1
|
Christensen KB, Ünsal Ş, Ebbesen MF, Hemstra L, Schlosser A, Rosenstand K, Hansen PBL, Jensen BL, Bloksgaard M, Simonsen U, Sorensen GL. MFAP4-Deficiency Aggravates Age-Induced Changes in Resistance Artery Structure, While Ameliorating Hypertension. Hypertension 2024; 81:1308-1319. [PMID: 38563153 DOI: 10.1161/hypertensionaha.123.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Abnormalities of resistance arteries may play essential roles in the pathophysiology of aging and hypertension. Deficiency of the vascular extracellular matrix protein MFAP4 (microfibrillar-associated protein 4) has previously been observed as protective against aberrant arterial remodeling. We hypothesized that MFAP4-deficiency would reduce age- and hypertension-dependent arterial changes in extracellular matrix composition and stiffening. METHODS Mesenteric arteries were isolated from old (20-23 months) littermate Mfap4+/+ and Mfap4-/- mice, and 2-photon excitation microscopy imaging was used to quantify elastin and collagen volumes and dimensions in the vascular wall. Ten-week-old littermate Mfap4+/+ and Mfap4-/- mice were subjected to 20 days of continuous Ang II (angiotensin II) infusion and hypertension was monitored using invasive blood pressure measurements. Arterial stiffness, responses to vascular constrictors, and myogenic tone were monitored using wire- or pressure-myography. Collagen contents were assessed by Western blotting. RESULTS MFAP4-deficiency significantly increased collagen volume and elastin fragmentation in aged mesenteric arteries without affecting arterial stiffness. MFAP4-deficient mice exhibited reduced diastolic pressure in Ang II-induced hypertension. There was no significant effect of MFAP4-deficiency on mesenteric artery structural remodeling or myogenic tone, although collagen content in mesenteric arteries was tendentially increased in hypertensive Mfap4+/+ mice relative to Mfap4-/- mice. Increased efficacy of vasoconstrictors (phenylephrine, thromboxane) and reduced stiffness were observed in Ang II-treated Mfap4-/- mouse mesenteric arteries in ex vivo myography recordings. CONCLUSIONS MFAP4-deficiency reduces the elastin/collagen ratio in the aging resistance artery without affecting arterial stiffness. In contrast, MFAP4-deficiency reduces the stiffness of resistance arteries and ameliorates Ang II-induced hypertension.
Collapse
Affiliation(s)
- Kimmie B Christensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Şeyda Ünsal
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Morten F Ebbesen
- Department of Biochemistry and Molecular Biology (M.F.E.), University of Southern Denmark, Odense
| | - Line Hemstra
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Anders Schlosser
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Kristoffer Rosenstand
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Pernille B L Hansen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Boye L Jensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Maria Bloksgaard
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Ulf Simonsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark (U.S.)
| | - Grith L Sorensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| |
Collapse
|
2
|
Wu J, Le TH. Autoregulatory mission impossible: when afferent arterioles lose contractility. Kidney Int 2023; 104:649-651. [PMID: 37739614 PMCID: PMC10860642 DOI: 10.1016/j.kint.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 09/24/2023]
Abstract
The myogenic response of afferent arterioles is a key autoregulatory mechanism that protects the glomeruli from barotrauma. Afferent arteriolar smooth muscle cells contract to increased intraluminal pressure through mechanosensitive cation channels and interactions between integrin and extracellular matrix that trigger calcium-dependent actomyosin contraction. The study by Feng et al. provides evidence supporting the concept that increased matrix metalloproteinase 9 in kidney microvessels of Dahl salt-sensitive rats interferes with integrin-matrix binding and promotes phenotypic transformation of afferent arterioles, causing loss of myogenic constriction and hypertensive nephropathy.
Collapse
Affiliation(s)
- Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
3
|
Ojha KR, Kim H, Padgham S, Hopkins L, Zamen RJ, Chattopadhyay A, Han G, Milewicz DM, Massett MP, Trache A. Smooth Muscle-Alpha Actin R149C Pathogenic Variant Downregulates Integrin Recruitment at Cell-Matrix Adhesions and Decreases Cellular Contractility. Int J Mol Sci 2023; 24:9616. [PMID: 37298565 PMCID: PMC10253315 DOI: 10.3390/ijms24119616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Thoracic aortic aneurysm is found in patients with ACTA2 pathogenic variants. ACTA2 missense variants are associated with impaired aortic smooth muscle cell (SMC) contraction. This study tested the hypothesis that the Acta2R149C/+ variant alters actin isoform expression and decreases integrin recruitment, thus, reducing aortic contractility. Stress relaxation measurements in thoracic aortic rings showed two functional regimes with a reduction of stress relaxation in the aorta from Acta2R149C/+ mice at low tension, but not at high tension values. Contractile responses to phenylephrine and potassium chloride were 50% lower in Acta2R149C/+ mice than in wild-type (WT) mice. Additionally, SMC were immunofluorescently labeled for specific proteins and imaged by confocal or total internal reflection fluorescence microscopy. The quantification of protein fluorescence of Acta2R149C/+ SMC showed a downregulation in smooth muscle α-actin (SMα-actin) and a compensatory upregulation of smooth muscle γ-actin (SMγ-actin) compared to WT cells. These results suggest that downregulation of SMα-actin leads to reduced SMC contractility, while upregulation of SMγ-actin may lead to increased SMC stiffness. Decreased α5β1 and α2β1 integrin recruitment at cell-matrix adhesions further reduce the ability of mutant cells to participate in cell-matrix crosstalk. Collectively, the results suggest that mutant Acta2R149C/+ aortic SMC have reduced contractility and interaction with the matrix, which are potential long-term contributing factors to thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Krishna R. Ojha
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Samuel Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Hopkins
- Department of Epidemiology and Statistics, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Robert J. Zamen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Abhijnan Chattopadhyay
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Gang Han
- Department of Epidemiology and Statistics, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Michael P. Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Ojha KR, Shin SY, Padgham S, Leon Olmedo F, Guo B, Han G, Woodman C, Trache A. Age-Associated Dysregulation of Integrin Function in Vascular Smooth Muscle. Front Physiol 2022; 13:913673. [PMID: 35874532 PMCID: PMC9301045 DOI: 10.3389/fphys.2022.913673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Arterial aging results in a progressive reduction in elasticity of the vessel wall and an impaired ability of aged blood vessels to control local blood flow and pressure. Recently, a new concept has emerged that the stiffness and decreased contractility of vascular smooth muscle (VSM) cells are important contributors to age-induced arterial dysfunction. This study investigated the hypothesis that aging alters integrin function in a matrix stiffness-dependent manner, which contributes to decreased VSM contractility in aged soleus muscle feed arteries (SFA). The effect of RGD-binding integrins on contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses to norepinephrine, phenylephrine, and angiotensin II. Results indicated that constrictor responses in presence of RGD were impaired in old compared to young SFA. VSM cells isolated from young and old SFA were used for functional experiments using atomic force microscopy and high-resolution imaging. Aging was associated with a modulation of integrin β1 recruitment at cell-matrix adhesions that was matrix and substrate stiffness dependent. Our data showed that substrate stiffening drives altered integrin β1 expression in aging, while soft substrates abolish age-induced differences in overall integrin β1 expression. In addition, substrate stiffness and matrix composition contribute to the modulation of SMα-actin cytoskeleton architecture with soft substrates reducing age effects. Our results provide new insights into age-induced structural changes at VSM cell level that translates to decreased functionality of aged resistance soleus feed arteries.
Collapse
Affiliation(s)
- Krishna Raj Ojha
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Song Yi Shin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Samuel Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Frida Leon Olmedo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Bohong Guo
- Department of Epidemiology and Statistics, Texas A&M University Health Science Center, College Station, TX, United States
| | - Gang Han
- Department of Epidemiology and Statistics, Texas A&M University Health Science Center, College Station, TX, United States
| | - Christopher Woodman
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- *Correspondence: Andreea Trache,
| |
Collapse
|
6
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
Henrion D. Modulating the immune response to reduce hypertension-associated cardiovascular damage. J Clin Invest 2022; 132:158280. [PMID: 35289312 PMCID: PMC8920331 DOI: 10.1172/jci158280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality and disability worldwide. Hypertension, a major risk factor for these diseases, remains difficult to treat despite numerous drugs being available. In this issue of the JCI, Failer et al. show that the endogenous antiinflammatory agent developmental endothelial locus-1 (DEL-1) decreased blood pressure and cardiac and aortic hypertrophy in mouse models of hypertension through reduction in αvβ3 integrin–dependent metalloproteinase activity and immune cell recruitment, leading to reduced production of proinflammatory cytokines in cardiovascular tissues. This study offers an alternative in the treatment of hypertension-mediated organ damage through the immunomodulatory effect of DEL-1.
