1
|
Pyrpyris N, Dimitriadis K, Iliakis P, Theofilis P, Beneki E, Terentes-Printzios D, Sakalidis A, Antonopoulos A, Aznaouridis K, Tsioufis K. Hypothermia for Cardioprotection in Acute Coronary Syndrome Patients: From Bench to Bedside. J Clin Med 2024; 13:5390. [PMID: 39336877 PMCID: PMC11432135 DOI: 10.3390/jcm13185390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Early revascularization for patients with acute myocardial infarction (AMI) is of outmost importance in limiting infarct size and associated complications, as well as for improving long-term survival and outcomes. However, reperfusion itself may further damage the myocardium and increase the infarct size, a condition commonly recognized as myocardial reperfusion injury. Several strategies have been developed for limiting the associated with reperfusion myocardial damage, including hypothermia. Hypothermia has been shown to limit the degree of infarct size increase, when started before reperfusion, in several animal models. Systemic hypothermia, however, failed to show any benefit, due to adverse events and potentially insufficient myocardial cooling. Recently, the novel technique of intracoronary selective hypothermia is being tested, with preclinical and clinical results being of particular interest. Therefore, in this review, we will describe the pathophysiology of myocardial reperfusion injury and the cardioprotective mechanics of hypothermia, report the animal and clinical evidence in both systemic and selective hypothermia and discuss the potential future directions and clinical perspectives in the context of cardioprotection for myocardial reperfusion injury.
Collapse
Affiliation(s)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (N.P.); (P.I.); (P.T.); (E.B.); (D.T.-P.); (A.S.); (A.A.); (K.A.); (K.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Mir A, Rahman MF, Ragab KM, Fathallah AH, Daloub S, Alwifati N, Hagrass AI, Nourelden AZ, Elsayed SM, Kamal I, Elhady MM, Khan R. Efficacy and Safety of Therapeutic Hypothermia as an Adjuvant Therapy for Percutaneous Coronary Intervention in Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Ther Hypothermia Temp Manag 2024; 14:152-171. [PMID: 37792341 DOI: 10.1089/ther.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
The study aims to compare the use of hypothermia in patients with myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI) with control. We systematically searched four electronic databases until March 2022. The inclusion criteria were any study design that compared hypothermia in patients with MI undergoing PCI with control. The risk of bias assessment of the included randomized controlled trials was conducted through Cochrane Tool, while the quality of the included cohort studies was assessed by the NIH tool. The meta-analysis was performed on RevMan. A total of 19 studies were entered. Regarding the mortality, there were nonsignificant differences between hypothermia and control (odds ratio [OR] = 1.06, 95% confidence interval [CI] 0.75 to 1.50, p = 0.73). There was also no significant difference between the control and hypothermia in recurrent MI (OR = 1.21, 95% CI 0.64 to 2.30, p = 0.56). On the other hand, the analysis showed a significant favor for hypothermia over the control infarct size (mean difference = -1.76, 95% CI -3.04 to -0.47, p = 0.007), but a significant favor for the control over hypothermia in the overall bleeding complications (OR = 1.88, 95% CI 1.11 to 3.18, p = 0.02). Compared with the control, hypothermia reduced the infarct size of the heart, but this finding was not consistent across studies. However, the control had lower rates of bleeding problems. The other outcomes, such as death and the incidence of recurrent MI, were similar between the two groups.
Collapse
Affiliation(s)
- Ali Mir
- Department of Internal Medicine, University at Buffalo, Buffalo, New York, USA
| | | | | | | | - Shaden Daloub
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nader Alwifati
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | | | | | | | - Ibrahim Kamal
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Raheel Khan
- Department of Internal Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Oberdier MT, Li J, Ambinder DI, Suzuki M, Tumarkin E, Fink S, Neri L, Zhu X, Justice CN, Vanden Hoek TL, Halperin HR. Survival and Neurologic Outcomes From Pharmacologic Peptide Administration During Cardiopulmonary Resuscitation of Pulseless Electrical Activity. J Am Heart Assoc 2024; 13:e9757. [PMID: 38934857 PMCID: PMC11255698 DOI: 10.1161/jaha.123.033371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Outcomes from cardiopulmonary resuscitation (CPR) following sudden cardiac arrest are suboptimal. Postresuscitation targeted temperature management has been shown to have benefit in subjects with sudden cardiac arrest due to ventricular fibrillation, but there are few data for outcomes from sudden cardiac arrest due to pulseless electrical activity. In addition, intra-CPR cooling is more effective than postresuscitation cooling. Physical cooling is associated with increased protein kinase B activity. Therefore, our group developed a novel peptide, TAT-PHLPP9c, which regulates protein kinase B. We hypothesized that when given during CPR, TAT-PHLPP9c would improve survival and neurologic outcomes following pulseless electrical activity arrest. METHODS AND RESULTS In 24 female pigs, pulseless electrical activity was induced by inflating balloon catheters in the right coronary and left anterior descending arteries for ≈7 minutes. Advanced life support was initiated. In 12 control animals, epinephrine was given after 1 and 3 minutes. In 12 peptide-treated animals, 7.5 mg/kg TAT-PHLPP9c was also administered at 1 and 3 minutes of CPR. The balloons were removed after 2 minutes of support. Animals were recovered and neurologically scored 24 hours after return of spontaneous circulation. Return of spontaneous circulation was more common in the peptide group, but this difference was not significant (8/12 control versus 12/12 peptide; P=0.093), while fully intact neurologic survival was significantly more common in the peptide group (0/12 control versus 11/12 peptide; P<0.00001). TAT-PHLPP9c significantly increased myocardial nicotinamide adenine dinucleotide levels. CONCLUSIONS TAT-PHLPP9c resulted in improved survival with full neurologic function after sudden cardiac arrest in a swine model of pulseless electrical activity, and the peptide shows potential as an intra-CPR pharmacologic agent.
Collapse
Affiliation(s)
| | - Jing Li
- University of Illinois – ChicagoChicagoIL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Marzoog BA. Autophagy Behavior under Local Hypothermia in Myocardiocytes Injury. Cardiovasc Hematol Agents Med Chem 2024; 22:114-120. [PMID: 37534483 DOI: 10.2174/1871525721666230803102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Hypothermia and autophagy are critical regulators of cell homeostasis by regulating intra and intercellular cell communication. Myocardiocyte cryotherapy poses multiple cellular and subcellular effects on the injured cell, including upregulation of autophagy. Autophagy plays a crucial role in modifying cell metabolism by regulating downregulation, reducing reactive oxygen species production, and improving the natural cellular antioxidant defense system. Reduction of reactive oxygen species production and improving natural cellular antioxidant defense system. Therapeutic hypothermia ranges from 32-34°C in terms of local myocardiocyte cooling. Hypothermia induces autophagy by phosphorylating the Akt signaling pathway. Hypothermia has a more therapeutic effect when applied at the beginning of reperfusion rather than in the beginning of ischemia. Moderate hypothermia with 33°C poses most therapeutic effect by viability maintaining and reduction of reactive oxygen species release. Application of local hypothermia to myocardiocytes can be applied to infarcted myocardiocytes, anginal and to the cardiomyopathies.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| |
Collapse
|
5
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Justice CN, O’Donnell JM, Vanden Hoek TL. Nicotinamide restores tissue NAD+ and improves survival in rodent models of cardiac arrest. PLoS One 2023; 18:e0291598. [PMID: 37713442 PMCID: PMC10503771 DOI: 10.1371/journal.pone.0291598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Metabolic suppression in the ischemic heart is characterized by reduced levels of NAD+ and ATP. Since NAD+ is required for most metabolic processes that generate ATP, we hypothesized that nicotinamide restores ischemic tissue NAD+ and improves cardiac function in cardiomyocytes and isolated hearts, and enhances survival in a mouse model of cardiac arrest. Mouse cardiomyocytes were exposed to 30 min simulated ischemia and 90 min reperfusion. NAD+ content dropped 40% by the end of ischemia compared to pre-ischemia. Treatment with 100 μM nicotinamide (NAM) at the start of reperfusion completely restored the cellular level of NAD+ at 15 min of reperfusion. This rescue of NAD+ depletion was associated with improved contractile recovery as early as 10 min post-reperfusion. In a mouse model of cardiac arrest, 100 mg/kg NAM administered IV immediately after cardiopulmonary resuscitation resulted in 100% survival at 4 h as compared to 50% in the saline group. In an isolated rat heart model, the effect of NAM on cardiac function was measured for 20 min following 18 min global ischemia. Rate pressure product was reduced by 26% in the control group following arrest. Cardiac contractile function was completely recovered with NAM treatment given at the start of reperfusion. NAM restored tissue NAD+ and enhanced production of lactate and ATP, while reducing glucose diversion to sorbitol in the heart. We conclude that NAM can rapidly restore cardiac NAD+ following ischemia and enhance glycolysis and contractile recovery, with improved survival in a mouse model of cardiac arrest.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Jing Li
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Huashan Wang
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Filip M. Gasior
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Chunpei Lee
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Shaoxia Lin
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Cody N. Justice
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - J. Michael O’Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Li J, Zhu X, Oberdier MT, Lee C, Lin S, Fink SJ, Justice CN, Qin K, Begeman AW, Damen FC, Kim H, Chen J, Cai K, Halperin HR, Vanden Hoek TL. A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models. J Clin Invest 2023; 133:e164283. [PMID: 37115695 PMCID: PMC10145924 DOI: 10.1172/jci164283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 04/29/2023] Open
Abstract
Out-of-hospital cardiac arrest is a leading cause of death in the US, with a mortality rate over 90%. Preclinical studies demonstrate that cooling during cardiopulmonary resuscitation (CPR) is highly beneficial, but can be challenging to implement clinically. No medications exist for improving long-term cardiac arrest survival. We have developed a 20-amino acid peptide, TAT-PHLPP9c, that mimics cooling protection by enhancing AKT activation via PH domain leucine-rich repeat phosphatase 1 (PHLPP1) inhibition. Complementary studies were conducted in mouse and swine. C57BL/6 mice were randomized into blinded saline control and peptide-treatment groups. Following a 12-minute asystolic arrest, TAT-PHLPP9c was administered intravenously during CPR and significantly improved the return of spontaneous circulation, mean arterial blood pressure and cerebral blood flow, cardiac and neurological function, and survival (4 hour and 5 day). It inhibited PHLPP-NHERF1 binding, enhanced AKT but not PKC phosphorylation, decreased pyruvate dehydrogenase phosphorylation and sorbitol production, and increased ATP generation in heart and brain. TAT-PHLPP9c treatment also reduced plasma taurine and glutamate concentrations after resuscitation. The protective benefit of TAT-PHLPP9c was validated in a swine cardiac arrest model of ventricular fibrillation. In conclusion, TAT-PHLPP9c may improve neurologically intact cardiac arrest survival without the need for physical cooling.
