1
|
Si X, Huang Z, Pan Z. Clinical effects of dexmedetomidine on patients with sepsis and myocardial injury. Medicine (Baltimore) 2024; 103:e40257. [PMID: 39470486 PMCID: PMC11521069 DOI: 10.1097/md.0000000000040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
This study aimed to explore the organ-protective effects of dexmedetomidine in patients with sepsis combined with myocardial injury. From December 2021 to December 2023, 263 sepsis patients with myocardial injury were included based on inclusion and exclusion criteria. They were divided into an experimental group (n = 122), who had previously received dexmedetomidine, and a control group (n = 141), who had received midazolam. After matching baseline characteristics, the treatment outcomes between the 2 groups were compared. In a propensity score-matched cohort of 263 patients, each group had 62 individuals with balanced baseline characteristics. The experimental group showed significantly lower heart rates on days 1, 3, and 7 compared to the control (P < .05). Biomarkers high-sensitivity troponin I and creatine kinase-MB decreased significantly by days 3 and 7, with lower levels in the experimental group. B-type natriuretic peptide levels were also lower in the experimental group on days 3 and 7. Heart function improved in both groups, with the experimental group showing better outcomes. Inflammatory markers decreased significantly after 7 days, with the experimental group having lower levels. Hospitalization duration was similar between groups. Dexmedetomidine reduces heart rate and inflammatory markers, protects myocardial cells, and improves cardiac function in patients with sepsis and myocardial injury. It shows potential as a treatment option, with future research needed to assess its long-term efficacy and safety.
Collapse
Affiliation(s)
- Xiaomin Si
- Department of Cardiopulmonary Rehabilitation Center, Shiyan Taihe Hospital Affiliated to Hubei Medical College, Shiyan, Hubei, China
| | - Zhonglue Huang
- Department of Cardiology, Guangzhou Xinshi Hospital, Guangzhou, Guangdong, China
| | - Zhanqun Pan
- Department of Cardiovascular Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
2
|
Yang B, Li T, Wang Z, Zhu Y, Niu K, Hu S, Lin Z, Zheng X, Jin X, Shen C. Ruxolitinib-based senomorphic therapy mitigates cardiomyocyte senescence in septic cardiomyopathy by inhibiting the JAK2/STAT3 signaling pathway. Int J Biol Sci 2024; 20:4314-4340. [PMID: 39247818 PMCID: PMC11379065 DOI: 10.7150/ijbs.96489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. Methods: We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated β-galactosidase (SA-β-gal) assay, and other techniques were utilized to investigate underlying mechanisms. Results: Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-β-gal assay. Rux treatment attenuated SASP in vitro and in vivo, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both in vitro and in vivo. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. Conclusions: This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.
Collapse
Affiliation(s)
- Boshen Yang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taixi Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuankang Zhu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaifan Niu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sien Hu
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Zhiqi Lin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Jin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Haseba T, Maruyama M, Akimoto T, Yamamoto I, Katsuyama M, Okuda T. Class III Alcohol Dehydrogenase Plays a Key Role in the Onset of Alcohol-Related/-Associated Liver Disease as an S-Nitrosoglutathione Reductase in Mice. Int J Mol Sci 2023; 24:12102. [PMID: 37569481 PMCID: PMC10419236 DOI: 10.3390/ijms241512102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Lipid accumulation in the liver due to chronic alcohol consumption (CAC) is crucial in the development of alcohol liver disease (ALD). It is promoted by the NADH/NAD ratio increase via alcohol dehydrogenase (ADH)-dependent alcohol metabolism and lipogenesis increase via peroxisome proliferator-activated receptor γ (PPARγ) in the liver. The transcriptional activity of PPARγ on lipogenic genes is inhibited by S-nitrosylation but activated by denitrosylation via S-nitrosoglutathione reductase (GSNOR), an enzyme identical to ADH3. Besides ADH1, ADH3 also participates in alcohol metabolism. Therefore, we investigated the specific contribution of ADH3 to ALD onset. ADH3-knockout (Adh3-/-) and wild-type (WT) mice were administered a 10% ethanol solution for 12 months. Adh3-/- exhibited no significant pathological changes in the liver, whereas WT exhibited marked hepatic lipid accumulation (p < 0.005) with increased serum transaminase levels. Adh3-/- exhibited no death during CAC, whereas WT exhibited a 40% death. Liver ADH3 mRNA levels were elevated by CAC in WT (p < 0.01). The alcohol elimination rate measured after injecting 4 g/kg ethanol was not significantly different between two strains, although the rate was increased in both strains by CAC. Thus, ADH3 plays a key role in the ALD onset, likely by acting as GSNOR.
Collapse
Affiliation(s)
- Takeshi Haseba
- Department of Legal Medicine, Kanagawa Dental University, 82 Inaokacho, Yokosuka 238-8580, Japan;
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Motoyo Maruyama
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; (M.M.); (T.A.)
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; (M.M.); (T.A.)
| | - Isao Yamamoto
- Department of Legal Medicine, Kanagawa Dental University, 82 Inaokacho, Yokosuka 238-8580, Japan;
| | - Midori Katsuyama
- Department of Legal Medicine, Kagoshima University Graduate School of Medicine and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan;
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| |
Collapse
|
4
|
Osuru HP, Ikeda K, Atluri N, Thiele RH. Moderate exercise-induced dynamics on key sepsis-associated signaling pathways in the liver. Crit Care 2023; 27:266. [PMID: 37407986 DOI: 10.1186/s13054-023-04551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND There is a clear relationship between quantitative measures of fitness (e.g., VO2 max) and outcomes after surgical procedures. Whether or not fitness is a modifiable risk factor and what underlying biological processes drive these changes are not known. The purpose of this study was to evaluate the moderate exercise training effect on sepsis outcomes (survival) as well as the hepatic biological response. We chose to study the liver because it plays a central role in the regulation of immune defense during systemic infection and receives blood flow directly from the origin of infection (gut) in the cecal ligation and puncture (CLP) model. METHODS We randomized 50 male (♂) and female (♀) Sprague-Dawley rats (10 weeks, 340 g) to 3 weeks of treadmill exercise training, performed CLP to induce polymicrobial "sepsis," and monitored survival for five days (Part I). In parallel (Part II), we randomized 60 rats to control/sedentary (G1), exercise (G2), exercise + sham surgery (G3), CLP/sepsis (G4), exercise + CLP [12 h (G5) and 24 h (G6)], euthanized at 12 or 24 h, and explored molecular pathways related to exercise and sepsis survival in hepatic tissue and serum. RESULTS Three weeks of exercise training significantly increased rat survival following CLP (polymicrobial sepsis). CLP increased inflammatory markers (e.g., TNF-a, IL-6), which were attenuated by exercise. Sepsis suppressed the SOD and Nrf2 expression, and exercise before sepsis restored SOD and Nrf2 levels near the baseline. CLP led to increased HIF1a expression and oxidative and nitrosative stress, the latter of which were attenuated by exercise. Haptoglobin expression levels were increased in CLP animals, which was significantly amplified in exercise + CLP (24 h) rats. CONCLUSIONS Moderate exercise training (3 weeks) increased the survival in rats exposed to CLP, which was associated with less inflammation, less oxidative and nitrosative stress, and activation of antioxidant defense pathways.