Collapse
|
8
|
Mironova GY, Mazumdar N, Hashad AM, El-Lakany MA, Welsh DG. Defining a Role of NADPH Oxidase in Myogenic Tone Development. Microcirculation 2022; 29:e12756. [PMID: 35289024 DOI: 10.1111/micc.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The myogenic response sets the foundation for blood flow control. Recent findings suggest a role for G-protein coupled receptors (GPCR) and signaling pathways tied to the generation of reactive oxygen species (ROS). In this regard, this study ascertained the impact of NADPH oxidase (Nox) on myogenic tone in rat cerebral resistance arteries. METHODS The study employed real-time qPCR (RT-qPCR), pressure myography, and immunohistochemistry. RESULTS Gq blockade abolished myogenic tone in rat cerebral arteries, linking GPCR to mechanosensation. Subsequent work revealed that general (TEMPOL) and mitochondrial specific (MitoTEMPO) ROS scavengers had little impact on myogenic tone, whereas apocynin, a broad spectrum Nox inhibitor, initiated transient dilation. RT-qPCR revealed Nox1 and Nox2 mRNA expression in smooth muscle cells. Pressure myography defined Nox1 rather than Nox2 is facilitating myogenic tone. We rationalized that Nox1-generated ROS was initiating this response by impairing the ability of the CaV 3.2 channel to elicit negative feedback via BKCa . This hypothesis was confirmed in functional experiments. The proximity ligation assay further revealed that Nox1 and CaV 3.2 colocalize within 40 nm of one another. CONCLUSIONS Our data highlight that vascular pressurization augments Nox1 activity and ensuing ROS production facilitates myogenic tone by limiting Ca2+ influx via CaV 3.2.
Collapse
Affiliation(s)
- Galina Yu Mironova
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Neil Mazumdar
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed M Hashad
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohammed A El-Lakany
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Donald G Welsh
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Abstract
Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.
Collapse
|
11
|
Drummond HA. What Evolutionary Evidence Implies About the Identity of the Mechanoelectrical Couplers in Vascular Smooth Muscle Cells. Physiology (Bethesda) 2021; 36:292-306. [PMID: 34431420 DOI: 10.1152/physiol.00008.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Lidington D, Wan H, Bolz SS. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front Neurol 2021; 12:688362. [PMID: 34367053 PMCID: PMC8342764 DOI: 10.3389/fneur.2021.688362] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “cerebral autoregulation.” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Jackson WF. Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On! Front Physiol 2021; 12:699517. [PMID: 34366889 PMCID: PMC8339585 DOI: 10.3389/fphys.2021.699517] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Resistance arteries and downstream arterioles in the peripheral microcirculation contribute substantially to peripheral vascular resistance, control of blood pressure, the distribution of blood flow to and within tissues, capillary pressure, and microvascular fluid exchange. A hall-mark feature of these vessels is myogenic tone. This pressure-induced, steady-state level of vascular smooth muscle activity maintains arteriolar and resistance artery internal diameter at 50–80% of their maximum passive diameter providing these vessels with the ability to dilate, reducing vascular resistance, and increasing blood flow, or constrict to produce the opposite effect. Despite the central importance of resistance artery and arteriolar myogenic tone in cardiovascular physiology and pathophysiology, our understanding of signaling pathways underlying this key microvascular property remains incomplete. This brief review will present our current understanding of the multiple mechanisms that appear to underlie myogenic tone, including the roles played by G-protein-coupled receptors, a variety of ion channels, and several kinases that have been linked to pressure-induced, steady-state activity of vascular smooth muscle cells (VSMCs) in the wall of resistance arteries and arterioles. Emphasis will be placed on the portions of the signaling pathways underlying myogenic tone for which there is lack of consensus in the literature and areas where our understanding is clearly incomplete.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
15
|
Li Z, Wang W, Tian X, Duan H, Xu C, Zhang D. Bivariate genome-wide association study (GWAS) of body mass index and blood pressure phenotypes in northern Chinese twins. PLoS One 2021; 16:e0246436. [PMID: 33539483 PMCID: PMC7861438 DOI: 10.1371/journal.pone.0246436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, new loci related to body mass index (BMI) or blood pressure (BP) have been identified respectively in genome-wide association studies (GWAS). However, limited studies focused on jointly associated genetic variance between systolic pressure (SBP), diastolic pressure (DBP) and BMI. Therefore, a bivariate twin study was performed to explore the genetic variants associated with BMI-SBP, BMI-DBP and SBP-DBP. A total of 380 twin pairs (137 dizygotic pairs and 243 monozygotic pairs) recruited from Qingdao Twin Registry system were used to access the genetic correlations (0.2108 for BMI-SBP, 0.2345 for BMI-DBP, and 0.6942 for SBP-DBP, respectively) by bivariate Cholesky decomposition model. Bivariate GWAS in 137 dizygotic pairs nominated 27 single identified 27 quantitative trait nucleotides (QTNs) for BMI and SBP, 27 QTNs for BMI and DBP, and 25 QTNs for SBP and DBP with the suggestive P-value threshold of 1×10−5. After imputation, we found eight SNPs, one for both BMI-SBP and SBP-DBP, and eight for SBP-DBP, exceed significant statistic level. Expression quantitative trait loci analysis identified rs4794029 as new significant eQTL in tissues related to BMI and SBP. Also, we found 6 new significant eQTLs (rs4400367, rs10113750, rs11776003, rs3739327, rs55978930, and rs4794029) in tissues were related to SBP and DBP. Gene-based analysis identified nominally associated genes (P < 0.05) with BMI-SBP, BMI-DBP, and SBP-DBP, respectively, such as PHOSPHO1, GNGT2, KEAP1, and S1PR5. In the pathway analysis, we found some pathways associated with BMI-SBP, BMI-DBP and SBP-DBP, such as prion diseases, IL5 pathway, cyclin E associated events during G1/S transition, TGF beta signaling pathway, G βγ signaling through PI3Kγ, prolactin receptor signaling etc. These findings may enrich the results of genetic variants related to BMI and BP traits, and provide some evidences to future study the pathogenesis of hypertension and obesity in the northern Chinese population.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People’s Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People’s Republic of China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People’s Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People’s Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People’s Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People’s Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
16
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Hong KS, Kim K, Hill MA. Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction. J Exerc Rehabil 2020; 16:207-215. [PMID: 32724777 PMCID: PMC7365734 DOI: 10.12965/jer.2040432.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
As blood flow is proportional to the fourth power of the vascular radius small changes in the diameter of resistance arteries/arterioles following an increase in intraluminal pressure would be expected to substantially increase blood flow. However, arteriolar myocytes display an intrinsic ability to locally regulate blood flow according to metabolic demands by tuning the diameter of small arteries in response to local changes in he-modynamics. Critical to this, observations were made more than 100 years ago that mechanosensitive small arteries exhibit the "myogenic response" or pressure-induced vasoconstriction or vasodilation in re-sponse to increased or decreased intravascular pressure, respectively. Although cellular mechanisms underlying the myogenic response have now been studied extensively, the precise cellular mechanisms under-lying this intriguing phenomenon still remain uncertain. In particular, the biological machinery that senses changes in intravascular pressure in vascular smooth muscle cells have not been unquestionably identified and remain a significant issue in vascular biology to be fully elucidated. As such, this brief review focuses on putative mechanosensors that have been proposed to contribute to myogenic vasoreactivity. Specific attention is paid to the roles of integrins, G protein-coupled receptors, and cadherins.
