1
|
Tang W, Shao Q, He Z, Zhang X, Li X, Wu R. Clinical significance of nonerythrocytic spectrin Beta 1 (SPTBN1) in human kidney renal clear cell carcinoma and uveal melanoma: a study based on Pan-Cancer Analysis. BMC Cancer 2023; 23:303. [PMID: 37013511 PMCID: PMC10071745 DOI: 10.1186/s12885-023-10789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Nonerythrocytic spectrin beta 1 (SPTBN1) is an important cytoskeletal protein that involves in normal cell growth and development via regulating TGFβ/Smad signaling pathway, and is aberrantly expressed in various cancer types. But, the exact role of SPTBN1 in pan-cancer is still unclear. This report aimed to display expression patterns and prognostic landscapes of SPTBN1 in human cancers, and further assess its prognostic/therapeutic value and immunological role in kidney renal carcinoma (KIRC) and uveal melanoma (UVM). METHODS We firstly analyzed expression patterns and prognostic landscapes of SPTBN1 in human cancers using various databases and web-based tools. The relationships between SPTBN1 expression and survival/tumor immunity in KIRC and UVM were further investigated via R packages and TIMER 2.0 platform. The therapeutic roles of SPTBN1 in KIRC and UVM were also explored via R software. Following this, the prognostic value and cancer immunological role of SPTBN1 in KIRC and UVM were validated in our cancer patients and GEO database. RESULTS Overall, cancer tissue had a lower expression level of SPTBN1 frequently in pan-cancer, compared with those in adjacent nontumor one. SPTBN1 expression often showed a different effect on survival in pan-cancer; upregulation of SPTBN1 was protective to the survival of KIRC individuals, which was contrary from what was found in UVM patients. In KIRC, there were significant negative associations between SPTBN1 expression and pro-tumor immune cell infiltration, including Treg cell, Th2 cell, monocyte and M2-macrophage, and expression of immune modulator genes, such as tumor necrosis factor superfamily member 9 (TNFSF9); while, in UVM, these correlations exhibited opposite patterns. The following survival and expression correlation analysis in our cancer cohorts and GEO database confirmed these previous findings. Moreover, we also found that SPTBN1 was potentially involved in the resistance of immunotherapy in KIRC, and the enhance of anti-cancer targeted treatment in UVM. CONCLUSIONS The current study presented compelling evidence that SPTBN1 might be a novel prognostic and therapy-related biomarker in KIRC and UVM, shedding new light on anti-cancer strategy.
Collapse
Affiliation(s)
- Wenting Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Qiong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Zhanwen He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Xiaojuan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Ruohao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
2
|
Li S, Liu T, Li K, Bai X, Xi K, Chai X, Mi L, Li J. Spectrins and human diseases. Transl Res 2022; 243:78-88. [PMID: 34979321 DOI: 10.1016/j.trsl.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Spectrin, as one of the major components of a plasma membrane-associated cytoskeleton, is a cytoskeletal protein composed of the modular structure of α and β subunits. The spectrin-based skeleton is essential for preserving the integrity and mechanical characteristics of the cell membrane. Moreover, spectrin regulates a variety of cell processes including cell apoptosis, cell adhesion, cell spreading, and cell cycle. Dysfunction of spectrins is implicated in various human diseases including hemolytic anemia, neurodegenerative diseases, ataxia, heart diseases, and cancers. Here, we briefly discuss spectrins function as well as the clinical manifestations and currently known molecular mechanisms of human diseases related to spectrins, highlighting that strategies for targeting regulation of spectrins function may provide new avenues for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kejing Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xinyi Bai
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kewang Xi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xiaojing Chai
- Central Laboratory, The First Hospital of Lanzhou University, Gansu, China
| | - Leyuan Mi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China; Clinical Laboratory Center, Gansu Provincial Maternity and Child Care Hospital, Gansu, China
| | - Juan Li
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Gansu, China; Central Laboratory, The First Hospital of Lanzhou University, Gansu, China.