Collapse
Affiliation(s)
- Hari Prasad Osuru
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA.
| | - Keita Ikeda
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA
| | - Robert H Thiele
- Department of Anesthesiology, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA.
| |
Collapse
|
5
|
Hobai IA. MECHANISMS OF CARDIAC DYSFUNCTION IN SEPSIS. Shock 2023; 59:515-539. [PMID: 36155956 DOI: 10.1097/shk.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i . Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i . In the cecal ligation and puncture (CLP) model, the causative mechanisms seem similar to those in the LPS model in male mice and are unknown in female subjects. ΔCa i decrease in male mice is primarily due to redox-dependent inhibition of sarco/endoplasmic reticulum Ca 2+ ATP-ase (SERCA). Reactive oxygen species (ROS) are overproduced by dysregulated mitochondria and the enzymes NADPH/NADH oxidase, cyclooxygenase, and xanthine oxidase. In addition to inhibiting SERCA, ROS amplify cardiomyocyte cytokine production and mitochondrial dysfunction, making the process self-propagating. In contrast, female animals may exhibit a natural redox resilience. Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
6
|
Hobai IA. CARDIOMYOCYTE REPROGRAMMING IN ANIMAL MODELS OF SEPTIC SHOCK. Shock 2023; 59:200-213. [PMID: 36730767 DOI: 10.1097/shk.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. Among the latter, ROS- and estrogen-dependent p38 and ERK 1/2 are proinflammatory, whereas JNK may play antagonistic, anti-inflammatory roles. Nuclear factors induce the synthesis of cytokines, which can amplify the inflammatory signal in a paracrine fashion, and of several effector enzymes, such as NOS-2, NOX-1, and others, which are ultimately responsible for the degradation of cardiomyocyte contractility. In parallel, the downregulation of enzymes involved in oxidative phosphorylation causes metabolic reprogramming, followed by a decrease in ATP production and the release of fragmented mitochondrial DNA, which may augment the process in a positive feedback loop. Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, GRB 444, Boston, MA
| |
Collapse
|
7
|
Cerra MC, Filice M, Caferro A, Mazza R, Gattuso A, Imbrogno S. Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals. Int J Mol Sci 2023; 24:ijms24021460. [PMID: 36674975 PMCID: PMC9866870 DOI: 10.3390/ijms24021460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aquatic animals are increasingly challenged by O2 fluctuations as a result of global warming, as well as eutrophication processes. Teleost fish show important species-specific adaptability to O2 deprivation, moving from intolerance to a full tolerance of hypoxia and even anoxia. An example is provided by members of Cyprinidae which includes species that are amongst the most tolerant hypoxia/anoxia teleosts. Living at low water O2 requires the mandatory preservation of the cardiac function to support the metabolic and hemodynamic requirements of organ and tissues which sustain whole organism performance. A number of orchestrated events, from metabolism to behavior, converge to shape the heart response to the restricted availability of the gas, also limiting the potential damages for cells and tissues. In cyprinids, the heart is extraordinarily able to activate peculiar strategies of functional preservation. Accordingly, by using these teleosts as models of tolerance to low O2, we will synthesize and discuss literature data to describe the functional changes, and the major molecular events that allow the heart of these fish to sustain adaptability to O2 deprivation. By crossing the boundaries of basic research and environmental physiology, this information may be of interest also in a translational perspective, and in the context of conservative physiology, in which the output of the research is applicable to environmental management and decision making.
Collapse
|
8
|
Sebag SC, Zhang Z, Qian Q, Li M, Zhu Z, Harata M, Li W, Zingman LV, Liu L, Lira VA, Potthoff MJ, Bartelt A, Yang L. ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue. Cell Rep 2021; 37:110003. [PMID: 34788615 PMCID: PMC8640996 DOI: 10.1016/j.celrep.2021.110003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
Brown adipose tissue (BAT) thermogenic activity is tightly regulated by cellular redox status, but the underlying molecular mechanisms are incompletely understood. Protein S-nitrosylation, the nitric-oxide-mediated cysteine thiol protein modification, plays important roles in cellular redox regulation. Here we show that diet-induced obesity (DIO) and acute cold exposure elevate BAT protein S-nitrosylation, including UCP1. This thermogenic-induced nitric oxide bioactivity is regulated by S-nitrosoglutathione reductase (GSNOR; alcohol dehydrogenase 5 [ADH5]), a denitrosylase that balances the intracellular nitroso-redox status. Loss of ADH5 in BAT impairs cold-induced UCP1-dependent thermogenesis and worsens obesity-associated metabolic dysfunction. Mechanistically, we demonstrate that Adh5 expression is induced by the transcription factor heat shock factor 1 (HSF1), and administration of an HSF1 activator to BAT of DIO mice increases Adh5 expression and significantly improves UCP1-mediated respiration. Together, these data indicate that ADH5 controls BAT nitroso-redox homeostasis to regulate adipose thermogenesis, which may be therapeutically targeted to improve metabolic health.