Collapse
Affiliation(s)
- Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| | - Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-School of Medicine, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-School of Medicine, Columbia, MO, USA
| |
Collapse
|
18
|
Ion channels and the regulation of myogenic tone in peripheral arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:19-58. [DOI: 10.1016/bs.ctm.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Artamonov MV, Sonkusare SK, Good ME, Momotani K, Eto M, Isakson BE, Le TH, Cope EL, Derewenda ZS, Derewenda U, Somlyo AV. RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na +/H + exchanger. Sci Signal 2018; 11:11/554/eaar3924. [PMID: 30377223 DOI: 10.1126/scisignal.aar3924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Smooth muscle contraction is triggered when Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates the regulatory light chain of myosin (RLC20). However, blood vessels from Mlck-deficient mouse embryos retain the ability to contract, suggesting the existence of additional regulatory mechanisms. We showed that the p90 ribosomal S6 kinase 2 (RSK2) also phosphorylated RLC20 to promote smooth muscle contractility. Active, phosphorylated RSK2 was present in mouse resistance arteries under normal basal tone, and phosphorylation of RSK2 increased with myogenic vasoconstriction or agonist stimulation. Resistance arteries from Rsk2-deficient mice were dilated and showed reduced myogenic tone and RLC20 phosphorylation. RSK2 phosphorylated Ser19 in RLC in vitro. In addition, RSK2 phosphorylated an activating site in the Na+/H+ exchanger (NHE-1), resulting in cytosolic alkalinization and an increase in intracellular Ca2+ that promotes vasoconstriction. NHE-1 activity increased upon myogenic constriction, and the increase in intracellular pH was suppressed in Rsk2-deficient mice. In pressured arteries, RSK2-dependent activation of NHE-1 was associated with increased intracellular Ca2+ transients, which would be expected to increase MLCK activity, thereby contributing to basal tone and myogenic responses. Accordingly, Rsk2-deficient mice had lower blood pressure than normal littermates. Thus, RSK2 mediates a procontractile signaling pathway that contributes to the regulation of basal vascular tone, myogenic vasoconstriction, and blood pressure and may be a potential therapeutic target in smooth muscle contractility disorders.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Ko Momotani
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.,Faculty of Veterinary Medicine, Okayama University of Science, 1-13 Ikoinooka-oka, Imabari, Ehime 794-0085, Japan
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Thu H Le
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric L Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Björling K, Joseph PD, Egebjerg K, Salomonsson M, Hansen JL, Ludvigsen TP, Jensen LJ. Role of age, Rho-kinase 2 expression, and G protein-mediated signaling in the myogenic response in mouse small mesenteric arteries. Physiol Rep 2018; 6:e13863. [PMID: 30198176 PMCID: PMC6129776 DOI: 10.14814/phy2.13863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
The myogenic response (MR) and myogenic tone (MT) in resistance vessels is crucial for maintaining peripheral vascular resistance and blood flow autoregulation. Development of MT involves G protein-coupled receptors, and may be affected by aging. AIMS (1) to estimate the mesenteric blood flow in myogenically active small mesenteric arteries; (2) to investigate the signaling from Gαq/11 and/or Gα12 activation to MT development; (3) to investigate the role of Rho-kinase 2 and aging on MT in mesenteric resistance arteries. METHODS we used pressure myography, quantitative real-time PCR, and immunolocalization to study small (<200 μm) mesenteric arteries (SMA) from young, mature adult, and middle aged mice. RESULTS Poiseuille flow calculations indicated autoregulation of blood flow at 60-120 mm Hg arterial pressure. Gαq/11 and Gα12 were abundantly expressed at the mRNA and protein levels in SMA. The Gαq/11 inhibitor YM-254890 suppressed MT development, and the Phosholipase C inhibitors U73122 and ET-18-OCH3 robustly inhibited it. We found an age-dependent increase in ROCK2 mRNA expression, and in basal MT. The specific ROCK2 inhibitor KD025 robustly inhibited MT in SMAs in all mice with an age-dependent variation in KD025 sensitivity. The inhibitory effect of KD025 was not prevented by the L-type Ca2+ channel activator BayK 8644. KD025 reversibly inhibited MT and endothelin-1 vasoconstriction in small pial arteries from Göttingen minipigs. CONCLUSIONS MT development in SMAs occurs through a Gαq/11 /PLC/Ca2+ -dependent pathway, and is maintained via ROCK2-mediated Ca2+ sensitization. Increased MT at mature adulthood can be explained by increased ROCK2 expression/activity.
Collapse
Affiliation(s)
- Karl Björling
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Philomeena D. Joseph
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Kristian Egebjerg
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Max Salomonsson
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen NDenmark
- Department of Internal MedicineTrelleborg HospitalTrelleborgSweden
| | | | | | - Lars J. Jensen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| |
Collapse
|
21
|
Yip KP, Balasubramanian L, Kan C, Wang L, Liu R, Ribeiro-Silva L, Sham JSK. Intraluminal pressure triggers myogenic response via activation of calcium spark and calcium-activated chloride channel in rat renal afferent arteriole. Am J Physiol Renal Physiol 2018; 315:F1592-F1600. [PMID: 30089032 DOI: 10.1152/ajprenal.00239.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myogenic contraction of renal arterioles is an important regulatory mechanism for renal blood flow autoregulation. We have previously demonstrated that integrin-mediated mechanical force increases the occurrence of Ca2+ sparks in freshly isolated renal vascular smooth muscle cells (VSMCs). To further test whether the generation of Ca2+ sparks is a downstream signal of mechanotransduction in pressure-induced myogenic constriction, the relationship between Ca2+ sparks and transmural perfusion pressure was investigated in intact VSMCs of pressurized rat afferent arterioles. Spontaneous Ca2+ sparks were found in VSMCs when afferent arterioles were perfused at 80 mmHg. The spark frequency was significantly increased when perfusion pressure was increased to 120 mmHg. A similar increase of spark frequency was also observed in arterioles stimulated with β1-integrin-activating antibody. Moreover, spark frequency was significantly higher in arterioles of spontaneous hypertensive rats at 80 and 120 mmHg. Spontaneous membrane current recorded using whole cell perforated patch in renal VSMCs showed predominant activity of spontaneous transient inward currents instead of spontaneous transient outward currents when holding potential was set close to physiological resting membrane potential. Real-time PCR and immunohistochemistry confirmed the expression of Ca2+-activated Cl- channel (ClCa) TMEM16A in renal VSMCs. Inhibition of TMEM16A with T16Ainh-A01 impaired the pressure-induced myogenic contraction in perfused afferent arterioles. Our study, for the first time to our knowledge, detected Ca2+ sparks in VSMCs of intact afferent arterioles, and their frequencies were positively modulated by the perfusion pressure. Our results suggest that Ca2+ sparks may couple to ClCa channels and trigger pressure-induced myogenic constriction via membrane depolarization.
Collapse
Affiliation(s)
- Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida , Tampa, Florida
| | - Lavanya Balasubramanian
- Department of Molecular Pharmacology and Physiology, University of South Florida , Tampa, Florida
| | - Chen Kan
- Department of Industrial, Manufacturing, and System Engineering, University of Texas at Arlington , Arlington, Texas
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida , Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida , Tampa, Florida
| | - Luisa Ribeiro-Silva
- Department of Molecular Pharmacology and Physiology, University of South Florida , Tampa, Florida
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
22
|
Seawright JW, Sreenivasappa H, Gibbs HC, Padgham S, Shin SY, Chaponnier C, Yeh AT, Trzeciakowski JP, Woodman CR, Trache A. Vascular Smooth Muscle Contractile Function Declines With Age in Skeletal Muscle Feed Arteries. Front Physiol 2018; 9:856. [PMID: 30108507 PMCID: PMC6079263 DOI: 10.3389/fphys.2018.00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Aging induces a progressive decline in vasoconstrictor responses in central and peripheral arteries. This study investigated the hypothesis that vascular smooth muscle (VSM) contractile function declines with age in soleus muscle feed arteries (SFA). Contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses of denuded (endothelium removed) SFA to norepinephrine (NE), phenylephrine (PE), and angiotensin II (Ang II). In addition, we investigated the role of RhoA signaling in modulation of VSM contractile function. Structural and functional characteristics of VSM cells were evaluated by fluorescence imaging and atomic force microscopy (AFM). Results indicated that constrictor responses to PE and Ang II were significantly impaired in old SFA, whereas constrictor responses to NE were preserved. In the presence of a Rho-kinase inhibitor (Y27632), constrictor responses to NE, Ang II, and PE were significantly reduced in young and old SFA. In addition, the age-group difference in constrictor responses to Ang II was eliminated. ROCK1 and ROCK2 content was similar in young and old VSM cells, whereas pROCK1 and pROCK2 were significantly elevated in old VSM cells. Aging was associated with a reduction in smooth muscle α-actin stress fibers and recruitment of proteins to cell-matrix adhesions. Old VSM cells presented an increase in integrin adhesion to the matrix and smooth muscle γ-actin fibers that was associated with increased cell stiffness. In conclusion, our results indicate that VSM contractile function declined with age in SFA. The decrement in contractile function was mediated in part by RhoA/ROCK signaling. Upregulation of pROCK in old VSM cells was not able to rescue contractility in old SFA. Collectively, these results indicate that changes at the VSM cell level play a central role in the reduced contractile function of aged SFA.