| |
Collapse
|
3
|
Chen S, Wu H, Wang Z, Jia M, Guo J, Jin J, Li X, Meng D, Lin L, He AR, Zhou P, Zhi X. Loss of SPTBN1 Suppresses Autophagy Via SETD7-mediated YAP Methylation in Hepatocellular Carcinoma Initiation and Development. Cell Mol Gastroenterol Hepatol 2021; 13:949-973.e7. [PMID: 34737104 PMCID: PMC8864474 DOI: 10.1016/j.jcmgh.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Loss of Spectrin beta, non-erythrocytic 1 (SPTBN1) plays an important role in the carcinogenesis of hepatocellular carcinoma (HCC); however, the mechanisms underlying its involvement remain poorly understood. Defects in autophagy contribute to hepatic tumor formation. Hence, in this study, we explored the role and mechanism of SPTBN1 in the autophagy of hepatic stem cells (HSCs) and HCC cells. METHODS Expansion, autophagy, and malignant transformation of HSCs were detected in the injured liver of Sptbn1+/- mice induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment. Hippo pathway and Yes-associated protein (YAP) stabilization were examined in isolated HSCs, Huh-7, and PLC/PRF/5 HCC cells and hepatocytes with or without loss of SPTBN1. RESULTS We found that heterozygous SPTBN1 knockout accelerated liver tumor development with 3,5-diethoxycarbonyl-1,4-dihydrocollidine induction. Rapamycin promoted autophagy in murine HSCs and reversed the increased malignant transformation induced by heterozygous SPTBN1 deletion. Loss of SPTBN1 also decreased autophagy and increased YAP stability and nuclear localization in human HCC cells and tissues, whereas YAP inhibition attenuated the effects of SPTBN1 deficiency on autophagy. Finally, we found that SPTBN1 positively regulated the expression of suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to promote YAP methylation, which may lead to YAP degradation and inactivation. CONCLUSIONS Our findings provide the first demonstration that loss of SPTBN1 impairs autophagy of HSCs to promote expansion and malignant transformation during hepatocarcinogenesis. SPTBN1 also cooperates with suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to inactive YAP, resulting in enhanced autophagy of HCC cells. These results may open new avenues targeting SPTBN1 for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhengyang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Lin
- Department of Medicine and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Aiwu Ruth He
- Department of Medicine and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
5
|
Li J, Chen K, Zhu R, Zhang M. Structural Basis Underlying Strong Interactions between Ankyrins and Spectrins. J Mol Biol 2020; 432:3838-3850. [DOI: 10.1016/j.jmb.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
|
6
|
Vileigas DF, Harman VM, Freire PP, Marciano CLC, Sant'Ana PG, de Souza SLB, Mota GAF, da Silva VL, Campos DHS, Padovani CR, Okoshi K, Beynon RJ, Santos LD, Cicogna AC. Landscape of heart proteome changes in a diet-induced obesity model. Sci Rep 2019; 9:18050. [PMID: 31792287 PMCID: PMC6888820 DOI: 10.1038/s41598-019-54522-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pandemic associated with a high incidence of cardiovascular disease; however, the mechanisms are not fully elucidated. Proteomics may provide a more in-depth understanding of the pathophysiological mechanisms and contribute to the identification of potential therapeutic targets. Thus, our study evaluated myocardial protein expression in healthy and obese rats, employing two proteomic approaches. Male Wistar rats were established in two groups (n = 13/group): control diet and Western diet fed for 41 weeks. Obesity was determined by the adipose index, and cardiac function was evaluated in vivo by echocardiogram and in vitro by isolated papillary muscle analysis. Proteomics was based on two-dimensional gel electrophoresis (2-DE) along with mass spectrometry identification, and shotgun proteomics with label-free quantification. The Western diet was efficient in triggering obesity and impaired contractile function in vitro; however, no cardiac dysfunction was observed in vivo. The combination of two proteomic approaches was able to increase the cardiac proteomic map and to identify 82 differentially expressed proteins involved in different biological processes, mainly metabolism. Furthermore, the data also indicated a cardiac alteration in fatty acids transport, antioxidant defence, cytoskeleton, and proteasome complex, which have not previously been associated with obesity. Thus, we define a robust alteration in the myocardial proteome of diet-induced obese rats, even before functional impairment could be detected in vivo by echocardiogram.