Collapse
Affiliation(s)
- Sara C. Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,These authors contributed equally
| | - Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,These authors contributed equally
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mikako Harata
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Wenxian Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Leonid V. Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Limin Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J. Potthoff
- Department of Neuroscience and Pharmacology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich Pettenkoferstr. 9, 80336 Munich, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany,Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Lead contact,Correspondence:
| |
Collapse
|
9
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
10
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
11
|
Long non-coding RNA GAS5 aggravates myocardial depression in mice with sepsis via the microRNA-449b/HMGB1 axis and the NF-κB signaling pathway. Biosci Rep 2021; 41:227999. [PMID: 33645622 PMCID: PMC8035624 DOI: 10.1042/bsr20201738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023] Open
Abstract
Sepsis is a common cause of deaths of patients in intensive care unit. The study aims to figure out the role of long non-coding RNA (lncRNA) GAS5 in the myocardial depression in mice with sepsis. Cecal ligation and puncture (CLP) was applied to induce sepsis in mice, and then the heart function, myocardium structure, and the inflammatory response were evaluated. Differentially expressed lncRNAs in mice with sepsis were identified. Then gain- and loss-of-functions of GAS5 were performed in mice to evaluate its role in mouse myocardial depression. The lncRNA-associated microRNA (miRNA)-mRNA network was figured out via an integrative prediction and detection. Myocardial injury was observed by overexpression of high-mobility group box 1 (HMGB1) in septic mice with knockdown of GAS5 expression. Activity of NF-κB signaling was evaluated, and NF-κB inhibition was induced in mice with sepsis and overexpression of GAS5. Collectively, CLP resulted in myocardial depression and injury, and increased inflammation in mice. GAS5 was highly expressed in septic mice. GAS5 inhibition reduced myocardial depression, myocardial injury and inflammation responses in septic mice. GAS5 was identified to bind with miR-449b and to elevate HMGB1 expression, thus activating the NF-κB signaling. HMGB1 overexpression or NF-κB inactivation reduced the GAS5-induced myocardial depression and inflammation in septic mice. Our study suggested that GAS5 might promote sepsis-induced myocardial depression via the miR-449b/HMGB1 axis and the following NF-κB activation.
Collapse
|
12
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
13
|
Nitric Oxide and S-Nitrosylation in Cardiac Regulation: G Protein-Coupled Receptor Kinase-2 and β-Arrestins as Targets. Int J Mol Sci 2021; 22:ijms22020521. [PMID: 33430208 PMCID: PMC7825736 DOI: 10.3390/ijms22020521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac diseases including heart failure (HF), are the leading cause of morbidity and mortality globally. Among the prominent characteristics of HF is the loss of β-adrenoceptor (AR)-mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins (β-Arr) that modulate β-AR signal termination via receptor desensitization and downregulation. GRK2 and β-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation. S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components GRKs and β-Arrs.
Collapse
|
14
|
Post-Translational S-Nitrosylation of Proteins in Regulating Cardiac Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9111051. [PMID: 33126514 PMCID: PMC7693965 DOI: 10.3390/antiox9111051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Like other post-translational modifications (PTMs) of proteins, S-nitrosylation has been considered a key regulatory mechanism of multiple cellular functions in many physiological and disease conditions. Emerging evidence has demonstrated that S-nitrosylation plays a crucial role in regulating redox homeostasis in the stressed heart, leading to discoveries in the mechanisms underlying the pathogenesis of heart diseases and cardiac protection. In this review, we summarize recent studies in understanding the molecular and biological basis of S-nitrosylation, including the formation, spatiotemporal specificity, homeostatic regulation, and association with cellular redox status. We also outline the currently available methods that have been applied to detect S-nitrosylation. Additionally, we synopsize the up-to-date studies of S-nitrosylation in various cardiac diseases in humans and animal models, and we discuss its therapeutic potential in cardiac protection. These pieces of information would bring new insights into understanding the role of S-nitrosylation in cardiac pathogenesis and provide novel avenues for developing novel therapeutic strategies for heart diseases.
Collapse
|
15
|
Amal H, Barak B, Bhat V, Gong G, Joughin BA, Wang X, Wishnok JS, Feng G, Tannenbaum SR. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol Psychiatry 2020; 25:1835-1848. [PMID: 29988084 PMCID: PMC6614015 DOI: 10.1038/s41380-018-0113-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO•)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO• Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO•-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.
Collapse
Affiliation(s)
- Haitham Amal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Boaz Barak
- McGovern Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | | | - Guanyu Gong
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA,Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - John S. Wishnok
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA,Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Filice M, Mazza R, Leo S, Gattuso A, Cerra MC, Imbrogno S. The Hypoxia Tolerance of the Goldfish ( Carassius auratus) Heart: The NOS/NO System and Beyond. Antioxidants (Basel) 2020; 9:antiox9060555. [PMID: 32604810 PMCID: PMC7346152 DOI: 10.3390/antiox9060555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The extraordinary capacity of the goldfish (Carassius auratus) to increase its cardiac performance under acute hypoxia is crucial in ensuring adequate oxygen supply to tissues and organs. However, the underlying physiological mechanisms are not yet completely elucidated. By employing an ex vivo working heart preparation, we observed that the time-dependent enhancement of contractility, distinctive of the hypoxic goldfish heart, is abolished by the Nitric Oxide Synthase (NOS) antagonist L-NMMA, the Nitric Oxide (NO) scavenger PTIO, as well as by the PI3-kinase (PI3-K) and sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) pumps’ inhibition by Wortmannin and Thapsigargin, respectively. In goldfish hearts exposed to hypoxia, an ELISA test revealed no changes in cGMP levels, while Western Blotting analysis showed an enhanced expression of the phosphorylated protein kinase B (pAkt) and of the NADPH oxidase catalytic subunit Nox2 (gp91phox). A significant decrease of protein S-nitrosylation was observed by Biotin Switch assay in hypoxic hearts. Results suggest a role for a PI3-K/Akt-mediated activation of the NOS-dependent NO production, and SERCA2a pumps in the mechanisms conferring benefits to the goldfish heart under hypoxia. They also propose protein denitrosylation, and the possibility of nitration, as parallel intracellular events.