Collapse
Affiliation(s)
- John W Seawright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Harini Sreenivasappa
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Samuel Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Song Y Shin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Christine Chaponnier
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Christopher R Woodman
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
23
|
Dhar S, Sun Z, Meininger GA, Hill MA. Nonenzymatic glycation interferes with fibronectin-integrin interactions in vascular smooth muscle cells. Microcirculation 2018; 24. [PMID: 28005306 DOI: 10.1111/micc.12347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/19/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We aimed to investigate whether advanced nonenzymatic glycation of the ECM protein, fibronectin, impacts its normal integrin-mediated interaction with arteriolar VSMC. METHODS AFM was performed on cultured VSMC from rat cremaster arterioles to study native and glycated fibronectin (FN and gFN) interactions with cellular integrins. AFM probes were functionalized with FN or gFN or with native or glycated albumin (gAlb) as controls. RESULTS VSMC showed increased adhesion probability to gFN (72.9±3.5%) compared with native FN (63.0±1.6%). VSMC similarly showed increased probability of adhesion (63.8±1.7%) to gAlb compared with native Alb (40.1±4.7%). Adhesion of native FN to VSMC was α5 and β1 integrin dependent whereas adhesion of gFN to VSMC was integrin independent. The RAGE-selective inhibitor, FPS-ZM1, blocked gFN (and gAlb) adhesion, suggesting that adhesion of glycated proteins was RAGE dependent. Interaction of FN with VSMC was not altered by soluble gFN while soluble native FN did not inhibit adhesion of gFN to VSMC. In contrast, gAlb inhibited adhesion of gFN to VSMC in a concentration-dependent manner. CONCLUSIONS Glycation of FN shifts the nature of cellular adhesion from integrin- to RAGE-dependent mechanisms.
Collapse
Affiliation(s)
- Srijita Dhar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Hill MA, Meininger GA. Small artery mechanobiology: Roles of cellular and non-cellular elements. Microcirculation 2018; 23:611-613. [PMID: 27681605 DOI: 10.1111/micc.12323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
Small arteries and their component cellular and non-cellular elements are continually subjected to, and interact with, mechanical forces. Such interactions are key in both short- and long-term adaptation of the structure and function of the microcirculation to its local environment and metabolic requirements. Following this brief introduction is a series of papers presented as a symposium (Small Artery Mechanobiology: Roles of Cellular and Non-Cellular Elements) at the World Congress for Microcirculation, Kyoto 2015.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
25
|
Lidington D, Kroetsch JT, Bolz SS. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage. J Cereb Blood Flow Metab 2018; 38:17-37. [PMID: 29135346 PMCID: PMC5757446 DOI: 10.1177/0271678x17742548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating cerebral event that kills or debilitates the majority of those afflicted. The blood that spills into the subarachnoid space stimulates profound cerebral artery vasoconstriction and consequently, cerebral ischemia. Thus, once the initial bleeding in SAH is appropriately managed, the clinical focus shifts to maintaining/improving cerebral perfusion. However, current therapeutic interventions largely fail to improve clinical outcome, because they do not effectively restore normal cerebral artery function. This review discusses emerging evidence that perturbed cerebrovascular "myogenic reactivity," a crucial microvascular process that potently dictates cerebral perfusion, is the critical element underlying cerebral ischemia in SAH. In fact, the myogenic mechanism could be the reason why many therapeutic interventions, including "Triple H" therapy, fail to deliver benefit to patients. Understanding the molecular basis for myogenic reactivity changes in SAH holds the key to develop more effective therapeutic interventions; indeed, promising recent advancements fuel optimism that vascular dysfunction in SAH can be corrected to improve outcome.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Jeffrey T Kroetsch
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Sun Z, Li M, Li Z, Hill MA, Meininger GA. N-Cadherin, a novel and rapidly remodelling site involved in vasoregulation of small cerebral arteries. J Physiol 2017; 595:1987-2000. [PMID: 28008617 DOI: 10.1113/jp272995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS N-cadherin formed punctate adherens junctions (AJ) along the borders between vascular smooth muscle cells (VSMCs) in the pressurized rat superior cerebellar artery. The formation of N-cadherin AJs in the vessel wall depends on the intraluminal pressure and was responsive to treatment with phenylephrine (PE) (10-5 m) and ACh (10-5 m). N-cadherin-coated beads were able to induce clustering of N-cadherin-enhanced green fluorescent protein (EGFP) on the plasma membrane of isolated VSMCs, whereas treatment with PE (10-5 m) or sodium nitroprusside (10-5 m) induced a significant increase or decrease in the N-cadherin-EGFP clustering, respectively. Application of pulling force (∼1 nN) to the N-cadherin-coated beads via an atomic force microscope induced a localized mechanical response from the VSMCs that opposed the pulling. ABSTRACT N-cadherin is the major cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs). We tested the hypothesis that N-cadherin is part of a novel mechanosensory mechanism in VSMCs and plays an active role in both the arteriolar myogenic response and during changes in vascular tone induced by vasomotor agonists. Intact and pressurized rat superior cerebellar arteries were labelled for confocal immunofluorescence imaging. N-cadherin formed punctate adherens junctions (AJ) along the borders between VSMCs. When the lumen pressure was raised from 50 to 90 mmHg, both the density and the average size of N-cadherin AJs increased significantly. Similarly, arteriolar constriction with phenylephrine (PE) (10-5 m) induced a significant increase of N-cadherin AJ density at 50 mmHg, whereas vasodilatation induced by ACh (10-5 m) was accompanied by a significant decrease in density and size of N-cadherin AJs. An atomic force microscope (AFM) was employed to further examine the mechano-responsive properties of N-cadherin adhesion sites in isolated VSMCs. AFM probes with an attached N-cadherin-coated microbead (5 μm) induced a progressive clustering of N-cadherin-enhanced green fluorescent protein (EGFP) on the VSMC surface. Application of pulling force (∼1 nN) to the N-cadherin-coated-beads with the AFM induced a localized mechanical response from the VSMCs that opposed the pulling. Treatment with PE (10-5 m) or sodium nitroprusside (10-5 m) induced a significant increase or decrease of the N-cadherin-EGFP clustering, respectively. These observations provide compelling evidence that N-cadherin AJs are sensitive to pressure and vasomotor agonists in VSMCs and support a functional role of N-cadherin AJs in vasomotor regulation.
Collapse
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Zhaohui Li
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
The Multifaceted Roles of PI3Kγ in Hypertension, Vascular Biology, and Inflammation. Int J Mol Sci 2016; 17:ijms17111858. [PMID: 27834808 PMCID: PMC5133858 DOI: 10.3390/ijms17111858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
PI3Kγ is a multifaceted protein, crucially involved in cardiovascular and immune systems. Several studies described the biological and physiological functions of this enzyme in the regulation of cardiovascular system, while others stressed its role in the modulation of immunity. Although PI3Kγ has been historically investigated for its role in leukocytes, the last decade of research also dedicated efforts to explore its functions in the cardiovascular system. In this review, we report an overview recapitulating how PI3Kγ signaling participates in the regulation of vascular functions involved in blood pressure regulation. Moreover, we also summarize the main functions of PI3Kγ in immune responses that could be potentially important in the interaction with the cardiovascular system. Considering that vascular and immune mechanisms are increasingly emerging as intertwining players in hypertension, PI3Kγ could be an intriguing pathway acting on both sides. The availability of specific inhibitors introduces a perspective of further translational research and clinical approaches that could be exploited in hypertension.
Collapse
|
28
|
Mallat Z, Tedgui A, Henrion D. Role of Microvascular Tone and Extracellular Matrix Contraction in the Regulation of Interstitial Fluid: Implications for Aortic Dissection. Arterioscler Thromb Vasc Biol 2016; 36:1742-7. [PMID: 27444198 DOI: 10.1161/atvbaha.116.307909] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/06/2016] [Indexed: 01/16/2023]
Abstract
The pathophysiology of aortic dissection is poorly understood, and its risk is resistant to medical treatment. Most studies have focused on a proposed pathogenic role of transforming growth factor-β in Marfan disease and related thoracic aortic aneurysms and aortic dissections. However, clinical testing of this concept using angiotensin II type 1 receptor antagonists to block transforming growth factor-β signaling fell short of promise. Genetic mutations that predispose to thoracic aortic aneurysms and aortic dissections affect components of the extracellular matrix and proteins involved in cellular force generation. Thus, a role for dysfunctional mechanosensing in abnormal aortic wall remodeling is emerging. However, how abnormal mechanosensing leads to aortic dissection remains a mystery. Here, we review current knowledge about the regulation of interstitial fluid dynamics and myogenic tone and propose that alteration in contractile force reduces vascular tone in the microcirculation (here, aortic vasa vasorum) and leads to elevations of blood flow, transmural pressure, and fluid flux into the surrounding aortic media. Furthermore, reduced contractile force in medial smooth muscle cells coupled with alteration of structural components of the extracellular matrix limits extracellular matrix contraction, further promoting the formation of intramural edema, a critical step in the initiation of aortic dissection. The concept is supported by several pathophysiological and clinical observations. A direct implication of this concept is that drugs that lower blood pressure and limit interstitial fluid accumulation while preserving or increasing microvascular tone would limit the risk of dissection. In contrast, drugs that substantially lower microvascular tone would be ineffective or may accelerate the disease and precipitate aortic dissection.
