1
|
Ferreira G, Taylor A, Mensah SA. Deciphering the triad of endothelial glycocalyx, von Willebrand Factor, and P-selectin in inflammation-induced coagulation. Front Cell Dev Biol 2024; 12:1372355. [PMID: 38745860 PMCID: PMC11091309 DOI: 10.3389/fcell.2024.1372355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the endothelial glycocalyx's role in inflammation and explores its involvement in coagulation. The glycocalyx, composed of proteins and glycosaminoglycans, interacts with von Willebrand Factor and could play a crucial role in anchoring it to the endothelium. In inflammatory conditions, glycocalyx degradation may leave P-selectin as the only attachment point for von Willebrand Factor, potentially leading to uncontrolled release of ultralong von Willebrand Factor in the bulk flow in a shear stress-dependent manner. Identifying specific glycocalyx glycosaminoglycan interactions with von Willebrand Factor and P-selectin can offer insights into unexplored coagulation mechanisms.
Collapse
Affiliation(s)
- Guinevere Ferreira
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Alexandra Taylor
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Solomon A. Mensah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
2
|
Wang J, Xu J, Liu T, Yu C, Xu F, Wang G, Li S, Dai X. Biomechanics-mediated endocytosis in atherosclerosis. Front Cardiovasc Med 2024; 11:1337679. [PMID: 38638885 PMCID: PMC11024446 DOI: 10.3389/fcvm.2024.1337679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Biomechanical forces, including vascular shear stress, cyclic stretching, and extracellular matrix stiffness, which influence mechanosensitive channels in the plasma membrane, determine cell function in atherosclerosis. Being highly associated with the formation of atherosclerotic plaques, endocytosis is the key point in molecule and macromolecule trafficking, which plays an important role in lipid transportation. The process of endocytosis relies on the mobility and tension of the plasma membrane, which is sensitive to biomechanical forces. Several studies have advanced the signal transduction between endocytosis and biomechanics to elaborate the developmental role of atherosclerosis. Meanwhile, increased plaque growth also results in changes in the structure, composition and morphology of the coronary artery that contribute to the alteration of arterial biomechanics. These cross-links of biomechanics and endocytosis in atherosclerotic plaques play an important role in cell function, such as cell phenotype switching, foam cell formation, and lipoprotein transportation. We propose that biomechanical force activates the endocytosis of vascular cells and plays an important role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinxuan Wang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jianxiong Xu
- School of Health Management, Xihua University, Chengdu, China
| | - Tianhu Liu
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
| | - Chaoping Yu
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
| | - Fengcheng Xu
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Shun Li
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaozhen Dai
- Department of Cardiology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Cardiology and Vascular Health Research Center, Chengdu Medical College, Chengdu, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Dominguez A, Iruela-Arispe ML. Integration of Chemo-mechanical signaling in response to fluid shear stress by the endothelium. Curr Opin Cell Biol 2023; 85:102232. [PMID: 37703647 DOI: 10.1016/j.ceb.2023.102232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
Physical forces exert profound effects on cells affecting fate, function, and response to stressors. In the case of the endothelium, the layer that resides in the inner surface of blood vessels, the collective effect of hemodynamic forces influences the onset and severity of vascular pathologies. Justifiably, much emphasis has been placed in understanding how endothelial cells sense and respond to mechanical challenges, particularly hemodynamic shear stress. In this review, we highlight recent developments that have expanded our understanding of the molecular mechanisms underlying mechanotransduction. We describe examples of protein compartmentalization in response to shear stress, consider the contribution of the glycocalyx, and discuss the specific role ion channels in response to flow. We also highlight the recently recognized contribution of the receptor ALK5 in sensing turbulent flow. Research in the last three years has enriched our understanding of the molecular landscape responsible for recognizing and transducing shear stress responses, including novel transcriptional-dependent and transcriptional-independent mechanisms.
Collapse
Affiliation(s)
- Annmarie Dominguez
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.
| |
Collapse
|
4
|
Deng Z, Sun K, Sha D, Zhang Y, Guo J, Yan G, Zhang W, Liu M, Deng X, Kang H, Sun A. The counterbalance of endothelial glycocalyx and high wall shear stress to low-density lipoprotein concentration polarization in mouse ear skin arterioles. Atherosclerosis 2023; 377:24-33. [PMID: 37379795 DOI: 10.1016/j.atherosclerosis.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis preferentially occurs at regions in arterial branching, curvature, and stenosis, which may be explained by the geometric predilection of low-density lipoprotein (LDL) concentration polarization that has been investigated in major arteries in previous studies. Whether this also happens in arterioles remains unknown. METHODS Herein, a radially non-uniform distribution of LDL particles and a heterogeneous endothelial glycocalyx layer in the mouse ear arterioles, as shown by fluorescein isothiocyanate labeled wheat germ agglutinin (WGA-FITC), were successfully observed by a non-invasive two-photon laser-scanning microscopy (TPLSM) technique. The stagnant film theory was applied as the fitting function to evaluate LDL concentration polarization in arterioles. RESULTS The concentration polarization rate (CPR, the ratio of the number of polarized cases to that of total cases) in the inner walls of curved and branched arterioles was 22% and 31% higher than the outer counterparts, respectively. Results from the binary logistic regression and multiple linear regression analysis showed that endothelial glycocalyx thickness increases CPR and the thickness of the concentration polarization layer (CPL). Flow field computation indicates no obvious disturbances or vortex in modeled arterioles with different geometries and the mean wall shear stress is about 7.7-9.0 Pa. CONCLUSIONS These findings suggest a geometric predilection of LDL concentration polarization in arterioles for the first time, and the existence of an endothelial glycocalyx, acting together with a relatively high wall shear stress in arterioles, may explain to some extent why atherosclerosis rarely occurs in these regions.