Collapse
Affiliation(s)
- Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Matt T. Oberdier
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunpei Lee
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shaoxia Lin
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sarah J. Fink
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kevin Qin
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrew W. Begeman
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Hajwa Kim
- Center for Clinical and Translational Science
| | - Jiwang Chen
- Cardiovascular Research Center, and
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kejia Cai
- Department of Radiology, College of Medicine
| | - Henry R. Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Departments of Radiology and Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Justice CN, Zhu X, Li J, O'Donnell JM, Vanden Hoek TL. Intra-ischemic hypothermia cardioprotection involves modulation of PTEN/Akt/ERK signaling and fatty acid oxidation. Physiol Rep 2023; 11:e15611. [PMID: 36807889 PMCID: PMC9938006 DOI: 10.14814/phy2.15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release. Left ventricular function was monitored continuously in isolated rat hearts subjected to 20 min of global, no-flow ischemia. Moderate cooling (30°C) was applied at the start of ischemia and hearts were rewarmed after 10 min of reperfusion. The effect of TH on protein phosphorylation and expression at 0 and 30 min of reperfusion was investigated by western blot analysis. Post-ischemic cardiac metabolism was investigated by 13 C-NMR. TH enhanced recovery of cardiac function, reduced taurine release, and enhanced PTEN phosphorylation and expression. Phosphorylation of Akt and ERK1/2 was increased at the end of ischemia but decreased at the end of reperfusion. On NMR analysis, TH-treated hearts displayed decreased fatty acid oxidation. Direct cardioprotection by moderate intra-ischemic TH is associated with decreased fatty acid oxidation, reduced taurine release, enhanced PTEN phosphorylation and expression, and enhanced activation of both Akt and ERK1/2 prior to reperfusion.
Collapse
Affiliation(s)
- Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - J. Michael O'Donnell
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
8
|
Yi J, Duan H, Chen K, Wen C, Cao Y, Gao H. Cardiac Electrophysiological Changes and Downregulated Connexin 43 Prompts Reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in Isolated Rat Hearts. J Cardiovasc Transl Res 2022; 15:1464-1473. [PMID: 35689125 DOI: 10.1007/s12265-022-10256-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to determine the utility of the monophasic action potential (MAP) changes as an arrhythmic biomarker in hypothermic ischemia-reperfusion. The hypothermic ischemia-reperfusion model was subjected to 60 min of cardioplegic arrest while the isolated rat hearts were preserved with a multidose cold K-H solution at 4 °C. During the reperfusion period, the heart's arrhythmia and monophasic action potential were also monitored. The myocardial damage was assessed using HE and TTC stains. Immunohistochemistry and Western blotting were used to assess the expression and distribution of Connexin 43 (Cx43) and Akt. Collectively, prolonged action potential durations, increased dispersion of repolarization, and downregulated and lateralized Cx43 all contribute to the derangement of electrical impulse propagation that may underlie arrhythmogenesis in the cold ischemic heart following cardioplegic arrest. MAP might be used as a biomarker for arrhythmias caused by hypothermic ischemia-reperfusion.
Collapse
Affiliation(s)
- Jing Yi
- Translational Medicine Research Center, Clinical Medical School, Guizhou Medical University, No. 9, Beijing Road, Guiyang, 550004, Guizhou, China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Hongwei Duan
- Department of Anesthesiology, The Affiliated Pudong Hospital of Fudan University, No. 2800 Gongwei Road, Huinan Town, Pudong New Area 200120, Shanghai, China
| | - Kaiyuan Chen
- Translational Medicine Research Center, Clinical Medical School, Guizhou Medical University, No. 9, Beijing Road, Guiyang, 550004, Guizhou, China
| | - Chunlei Wen
- Translational Medicine Research Center, Clinical Medical School, Guizhou Medical University, No. 9, Beijing Road, Guiyang, 550004, Guizhou, China
| | - Ying Cao
- Translational Medicine Research Center, Clinical Medical School, Guizhou Medical University, No. 9, Beijing Road, Guiyang, 550004, Guizhou, China
| | - Hong Gao
- Translational Medicine Research Center, Clinical Medical School, Guizhou Medical University, No. 9, Beijing Road, Guiyang, 550004, Guizhou, China.
- Department of Equipment, The Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
9
|
Hypothermia Alleviates Reductive Stress, a Root Cause of Ischemia Reperfusion Injury. Int J Mol Sci 2022; 23:ijms231710108. [PMID: 36077504 PMCID: PMC9456258 DOI: 10.3390/ijms231710108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.
Collapse
|
10
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Li J, Chang WT, Qin G, Wojcik KR, Li CQ, Hsu CW, Han M, Zhu X, Vanden Hoek TL, Shao ZH. Baicalein Preconditioning Cardioprotection Involves Pro-Oxidant Signaling and Activation of Pyruvate Dehydrogenase. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1255-1267. [PMID: 35748215 DOI: 10.1142/s0192415x22500513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preconditioning has a powerful protective potential against myocardial ischemia-reperfusion injury (I/R). Our prior work demonstrated that baicalein, a flavonoid derived from the root of Scatellaria baicalensis Georgi (also known as Huangqin), confers this preconditioning protection. This study further explored the mechanisms of baicalein preconditioning (BC-PC) in mouse cardiomyocytes. Cells were treated with baicalein (10 μM) for a brief period of time (10 min) prior to simulated ischemia 90 min/reperfusion for 180 min. Baicalein triggered an induction of a small amount of mitochondrial reactive oxygen species (ROS) prior to the initiation of ischemia, assessed by 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate (6-carboxy-H2DCFDA). It also significantly increased cell viability measured by propidium iodide (PI) and lactate dehydrogenase and preserved mitochondrial membrane potential assessed by TMRM fluorescence intensity. Myxothiazol, a mitochondrial electron transport chain complex III inhibitor, partially blocked ROS generation induced by BC-PC and reduced cell viability. BC-PC increased phosphorylation of Akt (Thr308 and Ser473) and eNOS Ser1177, and nitric oxide (NO) production measured using 4,5-diaminofluorescein diacetate (DAF-2 DA, 1 μM). Akt inhibitor API-2 abolished Akt phosphorylation and reduced DAF-2 production and cell viability. In addition, BC-PC decreased phosphorylation of pyruvate dehydrogenase (PDH) reflecting upregulated PDH activity, and increased ATP production at 30 min during reperfusion. Taken together, baicalein preconditioning-induced cardioprotection involves pro-oxidant generation, activates survival signaling Akt/eNOS/NO, and improves metabolic recovery after I/R injury. Our work provides new perspectives on the effect of baicalein on cardiac preconditioning against I/R injury.
Collapse
Affiliation(s)
- Jing Li
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Gina Qin
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Kimberly R Wojcik
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Chang-Qing Li
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Chin-Wang Hsu
- Department of Emergency, School of Medicine, College of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mei Han
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Xiangdong Zhu
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Terry L Vanden Hoek
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Zuo-Hui Shao
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
12
|
Xu S, Miao H, Gong L, Feng L, Hou X, Zhou M, Shen H, Chen W. Effects of Different Hypothermia on the Results of Cardiopulmonary Resuscitation in a Cardiac Arrest Rat Model. DISEASE MARKERS 2022; 2022:2005616. [PMID: 35419118 PMCID: PMC9001110 DOI: 10.1155/2022/2005616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the optimal temperature of hypothermia treatment in rats with cardiac arrest caused by ventricular fibrillation (VF) after the return of spontaneous circulation (ROSC). Methods A total of forty-eight male Sprague-Dawley rats were induced by VF through the guidewire with a maximum of 5 mA current and untreated for 8 min. Cardiopulmonary resuscitation (CPR) was performed for 8 min followed by defibrillation (DF). Resuscitated rats were then randomized into the normothermia (37°C) group, milder (35°C) group, mild (33°C) group, or moderate (28°C) group. Hypothermia was immediately induced with surface cooling. The target temperature was maintained for 4 h before rewarming to 37 ± 0.5°C. Moreover, at the end of the 4 h, a rat in each group was randomly selected to be sacrificed for the cerebral cortex electron microscopy observation (n = 1). The other resuscitated animals were observed for up to 72 h after ROSC (n = 7). Left ventricular ejection fraction (LVEF) and left ventricular end diastolic volume (LVEDV) were measured. Survival time, survival rate, and neurological deficit score (NDS) were recorded for 72 h. Results During hypothermia, higher LVEF was observed in the hypothermia groups when compared with normothermia group (35°C vs. 37°C, p < 0.05, 33°C and 28°C vs. 37°C, p < 0.01). Among the hypothermia groups, LVEF was higher in the 28°C group than that of 35°C (p < 0.05). However, both the heart rate (HR) (p < 0.01) and LVEDV (28°C vs. 35°C, p < 0.01, 28°C vs. 37°C and 33°C, p < 0.05) were lowest in the 28°C group when compared with the other groups. There were no significant differences of LVEF and LVEDV between the group 35°C and 33°C (p > 0.05). After rewarming, the LVEF of 35°C group was higher than that of group 37°C, 33°C, and 28°C (35°C vs. 37°C and 28°C, p < 0.01, 35°C vs. 33°C, p < 0.05). Group 35°C and 33°C resulted in longer survival (p < 0.01), higher survival rate (p < 0.01), and lower NDS (35°C vs. 37°C and 28°C, p < 0.01, 33°C vs. 37°C and 28°C, p < 0.05) compared with the group 37°C and 28°C. The extent of damage to cerebral cortex cells in group of 35°C and 33°C was lighter than that in group of 37°C and 28°C. The 35°C group spent less time in the process of cooling and rewarming than the group 33°C and 28°C (p < 0.01). Conclusions An almost equal protective effect of milder hypothermia (35°C) and mild hypothermia (33°C) in cardiac arrest (CA) rats was achieved with more predominant effect than moderate hypothermia (28°C) and normothermia (37°C). More importantly, shorter time spent in cooling and rewarming was required in the 35°C group, indicating its potential clinical application. These findings support the possible use of milder hypothermia (35°C) as a therapeutic agent for postresuscitation.