Collapse
MESH Headings
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Dilatation, Pathologic
- Extracellular Fluid/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Humans
- Mechanotransduction, Cellular
- Microcirculation
- Microvessels/metabolism
- Microvessels/pathology
- Microvessels/physiopathology
- Models, Biological
- Models, Cardiovascular
- Pressure
- Vasoconstriction
Collapse
Affiliation(s)
- Ziad Mallat
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Institut National de la Santé et de la Recherche Médicale (Inserm) U970, Paris, France (Z.M., A.T.); and Inserm U1083, Centre National de la Recherche Scientifque (CNRS) UMR6214, Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Angers, France (D.H.).
| | - Alain Tedgui
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Institut National de la Santé et de la Recherche Médicale (Inserm) U970, Paris, France (Z.M., A.T.); and Inserm U1083, Centre National de la Recherche Scientifque (CNRS) UMR6214, Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Angers, France (D.H.)
| | - Daniel Henrion
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Institut National de la Santé et de la Recherche Médicale (Inserm) U970, Paris, France (Z.M., A.T.); and Inserm U1083, Centre National de la Recherche Scientifque (CNRS) UMR6214, Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Angers, France (D.H.)
| |
Collapse
|
29
|
Gueret A, Harouki N, Favre J, Galmiche G, Nicol L, Henry JP, Besnier M, Thuillez C, Richard V, Kolkhof P, Mulder P, Jaisser F, Ouvrard-Pascaud A. Vascular Smooth Muscle Mineralocorticoid Receptor Contributes to Coronary and Left Ventricular Dysfunction After Myocardial Infarction. Hypertension 2016; 67:717-23. [DOI: 10.1161/hypertensionaha.115.06709] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alexandre Gueret
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Najah Harouki
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Julie Favre
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Guillaume Galmiche
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Lionel Nicol
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Jean-Paul Henry
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Marie Besnier
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Christian Thuillez
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Vincent Richard
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Peter Kolkhof
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Paul Mulder
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Frédéric Jaisser
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| | - Antoine Ouvrard-Pascaud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d’Imagerie Cardio-Thoracique de l’Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France
| |
Collapse
|
30
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
31
|
Sarelius IH, Titus PA, Maimon N, Okech W, Wilke-Mounts SJ, Brennan JR, Hocking DC. Extracellular matrix fibronectin initiates endothelium-dependent arteriolar dilatation via the heparin-binding, matricryptic RWRPK sequence of the first type III repeat of fibrillar fibronectin. J Physiol 2016; 594:687-97. [PMID: 26661689 DOI: 10.1113/jp271478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The local arteriolar dilatation produced by contraction of skeletal muscle is dependent upon multiple signalling mechanisms. In addition to the many metabolic signals that mediate this vasodilatation, we show here that the extracellular matrix protein fibronectin also contributes to the response. This vasodilatory signal requires the heparin-binding matricryptic RWRPK sequence in the first type III repeat of fibrillar fibronectin. The fibronectin-dependent component of the integrated muscle contraction-dependent arteriolar vasodilatation is coupled through an endothelial cell-dependent signalling pathway. Recent studies in contracting skeletal muscle have shown that functional vasodilatation in resistance arterioles has an endothelial cell (EC)-dependent component, and, separately have shown that the extracellular matrix protein fibronectin (FN) contributes to functional dilatation in these arterioles. Here we test the hypotheses that (i) the matricryptic heparin-binding region of the first type III repeat of fibrillar FN (FNIII1H) mediates vasodilatation, and (ii) this response is EC dependent. Engineered FN fragments with differing (defined) heparin- and integrin-binding capacities were applied directly to resistance arterioles in cremaster muscles of anaesthetized (pentobarbital sodium, 65 mg kg(-1)) mice. Both FNIII1H,8-10 and FNIII1H induced dilatations (12.2 ± 1.7 μm, n = 12 and 17.2 ± 2.4 μm, n = 14, respectively) whereas mutation of the active sequence (R(613) WRPK) of the heparin binding region significantly diminished the dilatation (3.2 ± 1.8 μm, n = 10). Contraction of skeletal muscle fibres via electrical field stimulation produced a vasodilatation (19.4 ± 1.2 μm, n = 12) that was significantly decreased (to 7.0 ± 2.7 μm, n = 7, P < 0.05) in the presence of FNIII1Peptide 6, which blocks extracellular matrix (ECM) FN and FNIII1H signalling. Furthermore, FNIII1H,8-10 and FNIII1H applied to EC-denuded arterioles failed to produce any dilatation indicating that endothelium was required for the response. Finally, FNIII1H significantly increased EC Ca(2+) (relative fluorescence 0.98 ± 0.02 in controls versus 1.12 ± 0.05, n = 17, P < 0.05). Thus, we conclude that ECM FN-dependent vasodilatation is mediated by the heparin-binding (RWRPK) sequence of FNIII1 in an EC-dependent manner. Importantly, blocking this signalling sequence decreased the dilatation to skeletal muscle contraction, indicating that there is a physiological role for this FN-dependent mechanism.
Collapse
Affiliation(s)
- Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Patricia A Titus
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Nir Maimon
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - William Okech
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Susan J Wilke-Mounts
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - James R Brennan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
32
|
Mufti RE, Zechariah A, Sancho M, Mazumdar N, Brett SE, Welsh DG. Implications of αvβ3 Integrin Signaling in the Regulation of Ca2+ Waves and Myogenic Tone in Cerebral Arteries. Arterioscler Thromb Vasc Biol 2015; 35:2571-8. [PMID: 26494230 DOI: 10.1161/atvbaha.115.305619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The myogenic response is central to blood flow regulation in the brain. Its induction is tied to elevated cytosolic [Ca(2+)], a response primarily driven by voltage-gated Ca(2+) channels and secondarily by Ca(2+) wave production. Although the signaling events leading to the former are well studied, those driving Ca(2+) waves remain uncertain. APPROACH AND RESULTS We postulated that αvβ3 integrin signaling is integral to the generation of pressure-induced Ca(2+) waves and cerebral arterial tone. This hypothesis was tested in rat cerebral arteries using the synergistic strengths of pressure myography, rapid Ca(2+) imaging, and Western blot analysis. GRGDSP, a peptide that preferentially blocks αvβ3 integrin, attenuated myogenic tone, indicating the modest role for sarcoplasmic reticulum Ca(2+) release in myogenic tone generation. The RGD peptide was subsequently shown to impair Ca(2+) wave generation and myosin light chain 20 (MLC20) phosphorylation, the latter of which was attributed to the modulation of MLC kinase and MLC phosphatase via MYPT1-T855 phosphorylation. Subsequent experiments revealed that elevated pressure enhanced phospholipase Cγ1 phosphorylation in an RGD-dependent manner and that phospholipase C inhibition attenuated Ca(2+) wave generation. Direct inhibition of inositol 1, 4, 5-triphosphate receptors also impaired Ca(2+) wave generation, myogenic tone, and MLC20 phosphorylation, partly through the T-855 phosphorylation site of MYPT1. CONCLUSIONS Our investigation reveals a hitherto unknown role for αvβ3 integrin as a cerebral arterial pressure sensor. The membrane receptor facilitates Ca(2+) wave generation through a signaling cascade, involving phospholipase Cγ1, inositol 1,3,4 triphosphate production, and inositol 1, 4, 5-triphosphate receptor activation. These discrete asynchronous Ca(2+) events facilitate MLC20 phosphorylation and, in part, myogenic tone by influencing both MLC kinase and MLC phosphatase activity.
Collapse
Affiliation(s)
- Rania E Mufti
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Anil Zechariah
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Maria Sancho
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Neil Mazumdar
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Suzanne E Brett
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.)
| | - Donald G Welsh
- From the Hotchkiss Brain Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), Libin Cardiovascular Institute (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), and Department of Physiology and Pharmacology (R.E.M., A.Z., M.S., N.M., S.E.B., D.G.W.), University of Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada (A.Z., M.S., N.M., S.E.B., D.G.W.).
| |
Collapse
|
33
|
Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 2015; 12:845-58. [PMID: 24066938 PMCID: PMC4416696 DOI: 10.2174/15701611113116660149] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/18/2011] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at
an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater transmission
of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively
constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic response
of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteriole
in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the factors
initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular
feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myogenic
control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback,
the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and
the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.