Collapse
Affiliation(s)
- Danielle F Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil.
| | - Victoria M Harman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
| | - Paula P Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618970, Brazil
| | - Cecília L C Marciano
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Paula G Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Sérgio L B de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Gustavo A F Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Vitor L da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Dijon H S Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Carlos R Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618970, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
| | - Lucilene D Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP)/Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, 18610307, Brazil
| | - Antonio C Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil.
| |
Collapse
|
7
|
Chen S, Li J, Zhou P, Zhi X. SPTBN1 and cancer, which links? J Cell Physiol 2019; 235:17-25. [PMID: 31206681 DOI: 10.1002/jcp.28975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
SPTBN1 is a dynamic intracellular nonpleckstrin homology-domain protein, functioning as a transforming growth factor-β signal transducing adapter protein which is necessary to form Smad3/Smad4 complex. Recently SPTBN1 is considered to be associated with many kinds of cancers. SPTBN1 expression and function differ between different tumor states or types. This review summarizes the recent advances in the expression patterns of SPTBN1 in cancers, and in understanding the mechanisms by which SPTBN1 affects the occurrence, progression, and metastasis of cancer. Identifying SPTBN1 expression and function in cancers will contribute to the clinical diagnosis and treatment of cancer and the investigation of anticancer drugs.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lubbers ER, Murphy NP, Musa H, Huang CYM, Gupta R, Price MV, Han M, Daoud G, Gratz D, El Refaey M, Xu X, Hoeflinger NK, Friel EL, Lancione P, Wallace MJ, Cavus O, Simmons SL, Williams JL, Skaf M, Koenig SN, Janssen PML, Rasband MN, Hund TJ, Mohler PJ. Defining new mechanistic roles for αII spectrin in cardiac function. J Biol Chem 2019; 294:9576-9591. [PMID: 31064843 PMCID: PMC6579463 DOI: 10.1074/jbc.ra119.007714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Indexed: 01/04/2023] Open
Abstract
Spectrins are cytoskeletal proteins essential for membrane biogenesis and regulation and serve critical roles in protein targeting and cellular signaling. αII spectrin (SPTAN1) is one of two α spectrin genes and αII spectrin dysfunction is linked to alterations in axon initial segment formation, cortical lamination, and neuronal excitability. Furthermore, human αII spectrin loss-of-function variants cause neurological disease. As global αII spectrin knockout mice are embryonic lethal, the in vivo roles of αII spectrin in adult heart are unknown and untested. Here, based on pronounced alterations in αII spectrin regulation in human heart failure we tested the in vivo roles of αII spectrin in the vertebrate heart. We created a mouse model of cardiomyocyte-selective αII spectrin-deficiency (cKO) and used this model to define the roles of αII spectrin in cardiac function. αII spectrin cKO mice displayed significant structural, cellular, and electrical phenotypes that resulted in accelerated structural remodeling, fibrosis, arrhythmia, and mortality in response to stress. At the molecular level, we demonstrate that αII spectrin plays a nodal role for global cardiac spectrin regulation, as αII spectrin cKO hearts exhibited remodeling of αI spectrin and altered β-spectrin expression and localization. At the cellular level, αII spectrin deficiency resulted in altered expression, targeting, and regulation of cardiac ion channels NaV1.5 and KV4.3. In summary, our findings define critical and unexpected roles for the multifunctional αII spectrin protein in the heart. Furthermore, our work provides a new in vivo animal model to study the roles of αII spectrin in the cardiomyocyte.