Collapse
Affiliation(s)
- Shaohua Xu
- Nankai University School of Medicine, Tianjin, China
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Miao
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liming Gong
- Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Lijie Feng
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuliang Hou
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manhong Zhou
- Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Hong Shen
- Nankai University School of Medicine, Tianjin, China
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Chen
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
- Hainan Hospital of Chinese PLA General Hospital, Hainan, China
| |
Collapse
|
13
|
El Farissi M, Mast TP, van de Kar MRD, Dillen DMM, Demandt JPA, Vervaat FE, Eerdekens R, Dello SAG, Keulards DC, Zelis JM, van ‘t Veer M, Zimmermann FM, Pijls NHJ, Otterspoor LC. Hypothermia for Cardioprotection in Patients with St-Elevation Myocardial Infarction: Do Not Give It the Cold Shoulder Yet! J Clin Med 2022; 11:1082. [PMID: 35207350 PMCID: PMC8878494 DOI: 10.3390/jcm11041082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
The timely revascularization of an occluded coronary artery is the cornerstone of treatment in patients with ST-elevation myocardial infarction (STEMI). As essential as this treatment is, it can also cause additional damage to cardiomyocytes that were still viable before reperfusion, increasing infarct size. This has been termed "myocardial reperfusion injury". To date, there is still no effective treatment for myocardial reperfusion injury in patients with STEMI. While numerous attempts have been made to overcome this hurdle with various experimental therapies, the common denominator of these therapies is that, although they often work in the preclinical setting, they fail to demonstrate the same results in human trials. Hypothermia is an example of such a therapy. Although promising results were derived from experimental studies, multiple randomized controlled trials failed to do the same. This review includes a discussion of hypothermia as a potential treatment for myocardial reperfusion injury, including lessons learned from previous (negative) trials, advanced techniques and materials in current hypothermic treatment, and the possible future of hypothermia for cardioprotection in patients with STEMI.
Collapse
Affiliation(s)
- Mohamed El Farissi
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Thomas P. Mast
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Mileen R. D. van de Kar
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Daimy M. M. Dillen
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Jesse P. A. Demandt
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Fabienne E. Vervaat
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Rob Eerdekens
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Simon A. G. Dello
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Danielle C. Keulards
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Jo M. Zelis
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Marcel van ‘t Veer
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Frederik M. Zimmermann
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Nico H. J. Pijls
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Luuk C. Otterspoor
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| |
Collapse
|
14
|
Taylor D, Germano J, Song Y, Hadj-Moussa H, Marek-Iannucci S, Dhanji R, Sin J, Czer LSC, Storey KB, Gottlieb RA. Hypothermia promotes mitochondrial elongation In cardiac cells via inhibition of Drp1. Cryobiology 2021; 102:42-55. [PMID: 34331901 DOI: 10.1016/j.cryobiol.2021.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Hypothermia is a valuable clinical tool in mitigating against the consequences of ischemia in surgery, stroke, cardiac arrest and organ preservation. Protection is afforded principally by a reduction of metabolism, manifesting as reduced rates of oxygen uptake, preservation of ATP levels, and a curtailing of ischemic calcium overload. The effects of non-ischemic hypothermic stress are relatively unknown. We sought to investigate the effects of clinically mild-to-severe hypothermia on mitochondrial morphology, oxygen consumption and protein expression in normoxic hearts and cardiac cells. Normoxic perfusion of rat hearts at 28-32 °C was associated with inhibition of mitochondrial fission, evidenced by a reduced abundance of the active phosphorylated form of the fission receptor Drp1 (pDrp1S616). Abundance of the same residue was reduced in H9c2 cells subjected to hypothermic culture (25-32 °C), in addition to a reduced abundance of the Drp1 receptor MFF. Hypothermia-treated H9c2 cardiomyocytes exhibited elongated mitochondria and depressed rates of mitochondrial-associated oxygen consumption, which persisted upon rewarming. Hypothermia also promoted a reduction in mRNA expression of the capsaicin receptor TRPV1 in H9c2 cells. When normothermic H9c2 cells were transfected with TRPV1 siRNA we observed reduced pDrp1S616 and MFF abundance, elongated mitochondria, and reduced rates of mitochondrial-associated oxygen consumption, mimicking the effects of hypothermic culture. In conclusion hypothermia promoted elongation of cardiac mitochondria via reduced pDrp1S616 abundance which was also associated with suppression of cellular oxygen consumption. Silencing of TRPV1 in H9c2 cardiomyocytes reproduced the morphological and respirometric phenotype of hypothermia. This report demonstrates a novel mechanism of cold-induced inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- David Taylor
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Juliana Germano
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Song
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Stefanie Marek-Iannucci
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raeesa Dhanji
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jon Sin
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lawrence S C Czer
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Roberta A Gottlieb
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
El Farissi M, Keulards DCJ, Zelis JM, van 't Veer M, Zimmermann FM, Pijls NHJ, Otterspoor LC. Hypothermia for Reduction of Myocardial Reperfusion Injury in Acute Myocardial Infarction: Closing the Translational Gap. Circ Cardiovasc Interv 2021; 14:e010326. [PMID: 34266310 DOI: 10.1161/circinterventions.120.010326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardial reperfusion injury-triggered by an inevitable inflammatory response after reperfusion-may undo a considerable part of the myocardial salvage achieved through timely percutaneous coronary intervention in patients with acute myocardial infarction. Because infarct size is strongly correlated to mortality and risk of heart failure, the importance of endeavors for cardioprotective therapies to attenuate myocardial reperfusion injury and decrease infarct size remains undisputed. Myocardial reperfusion injury is the result of several complex nonlinear phenomena, and for a therapy to be effective, it should act on multiple targets involved in this injury. In this regard, hypothermia remains a promising treatment despite a number of negative randomized controlled trials in humans with acute myocardial infarction so far. To turn the tide for hypothermia in patients with acute myocardial infarction, sophisticated solutions for important limitations of systemic hypothermia should continue to be developed. In this review, we provide a comprehensive overview of the pathophysiology and clinical expression of myocardial reperfusion injury and discuss the current status and possible future of hypothermia for cardioprotection in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Mohamed El Farissi
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Jo M Zelis
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Marcel van 't Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Nico H J Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Luuk C Otterspoor
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
16
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Zhu Z, Wang Y, Justice CN, O'Donnell JM, Vanden Hoek TL. TAT delivery of a PTEN peptide inhibitor has direct cardioprotective effects and improves outcomes in rodent models of cardiac arrest. Am J Physiol Heart Circ Physiol 2021; 320:H2034-H2043. [PMID: 33834871 DOI: 10.1152/ajpheart.00513.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min before the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) based on the C-terminal PDZ binding motif of PTEN for rapid tissue delivery and protection. Western blot analysis demonstrated that TAT-PTEN9c peptide significantly enhanced Akt activation in mouse cardiomyocytes in a concentration- and time-dependent manner. Mice were subjected to 8 min asystolic arrest followed by CPR, and 30 mice with successful CPR were then randomly assigned to receive either saline or TAT-PTEN9c treatment. Survival was significantly increased in TAT-PTEN9c-treated mice compared with that of saline control at 4 h after CPR. The treated mice had increased Akt phosphorylation at 30 min resuscitation with significantly decreased sorbitol content in heart or brain tissues and reduced release of taurine and glutamate in blood, suggesting improved glucose metabolism. In an isolated rat heart Langendorff model, direct effects of TAT-PTEN9c on cardiac function were measured for 20 min following 20 min global ischemia. Rate pressure product was reduced by >20% for both TAT vehicle and nontreatment groups following arrest. Cardiac contractile function was completely recovered with TAT-PTEN9c treatment given at the start of reperfusion. We conclude that TAT-PTEN9c enhances Akt activation and decreases glucose shunting to the polyol pathway in critical organs, thereby preventing osmotic injury and early cardiovascular collapse and death.NEW & NOTEWORTHY We have designed a cell-permeable peptide, TAT-PTEN9c, to improve cardiac arrest survival. It blocked endogenous PTEN binding to its adaptor and enhanced Akt signaling in mouse cardiomyocytes. It improved mouse survival after cardiac arrest, which is related to improved glucose metabolism and reduced glucose shunting to sorbitol in critical organs.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Jing Li
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | | - Chunpei Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Shaoxia Lin
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Zhiyi Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Youhua Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Cody N Justice
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael O'Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | |
Collapse
|
17
|
Yamada KP, Kariya T, Aikawa T, Ishikawa K. Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Front Cardiovasc Med 2021; 8:642843. [PMID: 33659283 PMCID: PMC7919696 DOI: 10.3389/fcvm.2021.642843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has been used for treating brain injury after out-of-hospital cardiac arrest. Its potential benefit on minimizing myocardial ischemic injury has been explored, but clinical evidence has yet to confirm positive results in preclinical studies. Importantly, therapeutic hypothermia for myocardial infarction is unique in that it can be initiated prior to reperfusion, in contrast to its application for brain injury in resuscitated cardiac arrest patients. Recent advance in cooling technology allows more rapid cooling of the heart than ever and new clinical trials are designed to examine the efficacy of rapid therapeutic hypothermia for myocardial infarction. In this review, we summarize current knowledge regarding the effect of hypothermia on normal and ischemic hearts and discuss issues to be solved in order to realize its clinical application for treating acute myocardial infarction.
Collapse
Affiliation(s)
- Kelly P Yamada
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taro Kariya
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tadao Aikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Kumari GUWUP, Gunathilake KDPP. In vitro bioaccessibility and antioxidant activity of black plum (Syzygium caryophyllatum). J Food Biochem 2020; 44:e13499. [PMID: 33020933 DOI: 10.1111/jfbc.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
Influence of drying, juice processing, and simulated enteric digestion on bioactive constituents and bioactivity of Syzygium caryophyllatum fruit was assessed and compared with fresh blueberry (Vaccinium angustifolium). Methanolic extracts of fresh fruits and processed products and digesta at different digestion phases were analyzed for phenolics, flavonoids, anthocyanin, β-carotene, lycopene, and ascorbic acid contents, and antioxidant activities. The results indicated that fresh black-plum possesses higher bioactives content and antioxidant activities compared to processed black plum. The contents of bioactives and antioxidant activities reduced gradually due to gastrocolic digestion. Bioaccessibility and bioavailability of bioactives from blueberry, black-plum, and its products showed significant variations. These results highlighted that the alterations in contents of bioactives and antioxidant activities of black-plum due to drying, juice processing, and gastrocolic digestion could potentially influence on bioaccessibility and dialysis or potential bioavailability of bioactives found in black-plums. PRACTICAL APPLICATIONS: The present research produced a comprehensive cognition regarding alterations in the contents of bioactive constituents and antioxidant activity of black plum due to drying, juice processing, and gastrointestinal digestion, which can function as a new source of functional food.