Collapse
Affiliation(s)
- Zhilan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yinuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
5
|
Ahn SJ, Le Master E, Granados ST, Levitan I. Impairment of endothelial glycocalyx in atherosclerosis and obesity. CURRENT TOPICS IN MEMBRANES 2023; 91:1-19. [PMID: 37080677 DOI: 10.1016/bs.ctm.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Endothelial glycocalyx is a negatively charged gel-like layer located on the apical surface of endothelial cells. It serves as a selective two-way physical barrier between the flowing blood and the endothelium, which regulates the access of macromolecules and of blood cells to the endothelial surface. In addition, endothelial glycocalyx plays a major role in sensing mechanical signals generated by the blood flow and transducing these signals to maintain endothelial functions; Thus, dysfunction or disruption of endothelial glycocalyx in pathological condition leads to endothelial dysfunction and contributes to the development of vascular diseases. In this review, we discuss the impact of atherosclerosis with the following viewpoints: (i) hypercholesterolemic effects on endothelial glycocalyx degradation in animal models and human patients, (ii) disruption of endothelial glycocalyx by atherogenic lipoproteins, (iii) proatherogenic disturbed flow effects on endothelial glycocalyx degradation, (iv) pathological consequences of the loss of glycocalyx integrity in atherogenesis, and (v) therapeutic effect of glycocalyx supplementation on atherosclerosis development. Additionally, we also discuss recent studies in pathological effects of obesity on the disruption of endothelial glycocalyx.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Elizabeth Le Master
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sara T Granados
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Jin J, Fang F, Gao W, Chen H, Wen J, Wen X, Chen J. The Structure and Function of the Glycocalyx and Its Connection With Blood-Brain Barrier. Front Cell Neurosci 2021; 15:739699. [PMID: 34690703 PMCID: PMC8529036 DOI: 10.3389/fncel.2021.739699] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
The vascular endothelial glycocalyx is a dense, bush-like structure that is synthesized and secreted by endothelial cells and evenly distributed on the surface of vascular endothelial cells. The blood-brain barrier (BBB) is mainly composed of pericytes endothelial cells, glycocalyx, basement membranes, and astrocytes. The glycocalyx in the BBB plays an indispensable role in many important physiological functions, including vascular permeability, inflammation, blood coagulation, and the synthesis of nitric oxide. Damage to the fragile glycocalyx can lead to increased permeability of the BBB, tissue edema, glial cell activation, up-regulation of inflammatory chemokines expression, and ultimately brain tissue damage, leading to increased mortality. This article reviews the important role that glycocalyx plays in the physiological function of the BBB. The review may provide some basis for the research direction of neurological diseases and a theoretical basis for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Jing Jin
- Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Gao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanjian Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuehua Wen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junfa Chen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Jiang XZ, Luo KH, Ventikos Y. Understanding the Role of Endothelial Glycocalyx in Mechanotransduction via Computational Simulation: A Mini Review. Front Cell Dev Biol 2021; 9:732815. [PMID: 34485313 PMCID: PMC8415899 DOI: 10.3389/fcell.2021.732815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Endothelial glycocalyx (EG) is a forest-like structure, covering the lumen side of blood vessel walls. EG is exposed to the mechanical forces of blood flow, mainly shear, and closely associated with vascular regulation, health, diseases, and therapies. One hallmark function of the EG is mechanotransduction, which means the EG senses the mechanical signals from the blood flow and then transmits the signals into the cells. Using numerical modelling methods or in silico experiments to investigate EG-related topics has gained increasing momentum in recent years, thanks to tremendous progress in supercomputing. Numerical modelling and simulation allows certain very specific or even extreme conditions to be fulfilled, which provides new insights and complements experimental observations. This mini review examines the application of numerical methods in EG-related studies, focusing on how computer simulation contributes to the understanding of EG as a mechanotransducer. The numerical methods covered in this review include macroscopic (i.e., continuum-based), mesoscopic [e.g., lattice Boltzmann method (LBM) and dissipative particle dynamics (DPD)] and microscopic [e.g., molecular dynamics (MD) and Monte Carlo (MC) methods]. Accounting for the emerging trends in artificial intelligence and the advent of exascale computing, the future of numerical simulation for EG-related problems is also contemplated.
Collapse
Affiliation(s)
- Xi Zhuo Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|