Collapse
|
17
|
Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020; 31:101441. [PMID: 32007450 PMCID: PMC7212482 DOI: 10.1016/j.redox.2020.101441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of the death for both men and women. Although baseline heart physiology and the response to disease are known to differ by sex, little is known about sex differences in baseline molecular signaling, especially with regard to redox biology. In this review, we describe current research on sex differences in cardiac redox biology with a focus on the regulation of nitric oxide and aldehyde signaling. Furthermore, we argue for a new perspective on cardiovascular sex differences research, one that focuses on baseline redox biology without the elimination or disruption of sex hormones.
Collapse
Affiliation(s)
- Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Hayashida K, Bagchi A, Miyazaki Y, Hirai S, Seth D, Silverman MG, Rezoagli E, Marutani E, Mori N, Magliocca A, Liu X, Berra L, Hindle AG, Donnino MW, Malhotra R, Bradley MO, Stamler JS, Ichinose F. Improvement in Outcomes After Cardiac Arrest and Resuscitation by Inhibition of S-Nitrosoglutathione Reductase. Circulation 2019; 139:815-827. [PMID: 30586713 DOI: 10.1161/circulationaha.117.032488] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.
Collapse
Affiliation(s)
- Kei Hayashida
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center (D.S.), Cleveland, OH
| | - Michael G Silverman
- Cardiology Division, Department of Medicine, Massachusetts General Hospital (M.G.S., R.M.), Boston, MA
| | - Emanuele Rezoagli
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Naohiro Mori
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Aurora Magliocca
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Xiaowen Liu
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA (X.L., M.W.D.)
| | - Lorenzo Berra
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Michael W Donnino
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA (X.L., M.W.D.)
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital (M.G.S., R.M.), Boston, MA
| | | | | | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| |
Collapse
|
19
|
Casin KM, Fallica J, Mackowski N, Veenema RJ, Chan A, St Paul A, Zhu G, Bedja D, Biswal S, Kohr MJ. S-Nitrosoglutathione Reductase Is Essential for Protecting the Female Heart From Ischemia-Reperfusion Injury. Circ Res 2019; 123:1232-1243. [PMID: 30571462 DOI: 10.1161/circresaha.118.313956] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Protein S-nitros(yl)ation (SNO) has been implicated as an essential mediator of nitric oxide-dependent cardioprotection. Compared with males, female hearts exhibit higher baseline levels of protein SNO and associated with this, reduced susceptibility to myocardial ischemia-reperfusion injury. Female hearts also exhibit enhanced S-nitrosoglutathione reductase (GSNO-R) activity, which would typically favor decreased SNO levels as GSNO-R mediates SNO catabolism. OBJECTIVE Because female hearts exhibit higher SNO levels, we hypothesized that GSNO-R is an essential component of sex-dependent cardioprotection in females. METHODS AND RESULTS Male and female wild-type mouse hearts were subjected to ex vivo ischemia-reperfusion injury with or without GSNO-R inhibition (N6022). Control female hearts exhibited enhanced functional recovery and decreased infarct size versus control males. Interestingly, GSNO-R inhibition reversed this sex disparity, significantly reducing injury in male hearts, and exacerbating injury in females. Similar results were obtained with male and female GSNO-R-/- hearts using ex vivo and in vivo models of ischemia-reperfusion injury. Assessment of SNO levels using SNO-resin assisted capture revealed an increase in total SNO levels with GSNO-R inhibition in males, whereas total SNO levels remained unchanged in females. However, we found that although GSNO-R inhibition significantly increased SNO at the cardioprotective Cys39 residue of nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 3 in males, SNO-NADH dehydrogenase subunit 3 levels were surprisingly reduced in N6022-treated female hearts. Because GSNO-R also acts as a formaldehyde dehydrogenase, we examined postischemic formaldehyde levels and found that they were nearly 2-fold higher in N6022-treated female hearts compared with nontreated hearts. Importantly, the mitochondrial aldehyde dehydrogenase 2 activator, Alda-1, rescued the phenotype in GSNO-R-/- female hearts, significantly reducing infarct size. CONCLUSIONS These striking findings point to GSNO-R as a critical sex-dependent mediator of myocardial protein SNO and formaldehyde levels and further suggest that different therapeutic strategies may be required to combat ischemic heart disease in males and females.
Collapse
Affiliation(s)
- Kevin M Casin
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Jonathan Fallica
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Nathan Mackowski
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Ryne J Veenema
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Ashley Chan
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Amanda St Paul
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Guangshuo Zhu
- Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.Z., D.B.)
| | - Djahida Bedja
- Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.Z., D.B.)
| | - Shyam Biswal
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| | - Mark J Kohr
- From the Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.C., J.F., N.M., R.J.V., A.C., A.S.P., S.B., M.J.K.)
| |
Collapse
|
20
|
Montagna C, Rizza S, Cirotti C, Maiani E, Muscaritoli M, Musarò A, Carrí MT, Ferraro E, Cecconi F, Filomeni G. nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Cell Death Dis 2019; 10:354. [PMID: 31043586 PMCID: PMC6494884 DOI: 10.1038/s41419-019-1584-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a crucial role in the maintenance of correct skeletal muscle function due, at least in part, to S-nitrosylation of specific protein targets. Similarly, we recently provided evidence for a muscular phenotype in mice lacking the denitrosylase S-nitrosoglutathione reductase (GSNOR). Here, we demonstrate that nNOS and GSNOR are concomitantly expressed during differentiation of C2C12. They colocalizes at the sarcolemma and co-immunoprecipitate in cells and in myofibers. We also provide evidence that GSNOR expression decreases in mouse models of muscular dystrophies and of muscle atrophy and wasting, i.e., aging and amyotrophic lateral sclerosis, suggesting a more general regulatory role of GSNOR in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Costanza Montagna
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, 2400, Copenhagen, Denmark
| | - Salvatore Rizza
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Claudia Cirotti
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine (formerly Department of Clinical Medicine), Sapienza University of Rome, 00185, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Teresa Carrí
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Elisabetta Ferraro
- Department of Orthopaedics and Traumatology, Hospital "Maggiore della Carità", University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Filomeni
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark. .,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.
| |
Collapse
|
21
|
Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 2019; 30:1331-1351. [PMID: 29130312 PMCID: PMC6391618 DOI: 10.1089/ars.2017.7403] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and protein-protein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. CRITICAL ISSUES The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. FUTURE DIRECTIONS The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria.