Collapse
|
19
|
Bobi J, Solanes N, Dantas AP, Ishida K, Regueiro A, Castillo N, Sabaté M, Rigol M, Freixa X. Moderate Hypothermia Modifies Coronary Hemodynamics and Endothelium-Dependent Vasodilation in a Porcine Model of Temperature Management. J Am Heart Assoc 2020; 9:e014035. [PMID: 32009525 PMCID: PMC7033898 DOI: 10.1161/jaha.119.014035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Background Hypothermia has been associated with therapeutic benefits including reduced mortality and better neurologic outcomes in survivors of cardiac arrest. However, undesirable side effects have been reported in patients undergoing coronary interventions. Using a large animal model of temperature management, we aimed to describe how temperature interferes with the coronary vasculature. Methods and Results Coronary hemodynamics and endothelial function were studied in 12 pigs at various core temperatures. Left circumflex coronary artery was challenged with intracoronary nitroglycerin, bradykinin, and adenosine at normothermia (38°C) and mild hypothermia (34°C), followed by either rewarming (38°C; n=6) or moderate hypothermia (MoHT; 32°C, n=6). Invasive coronary hemodynamics by Doppler wire revealed a slower coronary blood velocity at 32°C in the MoHT protocol (normothermia 20.2±11.2 cm/s versus mild hypothermia 18.7±4.3 cm/s versus MoHT 11.3±5.3 cm/s, P=0.007). MoHT time point was also associated with high values of hyperemic microvascular resistance (>3 mm Hg/cm per second) (normothermia 2.0±0.6 mm Hg/cm per second versus mild hypothermia 2.0±0.8 mm Hg/cm per second versus MoHT 3.4±1.6 mm Hg/cm per second, P=0.273). Assessment of coronary vasodilation by quantitative coronary analysis showed increased endothelium-dependent (bradykinin) vasodilation at 32°C when compared with normothermia (normothermia 6.96% change versus mild hypothermia 9.01% change versus MoHT 25.42% change, P=0.044). Results from coronary reactivity in vitro were in agreement with angiography data and established that endothelium-dependent relaxation in MoHT completely relies on NO production. Conclusions In this porcine model of temperature management, 34°C hypothermia and rewarming (38°C) did not affect coronary hemodynamics or endothelial function. However, 32°C hypothermia altered coronary vasculature physiology by slowing coronary blood flow, increasing microvascular resistance, and exacerbating endothelium-dependent vasodilatory response.
Collapse
Affiliation(s)
- Joaquim Bobi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Núria Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Ana Paula Dantas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Kohki Ishida
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
- Department of Internal Medicine and CardiologyKitasato University School of MedicineSagamiharaJapan
| | - Ander Regueiro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Nadia Castillo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Manel Sabaté
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Montserrat Rigol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Xavier Freixa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| |
Collapse
|
20
|
Akt1-mediated CPR cooling protection targets regulators of metabolism, inflammation and contractile function in mouse cardiac arrest. PLoS One 2019; 14:e0220604. [PMID: 31398213 PMCID: PMC6688812 DOI: 10.1371/journal.pone.0220604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/21/2019] [Indexed: 12/31/2022] Open
Abstract
Therapeutic hypothermia initiated during cardiopulmonary resuscitation (CPR) in pre-clinical studies appears to be highly protective against sudden cardiac arrest injury. Given the challenges to implementing CPR cooling clinically, insights into its critical mechanisms of protection could guide development of new CPR drugs that mimic hypothermia effects without the need for physical cooling. Here, we used Akt1-deficient mice that lose CPR hypothermia protection to identify hypothermia targets. Adult female C57BL/6 mice (Akt1+/+ and Akt1+/-) underwent 8 min of KCl-induced asystolic arrest and were randomized to receive hypothermia (30 ± 0.5°C) or normothermia. Hypothermia was initiated during CPR and extended for 1 h after resuscitation. Neurologically scored survival was measured at 72 h. Other outcomes included mean arterial pressure and target measures in heart and brain related to contractile function, glucose utilization and inflammation. Compared to northothermia, hypothermia improved both 2h mean arterial pressure and 72h neurologically intact survival in Akt1+/+ mice but not in Akt1+/- mice. In Akt1+/+ mice, hypothermia increased Akt and GSK3β phosphorylation, pyruvate dehydrogenase activation, and NAD+ and ATP production while decreasing IκBα degradation and NF-κB activity in both heart and brain at 30 min after CPR. It also increased phospholamban phosphorylation in heart tissue. Further, hypothermia reduced metabolic and inflammatory blood markers lactate and Pre-B cell Colony Enhancing Factor. Despite hypothermia treatment, all these effects were reversed in Akt1+/- mice. Taken together, drugs that target Akt1 and its effectors may have the potential to mimic hypothermia-like protection to improve sudden cardiac arrest survival when administered during CPR.
Collapse
|
21
|
Therapeutic Hypothermia After Cardiac Arrest: Involvement of the Risk Pathway in Mitochondrial PTP-Mediated Neuroprotection. Shock 2019; 52:224-229. [DOI: 10.1097/shk.0000000000001234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Dose-Dependent Cardioprotection of Moderate (32°C) Versus Mild (35°C) Therapeutic Hypothermia in Porcine Acute Myocardial Infarction. JACC Cardiovasc Interv 2019; 11:195-205. [PMID: 29348013 DOI: 10.1016/j.jcin.2017.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The study investigated whether a dose response exists between myocardial salvage and the depth of therapeutic hypothermia. BACKGROUND Cardiac protection from mild hypothermia during acute myocardial infarction (AMI) has yielded equivocal clinical trial results. Rapid, deeper hypothermia may improve myocardial salvage. METHODS Swine (n = 24) undergoing AMI were assigned to 3 reperfusion groups: normothermia (38°C) and mild (35°C) and moderate (32°C) hypothermia. One-hour anterior myocardial ischemia was followed by rapid endovascular cooling to target reperfusion temperature. Cooling began 30 min before reperfusion. Target temperature was reached before reperfusion and was maintained for 60 min. Infarct size (IS) was assessed on day 6 using cardiac magnetic resonance, triphenyl tetrazolium chloride, and histopathology. RESULTS Triphenyl tetrazolium chloride area at risk (AAR) was equivalent in all groups (p = 0.2), but 32°C exhibited 77% and 91% reductions in IS size per AAR compared with 35°C and 38°C, respectively (AAR: 38°C, 45 ± 12%; 35°C, 17 ± 10%; 32°C, 4 ± 4%; p < 0.001) and comparable reductions per LV mass (LV mass: 38°C, 14 ± 5%; 35°C, 5 ± 3%; 32°C 1 ± 1%; p < 0.001). Importantly, 32°C showed a lower IS AAR (p = 0.013) and increased immunohistochemical granulation tissue versus 35°C, indicating higher tissue salvage. Delayed-enhancement cardiac magnetic resonance IS LV also showed marked reduction at 32°C (38°C: 10 ± 4%, p < 0.001; 35°C: 8 ± 3%; 32°C: 3 ± 2%, p < 0.001). Cardiac output on day 6 was only preserved at 32°C (reduction in cardiac output: 38°C, -29 ± 19%, p = 0.041; 35°C: -17 ± 33%; 32°C: -1 ± 28%, p = 0.041). Using linear regression, the predicted IS reduction was 6.7% (AAR) and 2.1% (LV) per every 1°C reperfusion temperature decrease. CONCLUSIONS Moderate (32°C) therapeutic hypothermia demonstrated superior and near-complete cardioprotection compared with 35°C and control, warranting further investigation into clinical applications.
Collapse
|
23
|
Kohlhauer M, Pell VR, Burger N, Spiroski AM, Gruszczyk A, Mulvey JF, Mottahedin A, Costa ASH, Frezza C, Ghaleh B, Murphy MP, Tissier R, Krieg T. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol 2019; 114:18. [PMID: 30877396 PMCID: PMC6420484 DOI: 10.1007/s00395-019-0727-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 03/12/2019] [Indexed: 01/23/2023]
Abstract
Hypothermia induced at the onset of ischemia is a potent experimental cardioprotective strategy for myocardial infarction. The aim of our study was to determine whether the beneficial effects of hypothermia may be due to decreasing mitochondria-mediated mechanisms of damage that contribute to the pathophysiology of ischemia/reperfusion injury. New Zealand male rabbits were submitted to 30 min of myocardial ischemia with hypothermia (32 °C) induced by total liquid ventilation (TLV). Hypothermia was applied during ischemia alone (TLV group), during ischemia and reperfusion (TLV-IR group) and normothermia (Control group). In all the cases, ischemia was performed by surgical ligation of the left anterior descending coronary artery and was followed by 3 h of reperfusion before assessment of infarct size. In a parallel study, male C57BL6/J mice underwent 30 min myocardial ischemia followed by reperfusion under either normothermia (37 °C) or conventionally induced hypothermia (32 °C). In both the models, the levels of the citric acid cycle intermediate succinate, mitochondrial complex I activity were assessed at various times. The benefit of hypothermia during ischemia on infarct size was compared to inhibition of succinate accumulation and oxidation by the complex II inhibitor malonate, applied as the pro-drug dimethyl malonate under either normothermic or hypothermic conditions. Hypothermia during ischemia was cardioprotective, even when followed by normothermic reperfusion. Hypothermia during ischemia only, or during both, ischemia and reperfusion, significantly reduced infarct size (2.8 ± 0.6%, 24.2 ± 3.0% and 49.6 ± 2.6% of the area at risk, for TLV-IR, TLV and Control groups, respectively). The significant reduction of infarct size by hypothermia was neither associated with a decrease in ischemic myocardial succinate accumulation, nor with a change in its rate of oxidation at reperfusion. Similarly, dimethyl malonate infusion and hypothermia during ischemia additively reduced infarct size (4.8 ± 2.2% of risk zone) as compared to either strategy alone. Hypothermic cardioprotection is neither dependent on the inhibition of succinate accumulation during ischemia, nor of its rapid oxidation at reperfusion. The additive effect of hypothermia and dimethyl malonate on infarct size shows that they are protective by distinct mechanisms and also suggests that combining these different therapeutic approaches could further protect against ischemia/reperfusion injury during acute myocardial infarction.
Collapse
Affiliation(s)
- M Kohlhauer
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - V R Pell
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - N Burger
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - A M Spiroski
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - A Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - J F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amin Mottahedin
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - C Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - B Ghaleh
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - M P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - R Tissier
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| | - T Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
24
|
Boccalandro F, Cedeno FA. Successful Re-Initiation of Therapeutic Hypothermia as Adjunctive Salvage Therapy in a Case of Refractory Cardiogenic Shock Due to Acute Myocardial Infarction. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:323-329. [PMID: 30858348 PMCID: PMC6421978 DOI: 10.12659/ajcr.913459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) complicated by cardiogenic shock has a high mortality rate, despite prompt revascularization, advanced medical therapy and the use of mechanical circulatory support devices. Therapeutic hypothermia is associated with physiological cellular changes in the ischemic myocardium, and a trend towards improved hemodynamics in patients with AMI and cardiogenic shock, but is currently not considered to be a therapeutic modality. A case is presented that supports the role of therapeutic hypothermia as salvage therapy in patients with cardiogenic shock following AMI. CASE REPORT A 37-year-old man who presented with cardiac arrest following an anterior wall AMI due to occlusion of the left anterior descending coronary artery complicated by cardiogenic shock, underwent emergent percutaneous revascularization with placement of a stent, a percutaneous left ventricular-assist device (LVAD), and a pulmonary artery catheter. Therapeutic hypothermia was initiated to achieve a target core body temperature of between 32-34°C for 24 hours, followed by slow re-warming. However, after rewarming, the patient developed refractory cardiogenic shock, despite revascularization, pharmacological and mechanical circulatory support. A second cycle of therapeutic hypothermia was initiated as salvage therapy, leading to clinical improvement. The patient had a favorable outcome, was discharged from hospital and was able to return to work. CONCLUSIONS The first successful case is described in which therapeutic hypothermia was re-initiated as salvage therapy for cardiogenic shock where no other hemodynamic support resources were available.