Collapse
Affiliation(s)
| | | | | | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
34
|
Colinas O, Moreno-Domínguez A, Zhu HL, Walsh EJ, Pérez-García MT, Walsh MP, Cole WC. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochem Pharmacol 2015; 97:281-91. [PMID: 26278977 DOI: 10.1016/j.bcp.2015.08.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The myogenic response of resistance arterioles and small arteries involving constriction in response to intraluminal pressure elevation and dilation on pressure reduction is fundamental to local blood flow regulation in the microcirculation. Integrins have garnered considerable attention in the context of initiating the myogenic response, but evidence indicative of mechanotransduction by integrin adhesions, for example established changes in tyrosine phosphorylation of key adhesion proteins, has not been obtained to substantiate this interpretation. Here, we evaluated the role of integrin adhesions and associated cellular signaling in the rat cerebral arterial myogenic response using function-blocking antibodies against α5β1-integrins, pharmacological inhibitors of focal adhesion kinase (FAK) and Src family kinase (SFK), an ultra-high-sensitivity western blotting technique, site-specific phosphoprotein antibodies to quantify adhesion and contractile filament protein phosphorylation, and differential centrifugation to determine G-actin levels in rat cerebral arteries at varied intraluminal pressures. Pressure-dependent increases in the levels of phosphorylation of FAK (FAK-Y397, Y576/Y577), SFK (SFK-Y416; Y527 phosphorylation was reduced), vinculin-Y1065, paxillin-Y118 and phosphoinositide-specific phospholipase C-γ1 (PLCγ1)-Y783 were detected. Treatment with α5-integrin function-blocking antibodies, FAK inhibitor FI-14 or SFK inhibitor SU6656 suppressed the changes in adhesion protein phosphorylation, and prevented pressure-dependent phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) at T855 and 20kDa myosin regulatory light chains (LC20) at S19, as well as actin polymerization that are necessary for myogenic constriction. We conclude that mechanotransduction by integrin adhesions and subsequent cellular signaling play a fundamental role in the cerebral arterial myogenic response.
Collapse
Affiliation(s)
- Olaia Colinas
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Alejandro Moreno-Domínguez
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Hai-Lei Zhu
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Emma J Walsh
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - M Teresa Pérez-García
- Department of Physiology, Instituto de Biología y Genética Molecular, University of Valladolid, Valladolid, Spain.
| | - Michael P Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - William C Cole
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
35
|
Kurogi R, Kikkawa Y, Matsuo S, Nakamizo A, Mizoguchi M, Sasaki T. Upregulation of tissue inhibitor of metalloproteinase-1 contributes to restoration of the extracellular matrix in the rabbit basilar artery during cerebral vasospasm after subarachnoid hemorrhage. Brain Res 2015; 1616:26-36. [PMID: 25940763 DOI: 10.1016/j.brainres.2015.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/06/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
Abstract
Vascular remodeling caused by extracellular matrix (ECM) metabolism contributes to the development of cerebral vasospasm after subarachnoid hemorrhage (SAH). The balance between tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) plays an important role in ECM remodeling. We investigated the mechanism of vascular remodeling following cerebral vasospasm in a rabbit double hemorrhage model. Rabbit basilar arteries were harvested on days 3, 5, and 7 after initial hemorrhage. TIMP-1, TIMP-2, MMP-2, and MMP-9 mRNA and protein expression were investigated with microarray analysis, quantitative real-time PCR, immunoblot analysis, and enzyme-linked immunosorbent assay (ELISA). The expression and localization of TIMP-1, TIMP-2, MMP-2, MMP-9, elastin, fibronectin, laminin, and collagens I, III, and IV were investigated with immuohistochemical staining. After SAH, TIMP-1 mRNA and protein expression were significantly increased on day 3 and then decreased to the control level on days 5 and 7. MMP-9 protein expression was significantly increased on day 7. TIMP-2 and MMP-2 mRNA and protein expression were significantly increased on day 7. Elastin, fibronectin, laminin, and collagens I, III, and IV protein expression was decreased on day 3 and then restored to control levels on day 7. Upregulation of TIMP-1 during the early phase of cerebral vasospasm may contribute to the recovery of the ECM during the late phase of cerebral vasospasm, resulting in a protective role of TIMP-1 from cerebral vasospasm. Moreover, the increase in arterial compliance by the decrease in ECM during the early phase of cerebral vasospasm may facilitate vasoconstriction of the cerebral artery.
Collapse
Affiliation(s)
- Ryota Kurogi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| | - Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan; Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka City 350-1298, Saitama, Japan.
| | - Satoshi Matsuo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan; Department of Neurosurgery, Steel Memorial Yawata Hospital, 1-1-1 Harunomachi, Yahatahigashi-ku, Kitakyusyu City 805-8508, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| | - Tomio Sasaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| |
Collapse
|
36
|
Ye GJC, Nesmith AP, Parker KK. The role of mechanotransduction on vascular smooth muscle myocytes' [corrected] cytoskeleton and contractile function. Anat Rec (Hoboken) 2015; 297:1758-69. [PMID: 25125187 DOI: 10.1002/ar.22983] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022]
Abstract
Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM.
Collapse
Affiliation(s)
- George J C Ye
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and the School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | | | | |
Collapse
|
37
|
Hong Z, Reeves KJ, Sun Z, Li Z, Brown NJ, Meininger GA. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One 2015; 10:e0119533. [PMID: 25745858 PMCID: PMC4351978 DOI: 10.1371/journal.pone.0119533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
In vascular smooth muscle cells (VSMCs) integrin-mediated adhesion to extracellular matrix (ECM) proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I) was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM) by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction). AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1mg\ml). Results showed that the vasoconstrictor angiotensin II (ANG-II; 10−6) significantly increased (p<0.05) VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10−4) significantly decreased (p<0.05) VSMC E-modulus and adhesion probability by approximately −33% and −17%, respectively. Similarly, the NO donor (PANOate, 10−6 M), a potent vasodilator, also significantly decreased (p<0.05) the VSMC E-modulus and COL-I adhesion probability by −38% and −35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Kimberley J. Reeves
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Zhaohui Li
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abd-Elrahman KS, Walsh MP, Cole WC. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol 2015; 93:177-84. [PMID: 25660561 DOI: 10.1139/cjpp-2014-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural and functional integrity of the brain, and therefore, cognition, are critically dependent on the appropriate control of blood flow within the cerebral circulation. Inadequate flow leads to ischemia, whereas excessive flow causes small vessel rupture and (or) blood-brain-barrier disruption. Cerebral blood flow is controlled through the interplay of several physiological mechanisms that regulate the contractile state of vascular smooth muscle cells (VSMCs) within the walls of cerebral resistance arteries and arterioles. The myogenic response of cerebral VSMCs is a key mechanism that is responsible for maintaining constant blood flow during variations in systemic pressure, i.e., flow autoregulation. Inappropriate myogenic control of cerebral blood flow is associated with, and prognostic of, neurological deterioration and poor outcome in patients with several conditions, including type 2 diabetes. Here, we review recent advances in our understanding of the role of inappropriate Rho-associated kinase activity as a cause of impaired myogenic regulation of cerebral arterial diameter in type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Libin Cardiovascular Institute, Hotchkiss Brain Institute, and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
39
|
Staiculescu MC, Foote C, Meininger GA, Martinez-Lemus LA. The role of reactive oxygen species in microvascular remodeling. Int J Mol Sci 2014; 15:23792-835. [PMID: 25535075 PMCID: PMC4284792 DOI: 10.3390/ijms151223792] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Christopher Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Staiculescu MC, Ramirez-Perez FI, Castorena-Gonzalez JA, Hong Z, Sun Z, Meininger GA, Martinez-Lemus LA. Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction. Front Physiol 2014; 5:413. [PMID: 25400583 PMCID: PMC4215695 DOI: 10.3389/fphys.2014.00413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/16/2023] Open
Abstract
In vascular smooth muscle cells (VSMC) increased integrin adhesion to extracellular matrix (ECM) proteins, as well as the production of reactive oxygen species (ROS) are strongly stimulated by lysophosphatidic acid (LPA). We hypothesized that LPA-induced generation of ROS increases integrin adhesion to the ECM. Using atomic force microscopy (AFM) we determined the effects of LPA on integrin adhesion to fibronectin (FN) in VSMC isolated from rat (Sprague-Dawley) skeletal muscle arterioles. In VSMC, exposure to LPA (2 μM) doubled integrin-FN adhesion compared to control cells (P < 0.05). LPA-induced integrin-FN adhesion was reduced by pre-incubation with antibodies against β1 and β3 integrins (50 μg/ml) by 66% (P < 0.05). Inhibition of LPA signaling via blockade of the LPA G-protein coupled receptors LPAR1 and LPAR3 with 10 μM Ki16425 reduced the LPA-enhanced adhesion of VSCM to FN by 40% (P < 0.05). Suppression of ROS with tempol (250 μM) or apocynin (300 μM) also reduced the LPA-induced FN adhesion by 47% (P < 0.05) and 59% (P < 0.05), respectively. Using confocal microscopy, we observed that blockade of LPA signaling, with Ki16425, reduced ROS by 45% (P < 0.05), to levels similar to control VSMC unexposed to LPA. In intact isolated arterioles, LPA (2 μM) exposure augmented the myogenic constriction response to step increases in intraluminal pressure (between 40 and 100 mm Hg) by 71% (P < 0.05). The blockade of LPA signaling, with Ki16425, decreased the LPA-enhanced myogenic constriction by 58% (P < 0.05). Similarly, blockade of LPA-induced ROS release with tempol or gp91 ds-tat decreased the LPA-enhanced myogenic constriction by 56% (P < 0.05) and 55% (P < 0.05), respectively. These results indicate that, in VSMC, LPA-induced integrin activation involves the G-protein coupled receptors LPAR1 and LPAR3, and the production of ROS, and that LPA may play an important role in the control of myogenic behavior in resistance vessels through ROS modulation of integrin activity.