Collapse
Affiliation(s)
- Colin T Stomberski
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Douglas T Hess
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan S Stamler
- 2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio.,4 Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
22
|
Okuda T, Haseba T, Katsuyama M, Maruyama M, Akimoto T, Igarashi T, Ohno Y. Metabolic pharmacokinetics of early chronic alcohol consumption mediated by liver alcohol dehydrogenases 1 and 3 in mice. J Gastroenterol Hepatol 2018; 33:1912-1919. [PMID: 29663519 DOI: 10.1111/jgh.14260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Alcohol dehydrogenases (ADHs) 1 and 3 are responsible for systemic alcohol metabolism. The current study investigated the contribution of liver ADH1 and ADH3 to the metabolic pharmacokinetics of chronic alcohol consumption (CAC). METHODS The 9-week-old male mice of different ADH genotypes (wild-type [WT], Adh1-/- , and Adh3-/- ) were administered with 10% ethanol solution for 1 month, followed by acute ethanol administration (4.0 g/kg). The alcohol elimination rate (AER), area under the blood alcohol concentration curve (AUC), and the maximum blood alcohol concentration (Cmax ) were calculated. The liver content, activity, and mRNA levels of ADH were evaluated. RESULTS Chronic alcohol consumption increased the AER and reduced the AUC in all ADH genotypes. The increased ADH1 content was correlated with AER in WT mice but not in the Adh3-/- mice. Similarly, the increased ADH3 content was also correlated with AER in both WT and Adh1-/- mice. The Cmax was significantly higher in Adh3-/- control mice than in WT control mice. It decreased in the Adh1-/- mice by CAC along with an increase in the ADH3 content. CONCLUSIONS Alcohol dehydrogenases 1 and 3 would accomplish the pharmacokinetic adaptation to CAC in the early period. ADH1 contributes to the metabolic pharmacokinetics of CAC with a decrease in AUC in conjunction with an increase of AER by increasing the enzyme content in the presence of ADH3. ADH3 also contributes to a decrease in AUC in conjunction with not only an increase in AER but also a decrease in Cmax by increasing the enzyme content.
Collapse
Affiliation(s)
- Takahisa Okuda
- Department of Legal Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Haseba
- Department of Legal Medicine, Nippon Medical School, Tokyo, Japan.,Department of Legal Medicine, Kanagawa Dental University, Kanagawa, Japan
| | - Midori Katsuyama
- Department of Legal Medicine, Nippon Medical School, Tokyo, Japan
| | - Motoyo Maruyama
- Division of Laboratory Animal Science, Nippon Medical School, Tokyo, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, Tokyo, Japan
| | - Tsutomu Igarashi
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Youkichi Ohno
- Department of Legal Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
23
|
Wolhuter K, Eaton P. How widespread is stable protein S-nitrosylation as an end-effector of protein regulation? Free Radic Biol Med 2017; 109:156-166. [PMID: 28189849 DOI: 10.1016/j.freeradbiomed.2017.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
Over the last 25 years protein S-nitrosylation, also known more correctly as S-nitrosation, has been progressively implicated in virtually every nitric oxide-regulated process within the cardiovascular system. The current, widely-held paradigm is that S-nitrosylation plays an equivalent role as phosphorylation, providing a stable and controllable post-translational modification that directly regulates end-effector target proteins to elicit biological responses. However, this concept largely ignores the intrinsic instability of the nitrosothiol bond, which rapidly reacts with typically abundant thiol-containing molecules to generate more stable disulfide bonds. These protein disulfides, formed via a nitrosothiol intermediate redox state, are rationally anticipated to be the predominant end-effector modification that mediates functional alterations when cells encounter nitrosative stimuli. In this review we present evidence and explain our reasoning for arriving at this conclusion that may be controversial to some researchers in the field.
Collapse
Affiliation(s)
- Kathryn Wolhuter
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
24
|
Dal-Secco D, DalBó S, Lautherbach NES, Gava FN, Celes MRN, Benedet PO, Souza AH, Akinaga J, Lima V, Silva KP, Kiguti LRA, Rossi MA, Kettelhut IC, Pupo AS, Cunha FQ, Assreuy J. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase. Am J Physiol Heart Circ Physiol 2017; 313:H149-H163. [DOI: 10.1152/ajpheart.00052.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore, G protein-coupled receptor kinase isoform 2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Daniela Dal-Secco
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Silvia DalBó
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Natalia E. S. Lautherbach
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fábio N. Gava
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patricia O. Benedet
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adriana H. Souza
- Department of Pharmacology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Akinaga
- Department of Pharmacology, Bioscience Institute, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; and
| | - Vanessa Lima
- Department of Pharmacology, Bioscience Institute, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; and
| | - Katiussia P. Silva
- Department of Pharmacology, Bioscience Institute, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; and
| | - Luiz Ricardo A. Kiguti
- Department of Pharmacology, Bioscience Institute, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; and
| | - Marcos A. Rossi
- Department of Pathology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isis C. Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - André S. Pupo
- Department of Pharmacology, Bioscience Institute, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; and
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Shao Q, Casin KM, Mackowski N, Murphy E, Steenbergen C, Kohr MJ. Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts. PLoS One 2017; 12:e0177315. [PMID: 28493997 PMCID: PMC5426678 DOI: 10.1371/journal.pone.0177315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) plays an important role in cardioprotection, and recent work from our group and others has implicated protein S-nitrosylation (SNO) as a critical component of NO-mediated protection in different models, including ischemic pre- and post-conditioning and sex-dependent cardioprotection. However, studies have yet to examine whether protein SNO levels are similarly increased with pharmacologic preconditioning in male and female hearts, and whether an increase in protein SNO levels, which is protective in male hearts, is sufficient to increase baseline protection in female hearts. Therefore, we pharmacologically preconditioned male and female hearts with the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA). CHA administration prior to ischemia significantly improved functional recovery in both male and female hearts compared to baseline in a Langendorff-perfused heart model of ischemia-reperfusion injury (% of preischemic function ± SE: male baseline: 37.5±3.4% vs. male CHA: 55.3±3.2%; female baseline: 61.4±5.7% vs. female CHA: 76.0±6.2%). In a separate set of hearts, we found that CHA increased p-Akt and p-eNOS levels. We also used SNO-resin-assisted capture with LC-MS/MS to identify SNO proteins in male and female hearts, and determined that CHA perfusion induced a modest increase in protein SNO levels in both male (11.4%) and female (12.3%) hearts compared to baseline. These findings support a potential role for protein SNO in a model of pharmacologic preconditioning, and provide evidence to suggest that a modest increase in protein SNO levels is sufficient to protect both male and female hearts from ischemic injury. In addition, a number of the SNO proteins identified with CHA treatment were also observed with other forms of cardioprotective stimuli in prior studies, further supporting a role for protein SNO in cardioprotection.