Collapse
Affiliation(s)
- Fernando Boccalandro
- Procare, Odessa Heart Institute, Odessa, TX, USA.,Permian Research Fundation, Odessa, TX, USA.,Department of Internal Medicine, Texas Tech University Health Science Center, Odessa, TX, USA
| | | |
Collapse
|
25
|
Stokes SM, Belknap JK, Engiles JB, Stefanovski D, Bertin FR, Medina-Torres CE, Horn R, van Eps AW. Continuous digital hypothermia prevents lamellar failure in the euglycaemic hyperinsulinaemic clamp model of equine laminitis. Equine Vet J 2019; 51:658-664. [PMID: 30636340 DOI: 10.1111/evj.13072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Continuous digital hypothermia can prevent the development and progression of laminitis associated with sepsis but its effects on laminitis due to hyperinsulinaemia are unknown. OBJECTIVES To determine the effects of continuous digital hypothermia on laminitis development in the euglycaemic hyperinsulinaemic clamp model. STUDY DESIGN Randomised, controlled (within subject), blinded, experiment. METHODS Eight clinically normal Standardbred horses underwent laminitis induction using the euglycaemic hyperinsulinaemic clamp model (EHC). At initiation of the EHC, one forelimb was continuously cooled (ICE), with the other maintained at ambient temperature (AMB). Dorsal lamellar sections (proximal, middle, distal) were harvested 48 h after initiation of the EHC and were analysed using histological scoring (0-3) and histomorphometry. Cellular proliferation was quantified by counting epidermal cell nuclei staining positive with an immunohistochemical proliferation marker (TPX2). RESULTS Severe elongation and disruption of SEL with dermo-epidermal separation (score of 3) was observed in all AMB feet at one or more section locations, but was not observed in any ICE sections. Overall 92% of the AMB sections received the most severe histological score (grade 3) and 8% were grade 2, whereas ICE sections were classified as either grade 1 (50%) or grade 2 (50%). Relative to AMB feet, ICE sections were 98% less likely to exhibit grades 2 or 3 (OR: 0.02, 95% CI 0.001, 0.365; P<0.01). Histomorphometry measurements of total and nonkeratinised primary epidermal lamellar length were significantly increased (P<0.01) in AMB limbs compared with ICE. TPX2 positive cell counts were significantly increased (P<0.01) in AMB limbs compared with ICE. MAIN LIMITATIONS Continuous digital hypothermia was initiated before recognition of laminitis and therefore the clinical applicability requires further investigation. CONCLUSIONS Continuous digital hypothermia reduced the severity of laminitis in the EHC model and prevented histological lesions compatible with lamellar structural failure.
Collapse
Affiliation(s)
- S M Stokes
- Australian Equine Laminitis Research Unit, School of Veterinary Science, the University of Queensland, Gatton, Queensland, Australia
| | - J K Belknap
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio, USA
| | - J B Engiles
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA.,New Bolton Center, Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - D Stefanovski
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - F R Bertin
- Australian Equine Laminitis Research Unit, School of Veterinary Science, the University of Queensland, Gatton, Queensland, Australia
| | - C E Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science, the University of Queensland, Gatton, Queensland, Australia
| | - R Horn
- Australian Equine Laminitis Research Unit, School of Veterinary Science, the University of Queensland, Gatton, Queensland, Australia
| | - A W van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science, the University of Queensland, Gatton, Queensland, Australia.,New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
26
|
Li Z, Cheng Z, Haifeng Y, Chen M, Li L. PTEN signaling inhibitor VO-OHpic improves cardiac myocyte survival by mediating apoptosis resistance in vitro. Biomed Pharmacother 2018; 103:1217-1222. [PMID: 29864901 DOI: 10.1016/j.biopha.2018.04.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a server disease effecting a large population worldwide. The pathophysiological process of ischemic/reperfusion (I/R) plays an important role for heart tissue damage. VO-OHpic, a PTEN inhibitor, has been demonstrated to be cardiac protective in sudden cardiac arrest models, but its role in AMI remains unclear. METHODS An isolated AMI model was induced by dissecting the rat heart in a Langendorff system. Cardiac myocytes were extracted and induced ischemia in vitro. VO-OHpic was added into the above systems. The area of infarcted tissue in the heart was measured. Cardiac myocyte apoptosis was assessed by flow cytometry. Activation of Akt and GSK3β was quantified by flow cytometry. IL-10 levels were determined by ELISA. RESULTS VO-OHpic reduced infarcted areas in the isolated heart, and improved cultured cardiac myocyte survival. VO-OHpic induced apoptosis resistance in cardiac myocytes. Akt-GSK3β signaling was activated by VO-OHpic administration. IL-10 levels in the medium were elevated by VO-OHpic. CONCLUSION VO-OHpic protects heart tissue by apoptosis resistance via activating Akt-GSK3β signaling and increasing IL-10 levels.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhenfeng Cheng
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yu Haifeng
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Mengting Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Lifang Li
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang, China.
| |
Collapse
|
27
|
Preconditioning-Like Properties of Short-Term Hypothermia in Isolated Perfused Rat Liver (IPRL) System. Int J Mol Sci 2018; 19:ijms19041023. [PMID: 29596325 PMCID: PMC5979303 DOI: 10.3390/ijms19041023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
Hypothermia may attenuate the progression of ischemia-induced damage in liver. Here, we determined the effects of a brief cycle of hypothermic preconditioning applied before an ischemic/reperfusion (I/R) episode in isolated perfused rat liver (IPRL) on tissue damage and oxidative stress. Rats (male, 200–250 g) were anaesthetised with sodium pentobarbital (60 mg·kg−1 i.p) and underwent laparatomy. The liver was removed and perfused in a temperature-regulated non-recirculating system. Livers were randomly divided into two groups (n = 6 each group). In the hypothermia-preconditioned group, livers were perfused with hypothermic buffer (cycle of 10 min at 22 °C plus 10 min at 37 °C) and the other group was perfused at 37 °C. Both groups were then submitted to 40 min of warm ischemia and 20 min of warm reperfusion. The level of tissue-damage indicators (alanine amino transferase, ALT; lactate dehydrogenase, LDH; and proteins), oxidative stress markers (thiobarbituric acid-reactive substances, TBARS; advanced oxidation protein products, AOPP; and glutathione, GSH) were measured in aliquots of perfusate sampled at different time intervals. Histological determinations and oxidative stress biomarkers in homogenized liver (AOPP; TBARS; nitric oxide derivatives, NOx; GSH and glutathione disulphide, GSSG) were also made in the tissue at the end. Results showed that both damage and oxidant indicators significantly decreased while antioxidant increased in hypothermic preconditioned livers. In addition, homogenized liver determinations and histological observations at the end of the protocol corroborate the results in the perfusate, confirming the utility of the perfusate as a non-invasive method. In conclusion, hypothermic preconditioning attenuates oxidative damage and appears to be a promising strategy to protect the liver against IR injury.
Collapse
|
28
|
Baicalein Rescues Delayed Cooling via Preservation of Akt Activation and Akt-Mediated Phospholamban Phosphorylation. Int J Mol Sci 2018; 19:ijms19040973. [PMID: 29587364 PMCID: PMC5979521 DOI: 10.3390/ijms19040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Cooling reduces the ischemia/reperfusion (I/R) injury seen in sudden cardiac arrest (SCA) by decreasing the burst of reactive oxygen species (ROS). Its cardioprotection is diminished when delay in reaching the target temperature occurs. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis Georgi, possesses antioxidant properties. Therefore, we hypothesized that baicalein can rescue cooling cardioprotection when cooling is delayed. Two murine cardiomyocyte models, an I/R model (90 min ischemia/3 h reperfusion) and stunning model (30 min ischemia/90 min reperfusion), were used to assess cell survival and contractility, respectively. Cooling (32 °C) was initiated either during ischemia or during reperfusion. Cell viability and ROS generation were measured. Cell contractility was evaluated by real-time phase-contrast imaging. Our results showed that cooling reduced cell death and ROS generation, and this effect was diminished when cooling was delayed. Baicalein (25 µM), given either at the start of reperfusion or start of cooling, resulted in a comparable reduction of cell death and ROS production. Baicalein improved phospholamban phosphorylation, contractility recovery, and cell survival. These effects were Akt-dependent. In addition, no synergistic effect was observed with the combined treatments of cooling and baicalein. Our data suggest that baicalein may serve as a novel adjunct therapeutic strategy for SCA resuscitation.