Collapse
Affiliation(s)
- Ellen R Lubbers
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- Medical Scientist Training Program
- the Departments of Physiology and Cell Biology and
| | - Nathaniel P Murphy
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- Medical Scientist Training Program
- the Departments of Physiology and Cell Biology and
| | - Hassan Musa
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Claire Yu-Mei Huang
- the Department of Neuroscience and Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030, and
| | - Rohan Gupta
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Morgan V Price
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Mei Han
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Georges Daoud
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Daniel Gratz
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- the Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 432310
| | - Mona El Refaey
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Xianyao Xu
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Nicole K Hoeflinger
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Emma L Friel
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Peter Lancione
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Michael J Wallace
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Omer Cavus
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Samantha L Simmons
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Jordan L Williams
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Michel Skaf
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Sara N Koenig
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
| | - Paul M L Janssen
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- the Departments of Physiology and Cell Biology and
- Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 432310
| | - Matthew N Rasband
- the Department of Neuroscience and Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030, and
| | - Thomas J Hund
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia
- the Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 432310
- Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 432310
| | - Peter J Mohler
- From the Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia,
- the Departments of Physiology and Cell Biology and
- Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 432310
| |
Collapse
|
9
|
Ng R, Manring H, Papoutsidakis N, Albertelli T, Tsai N, See CJ, Li X, Park J, Stevens TL, Bobbili PJ, Riaz M, Ren Y, Stoddard CE, Janssen PM, Bunch TJ, Hall SP, Lo YC, Jacoby DL, Qyang Y, Wright N, Ackermann MA, Campbell SG. Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation. JCI Insight 2019; 5:128643. [PMID: 31194698 DOI: 10.1172/jci.insight.128643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder with variable genetic etiologies. Here we focused on understanding the precise molecular pathology of a single clinical variant in DSP, the gene encoding desmoplakin. We initially identified a novel missense desmoplakin variant (p.R451G) in a patient diagnosed with biventricular ACM. An extensive single-family ACM cohort was assembled, revealing a pattern of coinheritance for R451G desmoplakin and the ACM phenotype. An in vitro model system using patient-derived induced pluripotent stem cell lines showed depressed levels of desmoplakin in the absence of abnormal electrical propagation. Molecular dynamics simulations of desmoplakin R451G revealed no overt structural changes, but a significant loss of intramolecular interactions surrounding a putative calpain target site was observed. Protein degradation assays of recombinant desmoplakin R451G confirmed increased calpain vulnerability. In silico screening identified a subset of 3 additional ACM-linked desmoplakin missense mutations with apparent enhanced calpain susceptibility, predictions that were confirmed experimentally. Like R451G, these mutations are found in families with biventricular ACM. We conclude that augmented calpain-mediated degradation of desmoplakin represents a shared pathological mechanism for select ACM-linked missense variants. This approach for identifying variants with shared molecular pathologies may represent a powerful new strategy for understanding and treating inherited cardiomyopathies.
Collapse
Affiliation(s)
- Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Heather Manring
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Nikolaos Papoutsidakis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Taylor Albertelli
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Nicole Tsai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Claudia J See
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Xia Li
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tyler L Stevens
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Prameela J Bobbili
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Science, University of Connecticut Health, Farmington, Connecticut, USA
| | | | - T Jared Bunch
- Department of Cardiology, Intermountain Health, Salt Lake City, Utah, USA
| | - Stephen P Hall
- Department of Family Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ying-Chun Lo
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel L Jacoby
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.,Yale Stem Cell Center, Yale University, New Haven, Connecticut, USA.,Vascular Biology and Therapeutics Program and
| | - Nathan Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology and.,Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Hu S, Jue D, Albanese J, Wang Y, Liu Q. Utilization of spectrins βI and βIII in diagnosis of hepatocellular carcinoma. Ann Diagn Pathol 2019; 39:86-91. [PMID: 30798076 DOI: 10.1016/j.anndiagpath.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
Abstract
Spectrins are a group of cytoskeletal proteins which participate in many important cellular functions. It has been suggested that loss of spectrin isoforms may be associated with tumorigenesis of lymphoma, leukemia, gastric cancer and hepatocellular carcinoma (HCC). We recently reported that βI spectrin expression was present in normal hepatocytes but lost in HCC cells, which suggested that spectrins may be helpful markers in diagnosis of HCC. In this study, using immunohistochemical staining, we further investigated the expression pattern of four spectrin isoforms (αII, βI-III) on different benign and malignant liver tumors including focal nodular hyperplasia (FNH), hepatic adenoma (HA), HCC, and cholangiocarcinoma (CC). The results revealed that βI spectrin was moderately to strongly positive in FNH and HA tissues, but was only weakly positive or lost in HCC cases and was weakly positive in all CC cases. In addition, the βIII spectrin, majority of which was moderately positive in both FNH and HA tissues, was mostly lost in poorly differentiated HCC but remained at least moderately positive in most CC cases. These results suggest that spectrins βI and βIII may be used to differentiate well differentiated HCC from FNH or HA, and poorly differentiated HCC from CC, respectively.