Collapse
Affiliation(s)
- Qin Shao
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kevin M. Casin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nathan Mackowski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Charles Steenbergen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mark J. Kohr
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol Neurobiol 2016; 54:4271-4291. [PMID: 27339878 DOI: 10.1007/s12035-016-9975-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Nitric oxide plays an indispensable role in modulating cellular signaling and redox pathways. This role is mainly effected by the readily reversible nitrosylation of selective protein cysteine thiols. The reversibility and sophistication of this signaling system is enabled and regulated by a number of enzymes which form part of the thioredoxin, glutathione, and pyridoxine antioxidant systems. Increases in nitric oxide levels initially lead to a defensive increase in the number of nitrosylated proteins in an effort to preserve their function. However, in an environment of chronic oxidative and nitrosative stress (O&NS), nitrosylation of crucial cysteine groups within key enzymes of the thioredoxin, glutathione, and pyridoxine systems leads to their inactivation thereby disabling denitrosylation and transnitrosylation and subsequently a state described as "hypernitrosylation." This state leads to the development of pathology in multiple domains such as the inhibition of enzymes of the electron transport chain, decreased mitochondrial function, and altered conformation of proteins and amino acids leading to loss of immune tolerance and development of autoimmunity. Hypernitrosylation also leads to altered function or inactivation of proteins involved in the regulation of apoptosis, autophagy, proteomic degradation, transcription factor activity, immune-inflammatory pathways, energy production, and neural function and survival. Hypernitrosylation, as a consequence of chronically elevated O&NS and activated immune-inflammatory pathways, can explain many characteristic abnormalities observed in neuroprogressive disease including major depression and chronic fatigue syndrome/myalgic encephalomyelitis. In those disorders, increased bacterial translocation may drive hypernitrosylation and autoimmune responses against nitrosylated proteins.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Level 1 North, Main Block, Parkville, 3052, Australia
| | - Hans Klein
- Department of Psychiatry, University of Groningen, UMCG, Groningen, The Netherlands
| | - Ken Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Łódź, Poland
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.
- Revitalis, Waalre, The Netherlands.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
27
|
Neri M, Riezzo I, Pomara C, Schiavone S, Turillazzi E. Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations. Mediators Inflamm 2016; 2016:3423450. [PMID: 27274621 PMCID: PMC4870364 DOI: 10.1155/2016/3423450] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/11/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients. AIM In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis. CONCLUSIONS Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.
Collapse
Affiliation(s)
- M. Neri
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - I. Riezzo
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - C. Pomara
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - S. Schiavone
- Institute of Pharmacology, Department of Clinical and Experimental Medicine, University of Foggia, Via L. Pinto 1, 71100 Foggia, Italy
| | - E. Turillazzi
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| |
Collapse
|
28
|
Figueiredo-Freitas C, Dulce RA, Foster MW, Liang J, Yamashita AMS, Lima-Rosa FL, Thompson JW, Moseley MA, Hare JM, Nogueira L, Sorenson MM, Pinto JR. S-Nitrosylation of Sarcomeric Proteins Depresses Myofilament Ca2+)Sensitivity in Intact Cardiomyocytes. Antioxid Redox Signal 2015; 23:1017-34. [PMID: 26421519 PMCID: PMC4649751 DOI: 10.1089/ars.2015.6275] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The heart responds to physiological and pathophysiological stress factors by increasing its production of nitric oxide (NO), which reacts with intracellular glutathione to form S-nitrosoglutathione (GSNO), a protein S-nitrosylating agent. Although S-nitrosylation protects some cardiac proteins against oxidative stress, direct effects on myofilament performance are unknown. We hypothesize that S-nitrosylation of sarcomeric proteins will modulate the performance of cardiac myofilaments. RESULTS Incubation of intact mouse cardiomyocytes with S-nitrosocysteine (CysNO, a cell-permeable low-molecular-weight nitrosothiol) significantly decreased myofilament Ca(2+) sensitivity. In demembranated (skinned) fibers, S-nitrosylation with 1 μM GSNO also decreased Ca(2+) sensitivity of contraction and 10 μM reduced maximal isometric force, while inhibition of relaxation and myofibrillar ATPase required higher concentrations (≥ 100 μM). Reducing S-nitrosylation with ascorbate partially reversed the effects on Ca(2+) sensitivity and ATPase activity. In live cardiomyocytes treated with CysNO, resin-assisted capture of S-nitrosylated protein thiols was combined with label-free liquid chromatography-tandem mass spectrometry to quantify S-nitrosylation and determine the susceptible cysteine sites on myosin, actin, myosin-binding protein C, troponin C and I, tropomyosin, and titin. The ability of sarcomere proteins to form S-NO from 10-500 μM CysNO in intact cardiomyocytes was further determined by immunoblot, with actin, myosin, myosin-binding protein C, and troponin C being the more susceptible sarcomeric proteins. INNOVATION AND CONCLUSIONS Thus, specific physiological effects are associated with S-nitrosylation of a limited number of cysteine residues in sarcomeric proteins, which also offer potential targets for interventions in pathophysiological situations.