Collapse
Affiliation(s)
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
41
|
Heerkens EHJ, Quinn L, Withers SB, Heagerty AM. β Integrins mediate FAK Y397 autophosphorylation of resistance arteries during eutrophic inward remodeling in hypertension. J Vasc Res 2014; 51:305-14. [PMID: 25300309 PMCID: PMC4224252 DOI: 10.1159/000365479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, this process was completed and accompanied by a significant increase in FAK phosphorylation compared with normotensive control animals. Phosphorylated (p)FAK Y397 was coimmunoprecipitated with both β1- and β3-integrin-specific antibodies. In contrast, only a fraction (<10-fold) was coprecipitated with the β3 integrin subunit in control vessels. Inhibition of eutrophic remodeling by cRGDfV treatment of TGR(mRen2)27 rats resulted in the development of smooth-muscle-cell hypertrophy and a significant further enhancement of FAK Y397 phosphorylation, but this time with exclusive coassociation of pFAK Y397 with integrin β1. We established that phosphorylation of FAK Y397 with association with β1 and β3 integrins occurs with pressure-induced eutrophic remodeling. Inhibiting this process leads to an adaptive hypertrophic vascular response induced by a distinct β1-mediated FAK phosphorylation pattern.
Collapse
|
42
|
Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill-Eubanks DC, Nelson MT, Earley S. A PLCγ1-dependent, force-sensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal 2014; 7:ra49. [PMID: 24866019 DOI: 10.1126/scisignal.2004732] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maintaining constant blood flow in the face of fluctuations in blood pressure is a critical autoregulatory feature of cerebral arteries. An increase in pressure within the artery lumen causes the vessel to constrict through depolarization and contraction of the encircling smooth muscle cells. This pressure-sensing mechanism involves activation of two types of transient receptor potential (TRP) channels: TRPC6 and TRPM4. We provide evidence that the activation of the γ1 isoform of phospholipase C (PLCγ1) is critical for pressure sensing in cerebral arteries. Inositol 1,4,5-trisphosphate (IP3), generated by PLCγ1 in response to pressure, sensitized IP3 receptors (IP3Rs) to Ca(2+) influx mediated by the mechanosensitive TRPC6 channel, synergistically increasing IP3R-mediated Ca(2+) release to activate TRPM4 currents, leading to smooth muscle depolarization and constriction of isolated cerebral arteries. Proximity ligation assays demonstrated colocalization of PLCγ1 and TRPC6 with TRPM4, suggesting the presence of a force-sensitive, local signaling network comprising PLCγ1, TRPC6, TRPM4, and IP3Rs. Src tyrosine kinase activity was necessary for stretch-induced TRPM4 activation and myogenic constriction, consistent with the ability of Src to activate PLCγ isoforms. We conclude that contraction of cerebral artery smooth muscle cells requires the integration of pressure-sensing signaling pathways and their convergence on IP3Rs, which mediate localized Ca(2+)-dependent depolarization through the activation of TRPM4.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA. Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Ying Yang
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michelle N Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lindsey Sanders
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Fabrice Dabertrand
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA. Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
43
|
The rs3768777-G allele of ITGAV gene is associated with rheumatoid arthritis. Rheumatol Int 2013; 34:693-8. [PMID: 24375314 DOI: 10.1007/s00296-013-2925-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
Integrin αvβ3 (vitronectin receptor) plays a prominent role in angiogenesis, a key pathogenic feature of rheumatoid arthritis (RA). Moreover, integrin αV (ITGAV) subunit gene has been associated with a susceptibility to RA. The aim of the present study was to detect the potential association between ITGAV gene polymorphisms and a susceptibility to RA in a Turkish cohort. DNA samples were harvested from 160 patients with RA and 144 healthy controls (HC). Three single-nucleotide polymorphisms of ITGAV gene (rs3738919, rs3768777, and rs10174098) were genotyped using real-time PCR. Serum vitronectin levels were analyzed in 30 RA patients, 28 Behçet's disease (BD) patients, and 30 HC subjects. There was no significant difference between the RA and HC groups in terms of the genotypic and allelic distributions of rs3738919 and rs10174098 polymorphisms. However, the prevalence of rs3768777-G allele was higher in the RA group than in the HC group (OR 2.3, 95 % CI 1.6-3.2, p < 0.0001). Moreover, there was a significant association between RA and the genotypic distribution of rs3768777 (GG + AG vs. AA: OR 2.1, 95 % CI 1.3-3.4; GG vs. AG + AA: OR 4.1, 95 % CI 2.1-7.8). Serum vitronectin levels were lower in the RA and BD groups than in the HC group (p ANOVA = 0.002). The rs3738919 and rs10174098 polymorphisms of the ITGAV gene seem not to be associated with susceptibility to RA in Turkish patients. However, rs3768777 increases the risk of RA in this group. These results suggest that the ITGAV gene may be a candidate gene for the etiopathogenesis of RA.
Collapse
|
44
|
Khavandi K, Arunakirinathan M, Greenstein AS, Heagerty AM. Retinal arterial hypertrophy: the new LVH? Curr Hypertens Rep 2013; 15:244-52. [PMID: 23575736 DOI: 10.1007/s11906-013-0347-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prevention of target organ damage represents the El Dorado for clinicians who treat hypertension. Although many of the cardiovascular sequelae of chronic hypertension are due to large artery atherosclerosis, an equal number are due to small artery dysfunction. These microvascular complications include eye disease (retinopathy), kidney failure, diastolic dysfunction of the heart and small vessel brain disease leading to stroke syndromes, dementia and even depression. Examination of the retinal vasculature represents the only way to reliably derive information regarding small arteries responsible for these diverse pathologies. This review aims to summarise the rapidly accruing evidence indicating that easily observable abnormalities of retinal arteries reflect target organ damage elsewhere in the body of hypertensive patients. In tandem, we also present putative mechanisms by which hypertension and diabetes fundamentally change small artery structure and function and how these processes may lead to target organ damage.