Collapse
Affiliation(s)
- Shaomin Hu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America
| | - Deborah Jue
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America
| | - Joseph Albanese
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America.
| | - Qiang Liu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America.
| |
Collapse
|
11
|
Hulsurkar M, Quick AP, Wehrens XH. STAT3: a link between CaMKII-βIV-spectrin and maladaptive remodeling? J Clin Invest 2018; 128:5219-5221. [PMID: 30418170 PMCID: PMC6264720 DOI: 10.1172/jci124778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
βIV-Spectrin, along with ankyrin and Ca2+/calmodulin-dependent kinase II (CaMKII), has been shown to form local signaling domains at the intercalated disc, while playing a key role in the regulation of Na+ and K+ channels in cardiomyocytes. In this issue of the JCI, Unudurthi et al. show that under chronic pressure overload conditions, CaMKII activation leads to βIV-spectrin degradation, resulting in the release of sequestered STAT3 from the intercalated discs. This in turn leads to dysregulation of STAT3-mediated gene transcription, maladaptive remodeling, fibrosis, and decreased cardiac function. Overall, this study presents interesting findings regarding the role of CaMKII and βIV-spectrin under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Mohit Hulsurkar
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
| | - Ann P. Quick
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
- Department of Medicine
- Department of Pediatrics
- Department of Neuroscience, and
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Unudurthi SD, Nassal D, Greer-Short A, Patel N, Howard T, Xu X, Onal B, Satroplus T, Hong D, Lane C, Dalic A, Koenig SN, Lehnig AC, Baer LA, Musa H, Stanford KI, Smith S, Mohler PJ, Hund TJ. βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload. J Clin Invest 2018; 128:5561-5572. [PMID: 30226828 DOI: 10.1172/jci99245] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/13/2018] [Indexed: 01/19/2023] Open
Abstract
Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin-KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based "statosome" will be effective at suppressing maladaptive remodeling in response to chronic stress.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deborah Hong
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Cemantha Lane
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Alyssa Dalic
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sara N Koenig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Adam C Lehnig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Lisa A Baer
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Hassan Musa
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kristin I Stanford
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Sakima Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
13
|
Kempton A, Cefalu M, Justice C, Baich T, Derbala M, Canan B, Janssen PML, Mohler PJ, Smith SA. Altered regulation of cardiac ankyrin repeat protein in heart failure. Heliyon 2018; 4:e00514. [PMID: 29560432 PMCID: PMC5857524 DOI: 10.1016/j.heliyon.2018.e00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Background Left ventricular assist devices (LVADs) have revolutionized and improved the care of the sickest heart failure (HF) patients, and it is imperative that they receive appropriate ventricular unloading. Assessing this critical parameter with current methodologies (labs, imaging) is usually suboptimal in this patient population. Hence it is imperative to elucidate the molecular underpinnings involved in ventricular unloading. We have previously identified the cytoskeletal protein βII spectrin as an essential nodal protein involved in post-translational targeting and βII spectrin protein levels are significantly altered in multiple forms of human and animal HF. We therefore hypothesized that the βII spectrin pathway would play a critical role in LVAD remodeling. Methods Human heart failure samples were obtained from patients undergoing heart transplantation. Wild type (WT) mice and our previously validated βII spectrin conditional knock out (βII cKO) mice were used for animal experiments. Transaortic constriction (TAC) was performed on WT mice. Protein expression was assessed via immunoblots, and protein interactions were assessed with co-immunoprecipitation. Transcriptome analysis was performed using isolated whole hearts from control adult WT mice (n = 3) compared to βII cKO spectrin mice (n = 3). Results We report that hearts from mice selectively lacking βII spectrin expression in cardiomyocytes displayed altered transcriptional regulation of cardiac ankyrin repeat protein (CARP). Notably, CARP protein expression is increased after TAC. Additionally, our findings illustrate that prior to LVAD support, CARP levels are elevated in HF patients compared to normal healthy controls. Further, for the first time in a LVAD population, we show that elevated CARP levels in HF patients return to normal following LVAD support. Conclusion Our findings illustrate that CARP is a dynamic molecule that responds to reduced afterload and stress, and has the potential to serve as a prognostic biomarker to assess for an adequate response to LVAD therapy.