Collapse
Affiliation(s)
- Cícero Figueiredo-Freitas
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida.,2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil .,3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Raul A Dulce
- 4 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Matthew W Foster
- 5 Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center , Durham, North Carolina.,6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - Jingsheng Liang
- 3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Aline M S Yamashita
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Frederico L Lima-Rosa
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - J Will Thompson
- 6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - M Arthur Moseley
- 6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - Joshua M Hare
- 4 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Leonardo Nogueira
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Martha M Sorenson
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - José Renato Pinto
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida.,3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| |
Collapse
|
29
|
Irie T, Sips PY, Kai S, Kida K, Ikeda K, Hirai S, Moazzami K, Jiramongkolchai P, Bloch DB, Doulias PT, Armoundas AA, Kaneki M, Ischiropoulos H, Kranias E, Bloch KD, Stamler JS, Ichinose F. S-Nitrosylation of Calcium-Handling Proteins in Cardiac Adrenergic Signaling and Hypertrophy. Circ Res 2015; 117:793-803. [PMID: 26259881 DOI: 10.1161/circresaha.115.307157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023]
Abstract
RATIONALE The regulation of calcium (Ca(2+)) homeostasis by β-adrenergic receptor (βAR) activation provides the essential underpinnings of sympathetic regulation of myocardial function, as well as a basis for understanding molecular events that result in hypertrophic signaling and heart failure. Sympathetic stimulation of the βAR not only induces protein phosphorylation but also activates nitric oxide-dependent signaling, which modulates cardiac contractility. Nonetheless, the role of nitric oxide in βAR-dependent regulation of Ca(2+) handling has not yet been explicated fully. OBJECTIVE To elucidate the role of protein S-nitrosylation, a major transducer of nitric oxide bioactivity, on βAR-dependent alterations in cardiomyocyte Ca(2+) handling and hypertrophy. METHODS AND RESULTS Using transgenic mice to titrate the levels of protein S-nitrosylation, we uncovered major roles for protein S-nitrosylation, in general, and for phospholamban and cardiac troponin C S-nitrosylation, in particular, in βAR-dependent regulation of Ca(2+) homeostasis. Notably, S-nitrosylation of phospholamban consequent upon βAR stimulation is necessary for the inhibitory pentamerization of phospholamban, which activates sarcoplasmic reticulum Ca(2+)-ATPase and increases cytosolic Ca(2+) transients. Coincident S-nitrosylation of cardiac troponin C decreases myocardial sensitivity to Ca(2+). During chronic adrenergic stimulation, global reductions in cellular S-nitrosylation mitigate hypertrophic signaling resulting from Ca(2+) overload. CONCLUSIONS S-Nitrosylation operates in concert with phosphorylation to regulate many cardiac Ca(2+)-handling proteins, including phospholamban and cardiac troponin C, thereby playing an essential and previously unrecognized role in cardiac Ca(2+) homeostasis. Manipulation of the S-nitrosylation level may prove therapeutic in heart failure.
Collapse
Affiliation(s)
- Tomoya Irie
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Patrick Y Sips
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Shinichi Kai
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kotaro Kida
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kohei Ikeda
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Shuichi Hirai
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kasra Moazzami
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Pawina Jiramongkolchai
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Donald B Bloch
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Paschalis-Thomas Doulias
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Antonis A Armoundas
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Masao Kaneki
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Harry Ischiropoulos
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Evangelia Kranias
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kenneth D Bloch
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Jonathan S Stamler
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Fumito Ichinose
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.).
| |
Collapse
|
30
|
Penna C, Angotti C, Pagliaro P. Protein S-nitrosylation in preconditioning and postconditioning. Exp Biol Med (Maywood) 2015; 239:647-62. [PMID: 24668550 DOI: 10.1177/1535370214522935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a complex pathophysiology that includes multiple mechanisms. Among these is the oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide may act through several mechanisms, such as guanylyl cyclase activation and via S-nitrosylation of proteins. The latter is a covalent modification of a protein cysteine thiol by a nitric oxide-group that generates an S-nitrosothiol. Here, we report data showing that nitric oxide and S-nitrosylation of proteins play a pivotal role not only in preconditioning but also in postconditioning cardioprotection.
Collapse
|
31
|
YANG YUANZHENG, FAN TINGTING, GAO FENG, FU JUAN, LIU QIONG. Exogenous cytochrome c inhibits the expression of transforming growth factor-β1 in a mouse model of sepsis-induced myocardial dysfunction via the SMAD1/5/8 signaling pathway. Mol Med Rep 2015; 12:2189-96. [DOI: 10.3892/mmr.2015.3629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 11/25/2014] [Indexed: 11/06/2022] Open
|
32
|
Goto M, Kitamura H, Alam MM, Ota N, Haseba T, Akimoto T, Shimizu A, Takano-Yamamoto T, Yamamoto M, Motohashi H. Alcohol dehydrogenase 3 contributes to the protection of liver from nonalcoholic steatohepatitis. Genes Cells 2015; 20:464-80. [DOI: 10.1111/gtc.12237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/20/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Maki Goto
- Department of Gene Expression Regulation; Institute of Development, Aging and Cancer; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
- Department of Orthodontics and Dentofacial Orthopedics; Graduate School of Dentistry; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Hiroshi Kitamura
- Department of Gene Expression Regulation; Institute of Development, Aging and Cancer; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Md. Morshedul Alam
- Department of Gene Expression Regulation; Institute of Development, Aging and Cancer; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Nao Ota
- Department of Gene Expression Regulation; Institute of Development, Aging and Cancer; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Takeshi Haseba
- Department of Legal Medicine; Nippon Medical School; 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-0022 Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science; Nippon Medical School; 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-0022 Japan
| | - Akio Shimizu
- Department of Environmental Engineering for Symbiosis; Faculty of Engineering; Soka University; 1-236 Tangi-cho Hachioji Tokyo 192-8577 Japan
| | - Teruko Takano-Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics; Graduate School of Dentistry; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry; Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation; Institute of Development, Aging and Cancer; Tohoku University; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| |
Collapse
|
33
|
Kinebuchi M, Matsuura A. Calcium-overloaded sympathetic preganglionic neurons in a case of severe sepsis with anorexia nervosa. Acute Med Surg 2014; 2:169-175. [PMID: 29123716 PMCID: PMC5667258 DOI: 10.1002/ams2.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/19/2014] [Indexed: 12/29/2022] Open
Abstract
Aim We aimed to show the status of intracellular elements in sympathetic preganglionic neurons in an autopsy case of a 55‐year‐old woman with severe sepsis and cardiac dysfunction with anorexia nervosa. Methods Our methods include a case report and pathological examinations of autopsied tissues using synchrotron‐generated microbeam X‐ray fluorescence analysis. Results A case report of severe sepsis and myocardial dysfunction. The patient had sudden short cardiac arrest without arrhythmia and sequelae, and echocardiogram showed negative inotropic change. The X‐ray fluorescence analysis of autopsied tissues indicated an unusually high concentration of cytosolic calcium in sympathetic preganglionic neurons. However, there were no significant pathological findings of damage in the heart or the cardiovascular autonomic nuclei in the central nervous system. Conclusion The data indicate that dysfunction of the sympathetic preganglionic neurons exists in a patient of severe sepsis and cardiac dysfunction with anorexia nervosa.