Collapse
|
29
|
Guo J, Zhang S, Ma L, Shi H, Zhu J, Wu J, An Y, Ge J. Cardioprotection by Mild Hypothermia Is Abolished in Aged Mice. Ther Hypothermia Temp Manag 2017; 7:193-198. [PMID: 28445087 DOI: 10.1089/ther.2017.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junjie Guo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Shuning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongtao Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Otterspoor LC, van Nunen LX, van ‘t Veer M, Johnson NP, Pijls NH. Intracoronary Hypothermia Before Reperfusion to Reduce Reperfusion Injury in Acute Myocardial Infarction: A Novel Hypothesis and Technique. Ther Hypothermia Temp Manag 2017; 7:199-205. [DOI: 10.1089/ther.2017.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Luuk C. Otterspoor
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Marcel van ‘t Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Nils P. Johnson
- Division of Cardiology, Weatherhead PET Center, McGovern Medical School, UTHealth and Memorial Hermann Hospital, Houston, Texas
| | - Nico H.J. Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
31
|
Li J, Chang WT, Li CQ, Lee C, Huang HH, Hsu CW, Chen WJ, Zhu X, Wang CZ, Vanden Hoek TL, Shao ZH. Baicalein Preventive Treatment Confers Optimal Cardioprotection by PTEN/Akt/NO Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:987-1001. [PMID: 28760044 DOI: 10.1142/s0192415x17500525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein is a flavonoid with excellent oxidant scavenging capability. It has been reported to protect against a variety of oxidative injuries including ischemia/reperfusion (I/R). However, the optimal treatment strategy for I/R injury and the protective mechanisms are not fully understood. In this study we employed an established chick cardiomyocyte model of I/R and investigated the effects of three baicalein treatment strategies on reactive oxygen species (ROS) scavenging, nitric oxide (NO) production and cell viability. The molecular signaling pathways were also explored. Compared to the I/R control (cell death 52.2[Formula: see text][Formula: see text][Formula: see text]2.0%), baicalein preventive treatment (25[Formula: see text][Formula: see text]M, pretreated for 72[Formula: see text]h and continued through I/R) conferred the best protection (19.5[Formula: see text][Formula: see text][Formula: see text]3.9%, [Formula: see text]), followed by I/R treatment (treated during I/R) and reperfusion treatment (treated at reperfusion only). Preventive and I/R treatments almost completely abolished ROS generation during both ischemic and reperfusion phases, and increased NO production and Akt phosphorylation. Reperfusion treatment reduced the ROS burst in the early reperfusion phase only, and had no effect on NO production and Akt activation. Further, the phosphorylation of phosphatase and tensin homolog (PTEN), a phosphatase negatively regulating Akt activation, was significantly increased by baicalein preventive treatment and slightly by the I/R treatment. PTEN protein expression was reduced in the same trend accordingly. Baicalein reperfusion treatment had no effects on PTEN phosphorylation and expression. Our results indicate that baicalein preventive treatment confers optimal cardioprotection against I/R injury, and this protection involves effective oxidant scavenging and the activation of PTEN/Akt/NO pathway.
Collapse
Affiliation(s)
- Jing Li
- * Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,† Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Wei-Tien Chang
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,‡ Department of Emergency Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Chang-Qing Li
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Chunpei Lee
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Hsien-Hao Huang
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,§ Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chin-Wan Hsu
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA.,¶ Department of Emergency Medicine, School of Medicine, College of Medicine; Department of Emergency and Critical Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wen-Jone Chen
- ‡ Department of Emergency Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Xiangdong Zhu
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- ∥ Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Terry L Vanden Hoek
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| | - Zuo-Hui Shao
- † Department of Emergency Medicine, Center for Advanced Resuscitation Medicine and Program in Sudden Cardiac Death, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
32
|
Piao L, Fang YH, Kubler MM, Donnino MW, Sharp WW. Enhanced pyruvate dehydrogenase activity improves cardiac outcomes in a murine model of cardiac arrest. PLoS One 2017; 12:e0185046. [PMID: 28934276 PMCID: PMC5608301 DOI: 10.1371/journal.pone.0185046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Rationale Post-ischemic changes in cellular metabolism alter myocardial and neurological function. Pyruvate dehydrogenase (PDH), the limiting step in mitochondrial glucose oxidation, is inhibited by increased expression of PDH kinase (PDK) during ischemia/reperfusion injury. This results in decreased utilization of glucose to generate cellular ATP. Post-cardiac arrest (CA) hypothermia improves outcomes and alters metabolism, but its influence on PDH and PDK activity following CA are unknown. We hypothesized that therapeutic hypothermia (TH) following CA is associated with the inhibition of PDK activity and increased PDH activity. We further hypothesized that an inhibitor of PDK activity, dichloroacetate (DCA), would improve PDH activity and post-CA outcomes. Methods and results Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 12-minute KCl-induced CA followed by cardiopulmonary resuscitation. Compared to normothermic (37°C) CA controls, administering TH (30°C) improved overall survival (72-hour survival rate: 62.5% vs. 28.6%, P<0.001), post-resuscitation myocardial function (ejection fraction: 50.9±3.1% vs. 27.2±2.0%, P<0.001; aorta systolic pressure: 132.7±7.3 vs. 72.3±3.0 mmHg, P<0.001), and neurological scores at 72-hour post CA (9.5±1.3 vs. 5.4±1.3, P<0.05). In both heart and brain, CA increased lactate concentrations (1.9-fold and 3.1-fold increase, respectively, P<0.01), decreased PDH enzyme activity (24% and 50% reduction, respectively, P<0.01), and increased PDK protein expressions (1.2-fold and 1.9-fold, respectively, P<0.01). In contrast, post-CA treatment with TH normalized lactate concentrations (P<0.01 and P<0.05) and PDK expressions (P<0.001 and P<0.05), while increasing PDH activity (P<0.01 and P<0.01) in both the heart and brain. Additionally, treatment with DCA (0.2 mg/g body weight) 30 min prior to CA improved both myocardial hemodynamics 2 hours post-CA (aortic systolic pressure: 123±3 vs. 96±4 mmHg, P<0.001) and 72-hour survival rates (50% vs. 19%, P<0.05) in normothermic animals. Conclusions Enhanced PDH activity in the setting of TH or DCA administration is associated with improved post-CA resuscitation outcomes. PDH is a promising therapeutic target for improving post-CA outcomes.
Collapse
Affiliation(s)
- Lin Piao
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yong-Hu Fang
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Manfred M. Kubler
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Michael W. Donnino
- Departments of Emergency Medicine and Internal Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Willard W. Sharp
- Section of Emergency Medicine; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Jahandiez V, Cour M, Bochaton T, Abrial M, Loufouat J, Gharib A, Varennes A, Ovize M, Argaud L. Fast therapeutic hypothermia prevents post-cardiac arrest syndrome through cyclophilin D-mediated mitochondrial permeability transition inhibition. Basic Res Cardiol 2017; 112:35. [PMID: 28492973 DOI: 10.1007/s00395-017-0624-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 03/14/2023]
Abstract
The opening of the mitochondrial permeability transition pore (PTP), which is regulated by the matrix protein cyclophilin D (CypD), plays a key role in the pathophysiology of post-cardiac arrest (CA) syndrome. We hypothesized that therapeutic hypothermia could prevent post-CA syndrome through a CypD-mediated PTP inhibition in both heart and brain. In addition, we investigated whether specific pharmacological PTP inhibition would confer additive protection to cooling. Adult male New Zealand White rabbits underwent 15 min of CA followed by 120 min of reperfusion. Five groups (n = 10-15/group) were studied: control group (CA only), hypothermia group (HT, hypothermia at 32-34 °C induced by external cooling at reperfusion), NIM group (injection at reperfusion of 2.5 mg/kg NIM811, a specific CypD inhibitor), HT + NIM, and sham group. The following measurements were taken: hemodynamics, echocardiography, and cellular damage markers (including S100β protein and troponin Ic). Oxidative phosphorylation and PTP opening were assessed on mitochondria isolated from both brain and heart. Acetylation of CypD was measured by immunoprecipitation in both the cerebral cortex and myocardium. Hypothermia and NIM811 significantly prevented cardiovascular dysfunction, pupillary areflexia, and early tissue damage. Hypothermia and NIM811 preserved oxidative phosphorylation, limited PTP opening in both brain and heart mitochondria and prevented increase in CypD acetylation in brain. There were no additive beneficial effects in the combination of NIM811 and therapeutic hypothermia. In conclusion, therapeutic hypothermia limited post-CA syndrome by preventing mitochondrial permeability transition mainly through a CypD-dependent mechanism.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Thomas Bochaton
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Maryline Abrial
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Joseph Loufouat
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Abdallah Gharib
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Annie Varennes
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biochimie, 69437, Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France.
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France.
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France.
| |
Collapse
|
34
|
Chen X, Li L, Hu J, Zhang C, Pan Y, Tian D, Tang Z. Anti-inflammatory effect of dexmedetomidine combined with hypothermia on acute respiratory distress syndrome in rats. J Surg Res 2017; 216:179-184. [PMID: 28807204 DOI: 10.1016/j.jss.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND To investigate the protective effect of combination of dexmedetomidine and hypothermia on lipopolysaccharide (LPS) induced acute respiratory distress syndrome in rats. METHODS Fifty male Wistar rats were randomly divided into five groups, with 10 rats in each group. The acute respiratory distress syndrome model was reproduced by LPS injected into the right external jugular vein (L group); only saline was injected into the right external jugular vein for control group (C group). In hypothermia group (T group), the body temperature was lowered to 32.5°C-33.0°C after 1 h of LPS injection, and 10 rats were sacrificed at 8 h. Group dexmedetomidine (D group) and dexmedetomidine combined with hypothermia group (DT group) received intraperitoneal dexmedetomidine 30 min before LPS was injected. The arterial blood gas was determined in all the groups before and 8 h after instillation of saline or LPS, and the oxygenation index (PaO2/FiO2) was calculated. The pro-inflammatory cytokines TNF-alpha (TNF-α) and interleukin- 6 (IL-6) levels were determined by enzyme-linked immunosorbent assay. The expression of inflammatory signaling proteins in bronchial alveolar lavage fluid was determined by Western blot. RESULTS Compared with group L, TNF-α and IL-6 levels in serum of rats were significantly lower (P < 0.05), the expression of toll-like receptors 4 and phosphorylated c-Jun N-terminal kinase was significantly lower (P < 0.05), and the p-Akt level was significantly higher (P < 0.05). Moreover, the dexmedetomidine combined with hypothermia treated was superior to the single method. CONCLUSIONS The combination of dexmedetomidine and hypothermia could alleviate acute lung injury in rats.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Juntao Hu
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Chi Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Yiping Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Diansheng Tian
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhanhong Tang
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
35
|
Krech J, Tong G, Wowro S, Walker C, Rosenthal LM, Berger F, Schmitt KRL. Moderate therapeutic hypothermia induces multimodal protective effects in oxygen-glucose deprivation/reperfusion injured cardiomyocytes. Mitochondrion 2017; 35:1-10. [PMID: 28396253 DOI: 10.1016/j.mito.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Therapeutic hypothermia has been shown to attenuate myocardial cell death due to ischemia/reperfusion injury. However, cellular mechanisms of cooling remain to be elucidated. Especially during reperfusion, mitochondrial dysfunction contributes to cell death by releasing apoptosis inductors. The aim of the present study was to investigate the effects of moderate therapeutic hypothermia (33.5°C) on mitochondrial mediated apoptosis in ischemia/reperfusion-injured cardiomyocytes. METHODS Ischemic injury was simulated by oxygen-glucose deprivation for 6h in glucose/serum-free medium at 0.2% O2 in mouse atrial HL-1 cardiomyocytes. Simulation of reperfusion was achieved by restoration of nutrients in complete supplemented medium and incubation at 21% O2. Early application of therapeutic hypothermia, cooling during the oxygen-glucose deprivation phase, was initiated after 3h of oxygen-glucose deprivation and maintained for 24h. Mitochondrial membrane integrity was assessed by cytochrome c and AIF protein releases. Furthermore, mitochondria were stained with MitoTracker Red and intra-cellular cytochrome c localization was visualized by immunofluorescence staining. Moreover, anti-apoptotic Bcl-2 and Hsp70 as well as phagophore promoting LC3-II protein expressions were analyzed by Western-blot analysis. RESULTS Therapeutic hypothermia initiated during oxygen-glucose deprivation significantly reduced mitochondrial release of cytochrome c and AIF in cardiomyocytes during reperfusion. Secondly, anti-apoptotic Bcl-2/Bax ratio and Hsp70 protein expressions were significantly upregulated due to hypothermia, indicating an inhibition of both caspase-dependent and -independent apoptosis. Furthermore, cardiomyocytes treated with therapeutic hypothermia showed increased LC3-II protein levels associated with the mitochondria during the first 3h of reperfusion, indicating the initiation of phagophores formation and sequestration of presumably damaged mitochondrion. CONCLUSION Early application of therapeutic hypothermia effectively inhibited cardiomyocyte cell death due to oxygen-glucose deprivation/reperfusion-induced injury via multiple pathways. As hypothermia preserved mitochondrial membrane integrity, which resulted in reduced cytochrome c and AIF releases, induction of both caspase-dependent and -independent apoptosis was minimized. Secondly, cooling attenuated intrinsic apoptosis via Hsp70 upregulation and increasing anti-apoptotic Bcl-2/Bax ratio. Moreover, therapeutic hypothermia promoted mitochondrial associated LC3-II during the early phase of reperfusion, possibly leading to the sequestration and degradation of damaged mitochondrion to attenuate the activation of cell death.