Collapse
Affiliation(s)
- Amber Kempton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matt Cefalu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cody Justice
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tesla Baich
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mohamed Derbala
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin Canan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Hund TJ, Unudurthi SD, Greer-Short A, Patel N, Nassal D. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther 2018; 16:59-65. [PMID: 29257730 PMCID: PMC6064643 DOI: 10.1080/14779072.2018.1418664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.
Collapse
Affiliation(s)
- Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
| | - Sathya D. Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| |
Collapse
|
15
|
Derbala MH, Guo AS, Mohler PJ, Smith SA. The role of βII spectrin in cardiac health and disease. Life Sci 2017; 192:278-285. [PMID: 29128512 DOI: 10.1016/j.lfs.2017.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Spectrins are large, flexible proteins comprised of α-β dimers that are connected head-to-head to form the canonical heterotetrameric spectrin structure. Spectrins were initially believed to be exclusively found in human erythrocytic membrane and are highly conserved among different species. βII spectrin, the most common isoform of non-erythrocytic spectrin, is found in all nucleated cells and forms larger macromolecular complexes with ankyrins and actins. Not only is βII spectrin a central cytoskeletal scaffolding protein involved in preserving cell structure but it has also emerged as a critical protein required for distinct physiologic functions such as posttranslational localization of crucial membrane proteins and signal transduction. In the heart, βII spectrin plays a vital role in maintaining normal cardiac membrane excitability and proper cardiac development during embryogenesis. Mutations in βII spectrin genes have been strongly linked with the development of serious cardiac disorders such as congenital arrhythmias, heart failure, and possibly sudden cardiac death. This review focuses on our current knowledge of the role βII spectrin plays in the cardiovascular system in health and disease and the potential future clinical implications.
Collapse
Affiliation(s)
- Mohamed H Derbala
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Aaron S Guo
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
16
|
Swayne LA, Murphy NP, Asuri S, Chen L, Xu X, McIntosh S, Wang C, Lancione PJ, Roberts JD, Kerr C, Sanatani S, Sherwin E, Kline CF, Zhang M, Mohler PJ, Arbour LT. Novel Variant in the ANK2 Membrane-Binding Domain Is Associated With Ankyrin-B Syndrome and Structural Heart Disease in a First Nations Population With a High Rate of Long QT Syndrome. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001537. [PMID: 28196901 DOI: 10.1161/circgenetics.116.001537] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Long QT syndrome confers susceptibility to ventricular arrhythmia, predisposing to syncope, seizures, and sudden death. While rare globally, long QT syndrome is ≈15× more common in First Nations of Northern British Columbia largely because of a known mutation in KCNQ1. However, 2 large multigenerational families were affected, but negative for the known mutation. METHODS AND RESULTS Long QT syndrome panel testing was carried out in the index case of each family, and clinical information was collected. Cascade genotyping was performed. Biochemical and myocyte-based assays were performed to evaluate the identified gene variant for loss-of-function activity. Index cases in these 2 families harbored a novel ANK2 c.1937C>T variant (p.S646F). An additional 16 carriers were identified, including 2 with structural heart disease: one with cardiomyopathy resulting in sudden death and the other with congenital heart disease. For all carriers of this variant, the average QTc was 475 ms (±40). Although ankyrin-B p.S646F is appropriately folded and expressed in bacteria, the mutant polypeptide displays reduced expression in cultured H9c2 cells and aberrant localization in primary cardiomyocytes. Furthermore, myocytes expressing ankyrin-B p.S646F lack normal membrane targeting of the ankyrin-binding partner, the Na/Ca exchanger. Thus, ankyrin-B p.S646F is a loss-of-function variant. CONCLUSIONS We identify the first disease-causing ANK2 variant localized to the membrane-binding domain resulting in reduced ankyrin-B expression and abnormal localization. Further study is warranted on the potential association of this variant with structural heart disease given the role of ANK2 in targeting and stabilization of key structural and signaling molecules in cardiac cells.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Nathaniel P Murphy
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Sirisha Asuri
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Lena Chen
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Xiaoxue Xu
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Sarah McIntosh
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Chao Wang
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Peter J Lancione
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Jason D Roberts
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Charles Kerr
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Shubhayan Sanatani
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Elizabeth Sherwin
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Crystal F Kline
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Mingjie Zhang
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Peter J Mohler
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.)