Collapse
Affiliation(s)
- Miyuki Kinebuchi
- Department of Molecular Pathology Graduate School of Medicine Fujita Health University Toyoake Aichi Japan
| | - Akihiro Matsuura
- Department of Molecular Pathology Graduate School of Medicine Fujita Health University Toyoake Aichi Japan
| |
Collapse
|
34
|
Murphy E, Kohr M, Menazza S, Nguyen T, Evangelista A, Sun J, Steenbergen C. Signaling by S-nitrosylation in the heart. J Mol Cell Cardiol 2014; 73:18-25. [PMID: 24440455 PMCID: PMC4214076 DOI: 10.1016/j.yjmcc.2014.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Nitric oxide is a gaseous signaling molecule that is well-known for the Nobel prize-winning research that defined nitric oxide as a physiological regulator of blood pressure in the cardiovascular system. Nitric oxide can signal via the classical pathway involving activation of guanylyl cyclase or by a post-translational modification, referred to as S-nitrosylation (SNO) that can occur on cysteine residues of proteins. As proteins with cysteine residues are common, this allows for amplification of the nitric oxide signaling. This review will focus on the possible mechanisms through which SNO can alter protein function in cardiac cells, and the role of SNO occupancy in these mechanisms. The specific mechanisms that regulate protein SNO, including redox-dependent processes, will also be discussed. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiac Physiology Laboratory, Systems Biology Center, NHLBI, NIH, USA.
| | - Mark Kohr
- Cardiac Physiology Laboratory, Systems Biology Center, NHLBI, NIH, USA; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sara Menazza
- Cardiac Physiology Laboratory, Systems Biology Center, NHLBI, NIH, USA
| | - Tiffany Nguyen
- Cardiac Physiology Laboratory, Systems Biology Center, NHLBI, NIH, USA
| | | | - Junhui Sun
- Cardiac Physiology Laboratory, Systems Biology Center, NHLBI, NIH, USA
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
35
|
Li Y, Ge S, Peng Y, Chen X. Inflammation and cardiac dysfunction during sepsis, muscular dystrophy, and myocarditis. BURNS & TRAUMA 2013; 1:109-121. [PMID: 27574633 PMCID: PMC4978107 DOI: 10.4103/2321-3868.123072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inflammation plays an important role in cardiac dysfunction under different situations. Acute systemic inflammation occurring in patients with severe burns, trauma, and inflammatory diseases causes cardiac dysfunction, which is one of the leading causes of mortality in these patients. Acute sepsis decreases cardiac contractility and impairs myocardial compliance. Chronic inflammation such as that occurring in Duchenne muscular dystropshy and myocarditis may cause adverse cardiac remodeling including myocyte hypertrophy and death, fibrosis, and altered myocyte function. However, the underlying cellular and molecular mechanisms for inflammatory cardiomyopathy are still controversial probably due to multiple factors involved. Potential mechanisms include the change in circulating blood volume; a direct inhibition of myocyte contractility by cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β); abnormal nitric oxide and reactive oxygen species (ROS) signaling; mitochondrial dysfunction; abnormal excitation-contraction coupling; and reduced calcium sensitivity at the myofibrillar level and blunted β-adrenergic signaling. This review will summarize recent advances in diagnostic technology, mechanisms, and potential therapeutic strategies for inflammation-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ying Li
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, Chongqing, 400038 China
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19040 USA
| | - Shuping Ge
- Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, Chongqing, 400038 China
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19040 USA
| |
Collapse
|
36
|
Tsai KL, Liang HJ, Yang ZD, Lue SI, Yang SL, Hsu C. Early inactivation of PKCε associates with late mitochondrial translocation of Bad and apoptosis in ventricle of septic rat. J Surg Res 2013; 186:278-86. [PMID: 24011917 DOI: 10.1016/j.jss.2013.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/30/2013] [Accepted: 08/08/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sepsis is usually accompanied by cardiomyocyte apoptosis and myocardial depression. Protein kinase C (PKC) has been reported to be important in regulating cardiac function and apoptosis; however, which PKC isoform is involved in sepsis-induced myocardial apoptosis remains unknown. MATERIALS AND METHODS A rat model of sepsis by cecal ligation and puncture was used. Early and late sepsis refers to those rats sacrificed at 9 and 18 h after cecal ligation and puncture, respectively. Ventricular septum (Sep), left ventricle (LV), and right ventricle were fractionated into membrane, mitochondrial, and cytosolic fractions, individually. The protein levels of PKC isoforms (-α, -β, -δ, -ε, -ζ, -ι, -λ, and -μ) and mitochondrial translocation of Bad were quantified by Western blot analysis. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP in situ nick-end labeling. The morphology of mitochondria was examined by electron microscopy. RESULTS The membrane/cytosol ratio of PKCε was predominantly higher in the Sep, LV, and right ventricle under physiological conditions. At early sepsis, the membrane/cytosol ratio of PKCε was significantly decreased in Sep and LV. At late sepsis, cardiomyocyte apoptosis associated with severe mitochondrial swelling and crista derangement were observed in Sep and LV at late sepsis. Additionally, mitochondria/cytosol ratio of Bad was significantly increased in Sep and LV. CONCLUSIONS The early inactivation of PKCε in the ventricle may affect the mitochondrial translocation of Bad and subsequent mitochondrial disruption and apoptosis at late sepsis. This finding opens up the prospect for a potential therapeutic strategy targeting PKCε activation to prevent myocardial depression in septic patients.
Collapse
Affiliation(s)
- Ke-Li Tsai
- Department of Physiology, School of Medicine, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|