Collapse
Affiliation(s)
- Jana Krech
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Sylvia Wowro
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christoph Walker
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lisa-Maria Rosenthal
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Pediatric Cardiology, Charité - University Medical Center, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Rose Luise Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
36
|
Liu JD, Chen HJ, Wang DL, Wang H, Deng Q. Pim-1 Kinase Regulating Dynamics Related Protein 1 Mediates Sevoflurane Postconditioning-induced Cardioprotection. Chin Med J (Engl) 2017; 130:309-317. [PMID: 28139514 PMCID: PMC5308013 DOI: 10.4103/0366-6999.198922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND It is well documented that sevoflurane postconditioning (SP) has a significant myocardial protection effect. However, the mechanisms underlying SP are still unclear. In the present study, we investigated the hypothesis that the Pim-1 kinase played a key role in SP-induced cardioprotection by regulating dynamics-related protein 1 (Drp1). METHODS A Langendorff model was used in this study. Seventy-two rats were randomly assigned into six groups as follows: CON group, ischemia reperfusion (I/R) group, SP group , SP+proto-oncogene serine/threonine-protein kinase 1 (Pim-1) inhibitor II group, SP+dimethylsufoxide group, and Pim-1 inhibitor II group (n = 12, each). Hemodynamic parameters and infarct size were measured to reflect the extent of myocardial I/R injury. The expressions of Pim-1, B-cell leukemia/lymphoma 2 (Bcl-2) and cytochrome C (Cyt C) in cytoplasm and mitochondria, the Drp1 in mitochondria, and the total Drp1 and p-Drp1ser637 were measured by Western blotting. In addition, transmission electron microscope was used to observe mitochondrial morphology. The experiment began in October 2014 and continued until July 2016. RESULTS SP improved myocardial I/R injury-induced hemodynamic parametric changes, cardiac function, and preserved mitochondrial phenotype and decreased myocardial infarct size (24.49 ± 1.72% in Sev group compared with 41.98 ± 4.37% in I/R group; P< 0.05). However, Pim-1 inhibitor II significantly (P < 0.05) abolished the protective effect of SP. Western blotting analysis demonstrated that, compared with I/R group, the expression of Pim-1 and Bcl-2 in cytoplasm and mitochondria as well as the total p-Drp1ser637 in Sev group (P < 0.05) were upregulated. Meanwhile, SP inhibited Drp1 compartmentalization to the mitochondria followed by a reduction in the release of Cyt C. Pretreatment with Pim-1 inhibitor II significantly (P < 0.05) abolished SP-induced Pim-1/p-Drp1ser637 signaling activation. CONCLUSIONS These findings suggested that SP could attenuate myocardial ischemia-reperfusion injury by increasing the expression of the Pim-1 kinase. Upregulation of Pim-1 might phosphorylate Drp1 and prevent extensive mitochondrial fission through Drp1 cytosolic sequestration.
Collapse
Affiliation(s)
- Jin-Dong Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University; Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui-Juan Chen
- Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Da-Liang Wang
- Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Wang
- Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qian Deng
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University; Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
37
|
Kohlhauer M, Berdeaux A, Ghaleh B, Tissier R. Therapeutic hypothermia to protect the heart against acute myocardial infarction. Arch Cardiovasc Dis 2016; 109:716-722. [DOI: 10.1016/j.acvd.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 10/20/2022]
|
38
|
Farine E, Niederberger P, Wyss RK, Méndez-Carmona N, Gahl B, Fiedler GM, Carrel TP, Tevaearai Stahel HT, Longnus SL. Controlled Reperfusion Strategies Improve Cardiac Hemodynamic Recovery after Warm Global Ischemia in an Isolated, Working Rat Heart Model of Donation after Circulatory Death (DCD). Front Physiol 2016; 7:543. [PMID: 27920725 PMCID: PMC5118653 DOI: 10.3389/fphys.2016.00543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
Aims: Donation after circulatory death (DCD) could improve cardiac graft availability, which is currently insufficient to meet transplant demand. However, DCD organs undergo an inevitable period of warm ischemia and most cardioprotective approaches can only be applied at reperfusion (procurement) for ethical reasons. We investigated whether modifying physical conditions at reperfusion, using four different strategies, effectively improves hemodynamic recovery after warm ischemia. Methods and Results: Isolated hearts of male Wistar rats were perfused in working-mode for 20 min, subjected to 27 min global ischemia (37°C), and 60 min reperfusion (n = 43). Mild hypothermia (30°C, 10 min), mechanical postconditioning (MPC; 2x 30 s reperfusion/30 s ischemia), hypoxia (no O2, 2 min), or low pH (pH 6.8–7.4, 3 min) was applied at reperfusion and compared with controls (i.e., no strategy). After 60 min reperfusion, recovery of left ventricular work (developed pressure*heart rate; expressed as percent of pre-ischemic value) was significantly greater for mild hypothermia (62 ± 7%), MPC (65 ± 8%) and hypoxia (61 ± 11%; p < 0.05 for all), but not for low pH (45 ± 13%), vs. controls (44 ± 7%). Increased hemodynamic recovery was associated with greater oxygen consumption (mild hypothermia, MPC) and coronary perfusion (mild hypothermia, MPC, hypoxia), and with reduced markers of necrosis (mild hypothermia, MPC, hypoxia) and mitochondrial damage (mild hypothermia, hypoxia). Conclusions: Brief modifications in physical conditions at reperfusion, such as hypothermia, mechanical postconditioning, and hypoxia, improve post-ischemic hemodynamic function in our model of DCD. Cardioprotective reperfusion strategies applied at graft procurement could improve DCD graft recovery and limit further injury; however, optimal clinical approaches remain to be characterized.
Collapse
Affiliation(s)
- Emilie Farine
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Petra Niederberger
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Rahel K Wyss
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Natalia Méndez-Carmona
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Brigitta Gahl
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital Inselspital, Bern, Switzerland
| | - Thierry P Carrel
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Sarah L Longnus
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
39
|
Onukwufor JO, Kibenge F, Stevens D, Kamunde C. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:87-94. [DOI: 10.1016/j.cbpa.2016.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
40
|
Chavez LO, Leon M, Einav S, Varon J. Editor's Choice- Inside the cold heart: A review of therapeutic hypothermia cardioprotection. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 6:130-141. [PMID: 26714973 DOI: 10.1177/2048872615624242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted temperature management has been originally used to reduce neurological injury and improve outcome in patients after out-of-hospital cardiac arrest. Myocardial infarction remains a major cause of death in the world and several investigators are studying the effect of mild therapeutic hypothermia during an acute cardiac ischemic injury. A search on MEDLINE, Scopus and EMBASE databases was conducted to obtain data regarding the cardioprotective properties of therapeutic hypothermia. Preclinical studies have shown that therapeutic hypothermia provides a cardioprotective effect in animals. The proposed pathways for the cardioprotective effects of therapeutic hypothermia include stabilization of mitochondrial permeability, production of nitric oxide, equilibration of reactive oxygen species, and calcium channels homeostasis. Clinical trials in humans have yielded controversial results. Current trials are therefore seeking to combine therapeutic hypothermia with other treatment modalities in order to improve the outcomes of patients with acute ischemic injury. This article provides a review of the hypothermia effects on the cardiovascular system, from the basic science of physiological changes in the human body and molecular mechanisms of cardioprotection to the bench of clinical trials with therapeutic hypothermia in patients with acute ischemic injury.
Collapse
Affiliation(s)
- Luis O Chavez
- 1 University General Hospital, Houston, USA.,2 Universidad Autonoma de Baja California, Facultad de Medicina y Psicología, Tijuana, Mexico
| | - Monica Leon
- 1 University General Hospital, Houston, USA.,3 Universidad Popular Autonoma del Estado de Puebla, Facultad de Medicina Puebla, Mexico
| | - Sharon Einav
- 4 Shaare Zedek Medical Center and Hadassah-Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
41
|
Zhang J, Xue X, Xu Y, Zhang Y, Li Z, Wang H. The transcriptome responses of cardiomyocyte exposed to hypothermia. Cryobiology 2016; 72:244-50. [DOI: 10.1016/j.cryobiol.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
|
42
|
Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature. Behav Brain Res 2016; 340:23-28. [PMID: 27235716 DOI: 10.1016/j.bbr.2016.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.
