine receptors during early reperfusion. We, therefore, hypothesized that PKC might act to increase the heart's sensitivity to adenosine. IPC limited infarct size in isolated rabbit hearts subjected to 30-min regional ischemia/2-h reperfusion and IPC's protection was blocked by the PKC inhibitor chelerythrine given during early reperfusion revealing involvement of PKC at reperfusion. Similarly chelerythrine infused in the early reperfusion period blocked the increased phosphorylation of the protective kinases Akt and ERK1/2 observed after IPC. Infusing phorbol 12-myristate 13-acetate (PMA), a PKC activator, during early reperfusion mimicked IPC's protection. As expected, the protection triggered by PMA at reperfusion was blocked by chelerythrine, but surprisingly it was also blocked by MRS1754, an adenosine A(2b) receptor-selective antagonist, suggesting that PKC was somehow facilitating signaling from the A(2b) receptors. NECA [5'-(N-ethylcarboxamido) adenosine], a potent but not selective A(2b) receptor agonist, increased phosphorylation of Akt and ERK1/2 in a dose-dependent manner. Pretreating hearts with PMA or brief preconditioning ischemia had no effect on phosphorylation of Akt or ERK1/2 per se but markedly lowered the threshold for NECA to induce their phosphorylation. BAY 60-6583, a highly selective A(2b) agonist, also caused phosphorylation of ERK1/2 and Akt. MRS1754 prevented phosphorylation induced by BAY 60-6583. BAY 60-6583 limited infarct size when given to ischemic hearts at reperfusion. These results suggest that activation of cardiac A(2b) receptors at reperfusion is protective, but because of the very low affinity of the receptors endogenous cardiac adenosine is unable to trigger their signaling. We propose that the key protective event in IPC occurs when PKC increases the heart's sensitivity to adenosine so that endogenous adenosine can activate A(2b)-dependent signaling.
Collapse
Affiliation(s)
- Atsushi Kuno
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
| | - Stuart D. Critz
- Department of Cell Biology and Neuroscience, University of South Alabama, College of Medicine, Mobile, AL
| | - Lin Cui
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
| | - Victoriya Solodushko
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
| | - Xi-Ming Yang
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
| | | | | | - Sebastian Philipp
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
| | - Michael V. Cohen
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
- Department of Medicine, University of South Alabama, College of Medicine, Mobile, AL
| | - James M. Downey
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL
| |
Collapse
|
49
|
Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y. Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 2007; 84:1848-55. [PMID: 17016854 DOI: 10.1002/jnr.21071] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine A3 receptor (A3R) agonists have been shown to reduce cardiac and lung injury, but the protective roles of A3R agonists in the CNS are not well characterized. The protective effect of selective A3R agonist chloro-N(6)-(3-iodo-benzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) was first examined in primary cortical cultures. In cortical culture, Cl-IB-MECA pretreatment antagonized the hypoxia-mediated decrease in cell viability. In vivo, Cl-IB-MECA or vehicle was given intracerebroventricularly or intravenously to anesthetized rats. Animals were subjected to focal cerebral ischemia induced by transient middle cerebral artery (MCA) ligation. Intracerebroventricular or repeated intravenous administration (i.e., at 165 min and 15 min before MCA ligation) of Cl-IB-MECA did not alter blood pressure during ischemia but increased locomotor activity and decreased cerebral infarction 2 days after. In these animals, Cl-IB-MECA also reduced the density of TUNEL labeling in the lesioned cortex. The possibility of endogeneous neuroprotection was further examined in A3R knockout mice. After MCA ligation, an increase in cerebral infarction was found in the A3R knockouts compared with the A3R wild-type controls, suggesting that A3Rs are tonically activated during ischemia. Additionally, intracerebroventricular pretreatment with Cl-IB-MECA decreased the size of infarction in the wild-type controls, but not in the A3R knockout animals, suggesting that Cl-IB-MECA-induced protection was mediated through the A3 receptors. Collectively, these data suggest that Cl-IB-MECA reduced cerebral infarction through the activation of A3Rs and suppression of apoptosis.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine/therapeutic use
- Analysis of Variance
- Animals
- Blood Gas Analysis/methods
- Blood Pressure/drug effects
- Brain Infarction/drug therapy
- Brain Infarction/etiology
- Cell Survival/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Enzyme Activation/drug effects
- Female
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/prevention & control
- In Situ Nick-End Labeling/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Pregnancy
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A3/metabolism
- Receptor, Adenosine A3/physiology
- Tetrazolium Salts
Collapse
Affiliation(s)
- Guann-Juh Chen
- National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ozacmak VH, Sayan H. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat. World J Gastroenterol 2007; 13:538-47. [PMID: 17278219 PMCID: PMC4065975 DOI: 10.3748/wjg.v13.i4.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.
METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase, malondialdehyde, and reduced glutathione levels were measured.
RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.
CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.
Collapse
Affiliation(s)
- V Haktan Ozacmak
- Department of Physiology, School of Medicine, Zonguldak Karaelmas University, Kozlu 67600, Zonguldak, Turkey.
| | | |
Collapse
|