| | - Laura T Arbour
- From the Division of Medical Sciences, University of Victoria, BC, Canada (L.A.S., L.C., X.X., L.T.A.); University of British Columbia Island Medical Program, Victoria, BC, Canada (L.A.S., L.T.A.); Department of Medical Genetics (S.A., S.M., L.T.A.), Division of Cardiology (C.K.), and Division of Cardiology, Department of Pediatrics, BC Children's Hospital (S.S., E.S.), University of British Columbia, Vancouver, BC, Canada; Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute (N.P.M., P.J.L., C.F.K., P.J.M.) and Department of Physiology and Cell Biology (N.P.M., P.J.L., C.F.K., P.J.M.), The Ohio State University Wexner Medical Center, Columbus, OH; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (C.W., M.Z.); and Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada (J.D.R.).
| |
Collapse
|
17
|
El Refaey MM, Mohler PJ. Ankyrins and Spectrins in Cardiovascular Biology and Disease. Front Physiol 2017; 8:852. [PMID: 29163198 PMCID: PMC5664424 DOI: 10.3389/fphys.2017.00852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Ankyrins are adaptor proteins critical for the expression and targeting of cardiac membrane proteins, signaling molecules, and cytoskeletal elements. Findings in humans and animal models have highlighted the in vivo roles for ankyrins in normal physiology and in cardiovascular disease, most notably in cardiac arrhythmia. For example, human ANK2 loss-of-function variants are associated with a complex array of electrical and structural phenotypes now termed “ankyrin-B syndrome,” whereas alterations in the ankyrin-G pathway for Nav channel targeting are associated with human Brugada syndrome. Further, both ankyrin-G and -B are now linked with acquired forms of cardiovascular disease including myocardial infarction and atrial fibrillation. Spectrins are ankyrin-associated proteins and recent studies support the critical role of ankyrin-spectrin interactions in normal cardiac physiology as well as regulation of key ion channel and signaling complexes. This review will highlight the roles of ankyrins and spectrins in cardiovascular physiology as well as illustrate the link between the dysfunction in ankyrin- and spectrin-based pathways and disease.
Collapse
Affiliation(s)
- Mona M El Refaey
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Abstract
Atrial fibrillation (AF) is an extremely prevalent arrhythmia that presents a wide range of therapeutic challenges. AF usually begins in a self-terminating paroxysmal form (pAF). With time, the AF pattern often evolves to become persistent (nonterminating within 7 days). Important differences exist between pAF and persistent AF in terms of clinical features, in particular the responsiveness to antiarrhythmic drugs and ablation therapy. AF mechanisms have been extensively reviewed, but few or no Reviews focus specifically on the pathophysiology of pAF. Accordingly, in this Review, we examine the available data on the electrophysiological basis for pAF occurrence and maintenance, as well as the molecular mechanisms forming the underlying substrate. We first consider the mechanistic insights that have been obtained from clinical studies in the electrophysiology laboratory, noninvasive observations, and genetic studies. We then discuss the information about underlying molecular mechanisms that has been obtained from experimental studies on animal models and patient samples. Finally, we discuss the data available from animal models with spontaneous AF presentation, their relationship to clinical findings, and their relevance to understanding the mechanisms underlying pAF. Our analysis then turns to potential factors governing cases of progression from pAF to persistent AF and the clinical implications of the basic mechanisms we review. We conclude by identifying and discussing questions that we consider particularly important to address through future research in this area.
Collapse
|