Collapse
|
43
|
Yokobori S, Yokota H. Targeted temperature management in traumatic brain injury. J Intensive Care 2016; 4:28. [PMID: 27123304 PMCID: PMC4847250 DOI: 10.1186/s40560-016-0137-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is recognized as the significant cause of mortality and morbidity in the world. To reduce unfavorable outcome in TBI patients, many researches have made much efforts for the innovation of TBI treatment. With the results from several basic and clinical studies, targeted temperature management (TTM) including therapeutic hypothermia (TH) have been recognized as the candidate of neuroprotective treatment. However, their evidences are not yet proven in larger randomized controlled trials (RCTs). The main aim of this review is thus to clarify specific pathophysiology which TTM will be effective in TBI. Historically, there were several clinical trials which compare TH and normothermia. Recently, two RCTs were able to demonstrate the significant beneficial effects of TTM in one specific pathology, patients with mass evacuated lesions. These suggested that TTM might be effective especially for the ischemic-reperfusional pathophysiology of TBI, like as acute subdural hematoma which needs to be evacuated. Also, the latest preliminary report of European multicenter trial suggested the promising efficacy of reduction of intracranial pressure in TBI. Conclusively, TTM is still in the center of neuroprotective treatments in TBI. This therapy is expected to mitigate ischemic and reperfusional pathophysiology and to reduce intracranial pressure in TBI. Further results from ongoing clinical RCTs are waited.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo 113-8603 Japan
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo 113-8603 Japan
| |
Collapse
|
44
|
Wallmüller C, Testori C, Sterz F, Stratil P, Schober A, Herkner H, Hubner P, Weiser C, Stöckl M, Zeiner A, Losert H. Limited effect of mild therapeutic hypothermia on outcome after prolonged resuscitation. Resuscitation 2016; 98:15-9. [DOI: 10.1016/j.resuscitation.2015.09.400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/30/2015] [Indexed: 11/26/2022]
|
45
|
Huang CH, Tsai MS, Chiang CY, Su YJ, Wang TD, Chang WT, Chen HW, Chen WJ. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction. Basic Res Cardiol 2015; 110:59. [DOI: 10.1007/s00395-015-0516-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
|
46
|
Dai HB, Xu MM, Lv J, Ji XJ, Zhu SH, Ma RM, Miao XL, Duan ML. Mild Hypothermia Combined with Hydrogen Sulfide Treatment During Resuscitation Reduces Hippocampal Neuron Apoptosis Via NR2A, NR2B, and PI3K-Akt Signaling in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2015; 53:4865-73. [DOI: 10.1007/s12035-015-9391-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
|
47
|
Ji Z, Liu K, Cai L, Peng C, Xin R, Gao Z, Zhao E, Rastogi R, Han W, Rafols JA, Geng X, Ding Y. Therapeutic effect of tPA in ischemic stroke is enhanced by its combination with normobaric oxygen and hypothermia or ethanol. Brain Res 2015; 1627:31-40. [PMID: 26319679 DOI: 10.1016/j.brainres.2015.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Our lab has previously elucidated the neuroprotective effects of normobaric oxygen (NBO) and ethanol (EtOH) in ischemic stroke. The present study further evaluated the effect of EtOH or hypothermia (Hypo) in the presence of low concentration of NBO and determined whether EtOH can substitute hypothermia in a more clinically relevant autologous embolus rat stroke model in which reperfusion was established by tissue-type plasminogen activator (t-PA). METHODS At 1h of middle cerebral artery occlusion (MCAO) by an autologous embolus, rats received t-PA. In addition, at the same time, ischemic animals were treated with either EtOH (1.0 g/kg) or hypothermia (33°C for 3h) in combination with NBO (60% for 3h). Extent of neuroprotection was assessed by apoptotic cell death measured by ELISA and Western immunoblotting analysis for pro- (AIF, activated Caspase-3, Bax) and anti-apoptotic (Bcl-2) protein expression at 3 and 24h of reperfusion induced by t-PA administration. RESULTS Compared to ischemic rats treated only with t-PA, animals with NBO, hypothermia or EtOH had significantly reduced apoptotic cell death by 32.5%, 43.1% and 36.0% respectively. Furthermore, combination therapy that included NBO+EtOH or NBO+Hypo with t-PA exhibited a much larger decline (p<0.01) in the cell death by 71.1% and 73.6%, respectively. Similarly, NBO+EtOH or NBO+Hypo treatment in addition to t-PA enhanced beneficial effects on both pro- and anti-apoptotic protein expressions as compared to other options. CONCLUSIONS Neuroprotection after stroke can be enhanced by combination treatment with either EtOH or hypothermia in the presence of t-PA and 60% NBO. Because the effects produced by EtOH and hypothermia are comparable, their mechanism of action may be not only similar but also could be interchangeable in future clinical trials.
Collapse
Affiliation(s)
- Zhili Ji
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kayin Liu
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lipeng Cai
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Changya Peng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruiqiang Xin
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Radiology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhi Gao
- Cerebral Vascular Diseases Research Institute, Capital Medical University, Beijing, China
| | - Ethan Zhao
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jose A Rafols
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
48
|
Combined inhibitory effects of low temperature and N-acetyl-l-cysteine on the postovulatory aging of mouse oocytes. ZYGOTE 2015; 24:195-205. [PMID: 25801325 DOI: 10.1017/s0967199415000039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The postovulatory aging of oocytes eventually affects the development of oocytes and embryos. Oxidative stress is known to accelerate the onset of apoptosis in oocytes and influence their capacity for fertilisation. This study aimed to reveal the roles of temperature and the antioxidant N-acetyl-l-cysteine in preventing the aging of postovulatory mouse oocytes. First, newly ovulated mouse oocytes were cultured at various temperature and time combinations in HCZB medium with varying concentrations of N-acetyl-l-cysteine to assess signs of aging and developmental potential. When cultured in HCZB with 300 μM N-acetyl-l-cysteine at different temperature and incubation time combinations (namely 25°C for 12 h, 15°C for 24 h and 5°C for 12 h), the increase in the susceptibility of oocytes to activating stimuli was efficiently prevented, and the developmental potential was maintained following Sr2+ activation or in vitro fertilisation. After incubation at either 15°C for 36 h or 5°C for 24 h, oocytes that had decreased blastocyst rates displayed unrecoverable abnormal cortical granule distribution together with decreased BCL2 levels, total glutathione concentrations and glutathione/glutathione disulphide (GSH/GSSG) ratios. In conclusion, postovulatory oocyte aging could be effectively inhibited by appropriate N-acetyl-l-cysteine addition at low temperatures. In addition, a simple method for the temporary culture of mature oocytes was established.
Collapse
|
49
|
Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model. Crit Care Med 2015; 43:e38-47. [PMID: 25599491 DOI: 10.1097/ccm.0000000000000817] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation and the use of therapeutic hypothermia. Dynamin-related protein 1, a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left ventricular function following ischemia/reperfusion injury, but its role in cardiac arrest is unknown. We hypothesized that dynamin-related protein 1 inhibition would improve survival, cardiac hemodynamics, and mitochondrial function in an in vivo model of cardiac arrest. DESIGN Laboratory investigation. SETTING University laboratory. INTERVENTIONS Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent an 8-minute KCl-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of Mdivi-1 (0.24 mg/kg), a small molecule dynamin-related protein 1 inhibitor or vehicle (dimethyl sulfoxide). MEASUREMENTS AND MAIN RESULTS Following resuscitation from cardiac arrest, mitochondrial fission was evidenced by dynamin-related protein 1 translocation to the mitochondrial membrane and a decrease in mitochondrial size. Mitochondrial fission was associated with increased lactate and evidence of oxidative damage. Mdivi-1 administration during cardiopulmonary resuscitation inhibited dynamin-related protein 1 activation, preserved mitochondrial morphology, and decreased oxidative damage. Mdivi-1 also reduced the time to return of spontaneous circulation (116 ± 4 vs 143 ± 7 s; p < 0.001) during cardiopulmonary resuscitation and enhanced myocardial performance post-return of spontaneous circulation. These improvements were associated with significant increases in survival (65% vs 33%) and improved neurological scores up to 72 hours post cardiac arrest. CONCLUSIONS Post-cardiac arrest inhibition of dynamin-related protein 1 improves time to return of spontaneous circulation and myocardial hemodynamics, resulting in improved survival and neurological outcomes in a murine model of cardiac arrest. Pharmacological targeting of mitochondrial fission may be a promising therapy for cardiac arrest.
Collapse
|
50
|
Li J, Wang H, Zhong Q, Zhu X, Chen SJ, Qian Y, Costakis J, Bunney G, Beiser DG, Leff AR, Lewandowski ED, ÓDonnell JM, Vanden Hoek TL. A novel pharmacological strategy by PTEN inhibition for improving metabolic resuscitation and survival after mouse cardiac arrest. Am J Physiol Heart Circ Physiol 2015; 308:H1414-22. [PMID: 25795713 DOI: 10.1152/ajpheart.00748.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/17/2015] [Indexed: 01/04/2023]
Abstract
Sudden cardiac arrest (SCA) is a leading cause of death in the United States. Despite return of spontaneous circulation, patients die due to post-SCA syndrome that includes myocardial dysfunction, brain injury, impaired metabolism, and inflammation. No medications improve SCA survival. Our prior work suggests that optimal Akt activation is critical for cooling protection and SCA recovery. Here, we investigate a small inhibitor of PTEN, an Akt-related phosphatase present in heart and brain, as a potential therapy in improving cardiac and neurological recovery after SCA. Anesthetized adult female wild-type C57BL/6 mice were randomized to pretreatment of VO-OHpic (VO) 30 min before SCA or vehicle control. Mice underwent 8 min of KCl-induced asystolic arrest followed by CPR. Resuscitated animals were hemodynamically monitored for 2 h and observed for 72 h. Outcomes included heart pressure-volume loops, energetics (phosphocreatine and ATP from (31)P NMR), protein phosphorylation of Akt, GSK3β, pyruvate dehydrogenase (PDH) and phospholamban, circulating inflammatory cytokines, plasma lactate, and glucose as measures of systemic metabolic recovery. VO reduced deterioration of left ventricular maximum pressure, maximum rate of change in the left ventricular pressure, and Petco2 and improved 72 h neurological intact survival (50% vs. 10%; P < 0.05). It reduced plasma lactate, glucose, IL-1β, and Pre-B cell colony enhancing factor, while increasing IL-10. VO increased phosphorylation of Akt and GSK3β in both heart and brain, and cardiac phospholamban phosphorylation while reducing p-PDH. Moreover, VO improved cardiac bioenergetic recovery. We concluded that pharmacologic PTEN inhibition enhances Akt activation, improving metabolic, cardiovascular, and neurologic recovery with increased survival after SCA. PTEN inhibitors may be a novel pharmacologic strategy for treating SCA.
Collapse
Affiliation(s)
- Jing Li
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Qiang Zhong
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois; Department of Emergency Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, China
| | - Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Sy-Jou Chen
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois; Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Yuanyu Qian
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois; Emergency Department, Chinese PLA General Hospital, Beijing, China
| | - Jim Costakis
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Gabrielle Bunney
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - David G Beiser
- Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alan R Leff
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - E Douglas Lewandowski
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, and Department of Physiology and Biophysics, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael ÓDonnell
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, and Department of Physiology and Biophysics, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Terry L Vanden Hoek
- Program in Advanced Resuscitation Medicine, Center for Cardiovascular Research, and Department of Emergency Medicine, University of Illinois Hospital & Health Sciences System, Chicago, Illinois;
| |
Collapse
|