Collapse
Affiliation(s)
- Kaivan Khavandi
- British Heart Foundation Centre of Excellence, Department of Cardiology, St. Thomas' Hospital, King's College London, London, UK.
| | | | | | | |
Collapse
|
45
|
Tajada S, Cidad P, Colinas O, Santana LF, López-López JR, Pérez-García MT. Down-regulation of CaV1.2 channels during hypertension: how fewer CaV1.2 channels allow more Ca(2+) into hypertensive arterial smooth muscle. J Physiol 2013; 591:6175-91. [PMID: 24167226 DOI: 10.1113/jphysiol.2013.265751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a clinical syndrome characterized by increased arterial tone. Although the mechanisms are varied, the generally accepted view is that increased CaV1.2 channel function is a common feature of this pathological condition. Here, we investigated the mechanisms underlying vascular dysfunction in a mouse model of genetic hypertension. Contrary to expectation, we found that whole-cell CaV1.2 currents (ICa) were lower in hypertensive (BPH line) than normotensive (BPN line) myocytes. However, local CaV1.2 sparklet activity was higher in BPH cells, suggesting that the relatively low ICa in these cells was produced by a few hyperactive CaV1.2 channels. Furthermore, our data suggest that while the lower expression of the pore-forming α1c subunit of CaV1.2 currents underlies the lower ICa in BPH myocytes, the increased sparklet activity was due to a different composition in the auxiliary subunits of the CaV1.2 complexes. ICa currents in BPN cells were produced by channels composed of α1c/α2δ/β3 subunits, while in BPH myocytes currents were probably generated by the opening of channels formed by α1c/α2δ/β2 subunits. In addition, Ca(2+) sparks evoked large conductance, Ca(2+)-activated K(+) (BK) currents of lower magnitude in BPH than in BPN myocytes, because BK channels were less sensitive to Ca(2+). Our data are consistent with a model in which a decrease in the global number of CaV1.2 currents coexist with the existence of a subpopulation of highly active channels that dominate the resting Ca(2+) influx. The decrease in BK channel activity makes the hyperpolarizing brake ineffective and leads BPH myocytes to a more contracted resting state.
Collapse
Affiliation(s)
- Sendoa Tajada
- Jose R. López-López: Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Edificio IBGM, c/ Sanz y Forés s/n, 47003 Valladolid, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
Turlo KA, Scapa J, Bagher P, Jones AW, Feil R, Korthuis RJ, Segal SS, Iruela-Arispe ML. β1-integrin is essential for vasoregulation and smooth muscle survival in vivo. Arterioscler Thromb Vasc Biol 2013; 33:2325-35. [PMID: 23887637 DOI: 10.1161/atvbaha.112.300648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Integrins contribute to vascular morphogenesis through regulation of adhesion and assembly of the extracellular matrix. However, the role of β1-integrin in the mature vascular wall is less clear. APPROACH AND RESULTS We sought to determine the function of β1-integrin in mature smooth muscle cells in vivo using a loss of function approach by crossing a tamoxifen-inducible sm22αCre line to a floxed β1-integrin transgenic line. Adult mice lacking smooth muscle β1-integrin survived only 10 weeks post induction. The deletion of β1-integrin resulted in profound loss of vasomotor control. Histological analysis revealed progressive fibrosis in arteries with associated apoptosis of smooth muscle cells, which was not rescued by adventitial stem cells. Smooth muscle cell apoptosis was detected in arteries with dead cells replaced primarily by collagen. Despite the catastrophic effects on vascular smooth muscle, the deleted visceral smooth muscle remained viable with the exception of a short portion of the colon, indicating that vascular but not visceral smooth muscle is particularly sensitive to changes in β1-integrin. CONCLUSIONS This study reveals an essential function of β1-integrin in the maintenance of vasomotor control and highlights a critical role for β1-integrin in vascular, but not visceral, smooth muscle survival.
Collapse
Affiliation(s)
- Kirsten A Turlo
- From the Department of Molecular, Cellular, and Developmental Biology (K.A.T., M.L.I.-A.) and Molecular Biology Institute (J.S.), University of California, Los Angeles, CA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO (P.B., A.W.J., R.J.K., S.S.S.); Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany (R.F.); and Dalton Cardiovascular Research Center, Columbia, MO (A.W.J., R.J.K., S.S.S.)
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chung WS, Weissman JL, Farley J, Drummond HA. βENaC is required for whole cell mechanically gated currents in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 2013; 304:F1428-37. [PMID: 23552864 DOI: 10.1152/ajprenal.00444.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myogenic constrictor responses in small renal arteries and afferent arterioles are suppressed in mice with reduced levels of β-epithelial Na⁺ channel (βENaC(m/m)). The underlying mechanism is unclear. Decreased activity of voltage-gated calcium channels (VGCC) or mechanically gated ion channels and increased activity of large conductance calcium-activated potassium (BK) channels are a few possible mechanisms. The purpose of this study was to determine if VGCC, BK, or mechanically gated ion channel activity was altered in renal vascular smooth muscle cell (VSMC) from βENaC(m/m) mice. To address this, we used whole cell patch-clamp electrophysiological approaches in freshly isolated renal VSMCs. Compared with βENaC(+/+) controls, the current-voltage relationships for VGCC and BK activity are similar in βENaC(m/m) mice. These findings suggest neither VGCC nor BK channel dysfunction accounts for reduced myogenic constriction in βENaC(m/m) mice. We then examined mechanically gated currents using a novel in vitro assay where VSMCs are mechanically activated by stretching an underlying elastomer. We found the mechanically gated currents, predominantly carried by Na⁺, are observed with less frequency (87 vs. 43%) and have smaller magnitude (-54.1 ± 12.5 vs. -20.9 ± 4.9 pA) in renal VSMCs from βENaC(m/m) mice. Residual currents are expected in this model since VSMC βENaC expression is reduced by 50%. These findings suggest βENaC is required for normal mechanically gated currents in renal VSMCs and their disruption may account for the reduced myogenic constriction in the βENaC(m/m) model. Our findings are consistent with the role of βENaC as a VSMC mechanosensor and function of evolutionarily related nematode degenerin proteins.
Collapse
Affiliation(s)
- Wen-Shuo Chung
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The myogenic response has a critical role in regulation of blood flow to the brain. Increased intraluminal pressure elicits vasoconstriction, whereas decreased intraluminal pressure induces vasodilatation, thereby maintaining flow constant over the normal physiologic blood pressure range. Improved understanding of the molecular mechanisms underlying the myogenic response is crucial to identify deficiencies with pathologic consequences, such as cerebral vasospasm, hypertension, and stroke, and to identify potential therapeutic targets. Three mechanisms have been suggested to be involved in the myogenic response: (1) membrane depolarization, which induces Ca(2+) entry, activation of myosin light chain kinase, phosphorylation of the myosin regulatory light chains (LC(20)), increased actomyosin MgATPase activity, cross-bridge cycling, and vasoconstriction; (2) activation of the RhoA/Rho-associated kinase (ROCK) pathway, leading to inhibition of myosin light chain phosphatase by phosphorylation of MYPT1, the myosin targeting regulatory subunit of the phosphatase, and increased LC(20) phosphorylation; and (3) activation of the ROCK and protein kinase C pathways, leading to actin polymerization and the formation of enhanced connections between the actin cytoskeleton, plasma membrane, and extracellular matrix to augment force transmission. This review describes these three mechanisms, emphasizing recent developments regarding the importance of dynamic actin polymerization in the myogenic response of the cerebral vasculature.
Collapse
|
49
|
Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr 2012; 7:101-10. [PMID: 23263631 DOI: 10.4161/cam.22680] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.
Collapse
Affiliation(s)
- Lema F Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | | |
Collapse
|
50
|
Hong Z, Sun Z, Li Z, Mesquitta WT, Trzeciakowski JP, Meininger GA. Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovasc Res 2012; 96:73-80. [PMID: 22802110 DOI: 10.1093/cvr/cvs239] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS The regulation of vascular diameter by vasoconstrictors and vasodilators requires that vascular smooth muscle cells (VSMCs) be physically coupled to extracellular matrix (ECM) and neighbouring cells in order for a vessel to mechanically function and transfer force. The hypothesis was tested that integrin-mediated adhesion to the ECM is dynamically up-regulated in VSMCs during contractile activation in response to a vasoconstrictor and likewise down-regulated during relaxation in response to a vasodilator. METHODS AND RESULTS VSMCs were isolated from the Sprague-Dawley rat cremaster muscles. Atomic force microscopy (AFM) with fibronectin (FN)-functionalized probes was employed to investigate the biomechanical responses and adhesion of VSMCs. Responses to angiotensin II (Ang II; 10(-6) M) and adenosine (Ado; 10(-4) M) were recorded by measurements of cell cortical elasticity and cell adhesion. The results showed that Ang II caused an immediate increase in adhesion (+27%) between the probe and cell. Cell stiffness increased (+70%) in parallel with the adhesion change. Ado decreased adhesion (-15%) to FN and reduced (-30%) stiffness. CONCLUSION Changes in the receptor-mediated activation of the contractile apparatus cause parallel alterations in cell adhesion and cell cortical elasticity. These studies support the hypothesis that the regulation of cell adhesion is coordinated with contraction and demonstrate the dynamic nature of cell adhesion to the ECM. It is proposed that coordination of adhesion and VSMC contraction is an important mechanism that allows for an efficient transfer of force between the contractile apparatus of the cell and the extracellular environment.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|