1
|
Kleschyov AL, Zhuge Z, Schiffer TA, Guimarães DD, Zhang G, Montenegro MF, Tesse A, Weitzberg E, Carlström M, Lundberg JO. NO-ferroheme is a signaling entity in the vasculature. Nat Chem Biol 2023; 19:1267-1275. [PMID: 37710073 PMCID: PMC10522487 DOI: 10.1038/s41589-023-01411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Despite wide appreciation of the biological role of nitric oxide (NO) synthase (NOS) signaling, questions remain about the chemical nature of NOS-derived bioactivity. Here we show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase and directly activate the sGC-cGMP-PKG pathway without intermediacy of free NO. The NO-ferroheme species (with or without a protein carrier) efficiently relax isolated blood vessels and induce hypotension in rodents, which is greatly potentiated after the blockade of NOS activity. While free NO-induced relaxations are abolished by an NO scavenger and in the presence of red blood cells or blood plasma, a model compound, NO-ferroheme-myoglobin preserves its vasoactivity suggesting the physiological relevance of NO-ferroheme species. We conclude that NO-ferroheme behaves as a signaling entity in the vasculature.
Collapse
Affiliation(s)
- Andrei L Kleschyov
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden.
- Freiberg Instruments GmbH, Freiberg, Germany.
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Drielle D Guimarães
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Gensheng Zhang
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marcelo F Montenegro
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Angela Tesse
- Nantes Université, INSERM, CNRS, UMR1087, l'Institut du Thorax, Nantes, France
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Sharina I, Martin E. Cellular Factors That Shape the Activity or Function of Nitric Oxide-Stimulated Soluble Guanylyl Cyclase. Cells 2023; 12:471. [PMID: 36766813 PMCID: PMC9914232 DOI: 10.3390/cells12030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
NO-stimulated guanylyl cyclase (SGC) is a hemoprotein that plays key roles in various physiological functions. SGC is a typical enzyme-linked receptor that combines the functions of a sensor for NO gas and cGMP generator. SGC possesses exclusive selectivity for NO and exhibits a very fast binding of NO, which allows it to function as a sensitive NO receptor. This review describes the effect of various cellular factors, such as additional NO, cell thiols, cell-derived small molecules and proteins on the function of SGC as cellular NO receptor. Due to its vital physiological function SGC is an important drug target. An increasing number of synthetic compounds that affect SGC activity via different mechanisms are discovered and brought to clinical trials and clinics. Cellular factors modifying the activity of SGC constitute an opportunity for improving the effectiveness of existing SGC-directed drugs and/or the creation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Emil Martin
- Department of Internal Medicine, Cardiology Division, The University of Texas—McGovern Medical School, 1941 East Road, Houston, TX 77054, USA
| |
Collapse
|
3
|
Stuehr DJ, Dai Y, Biswas P, Sweeny EA, Ghosh A. New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals. Biol Chem 2022; 403:1005-1015. [PMID: 36152339 PMCID: PMC10184026 DOI: 10.1515/hsz-2022-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022]
Abstract
The intracellular trafficking of mitochondrial heme presents a fundamental challenge to animal cells. This article provides some background on heme allocation, discusses some of the concepts, and then reviews research done over the last decade, much in the author's laboratory, that is uncovering unexpected and important roles for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), heat shock protein 90 (hsp90), and nitric oxide (NO) in enabling and regulating the allocation of mitochondrial heme to hemeproteins that mature and function outside of the mitochondria. A model for how hemeprotein functions can be regulated in cells through the coordinate participation of GAPDH, hsp90, and NO in allocating cellular heme is presented.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Cui C, Wu C, Shu P, Liu T, Li H, Beuve A. Soluble guanylyl cyclase mediates noncanonical nitric oxide signaling by nitrosothiol transfer under oxidative stress. Redox Biol 2022; 55:102425. [PMID: 35961098 PMCID: PMC9372771 DOI: 10.1016/j.redox.2022.102425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Soluble guanylyl cyclase (GC1) is an α/β heterodimer producing cGMP when stimulated by nitric oxide (NO). The NO-GC1-cGMP pathway is essential for cardiovascular homeostasis but is disrupted by oxidative stress, which causes GC1 desensitization to NO by heme oxidation and S-nitrosation (SNO) of specific cysteines. We discovered that under these conditions, GC1-α subunit increases cellular S-nitrosation via transfer of nitrosothiols to other proteins (transnitrosation) in cardiac and smooth muscle cells. One of the GC1 SNO-targets was the oxidized form of Thioredoxin1 (oTrx1), which is unidirectionally transnitrosated by GC1 with αC610 as a SNO-donor. Because oTrx1 itself drives transnitrosation, we sought and identified SNO-proteins targeted by both GC1 and Trx1. We found that transnitrosation of the small GTPase RhoA by SNO-GC1 requires oTrx1 as a nitrosothiol relay, suggesting a SNO-GC1→oTrx1→RhoA cascade. The RhoA signaling pathway, which is antagonized by the canonical NO-cGMP pathway, was alternatively inhibited by GC1-α-dependent S-nitrosation under oxidative conditions. We propose that SNO-GC1, via transnitrosation, mediates adaptive responses triggered by oxidation of the canonical NO-cGMP pathway.
Collapse
Affiliation(s)
- Chuanlong Cui
- Rutgers School of Graduate Studies, Newark Health Science, Newark, NJ, 07103, USA; Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Changgong Wu
- Thermo Fisher Scientific, Somerset, NJ, 08873, USA
| | - Ping Shu
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Annie Beuve
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Grange RMH, Preedy MEJ, Renukanthan A, Dignam JP, Lowe VJ, Moyes AJ, Pérez-Ternero C, Aubdool AA, Baliga RS, Hobbs AJ. Multidrug resistance proteins preferentially regulate natriuretic peptide-driven cGMP signalling in the heart and vasculature. Br J Pharmacol 2022; 179:2443-2459. [PMID: 34131904 DOI: 10.1111/bph.15593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE cGMP underpins the bioactivity of NO and natriuretic peptides and is key to cardiovascular homeostasis. cGMP-driven responses are terminated primarily by PDEs, but cellular efflux via multidrug resistance proteins (MRPs) might contribute. Herein, the effect of pharmacological blockade of MRPs on cGMP signalling in the heart and vasculature was investigated in vitro and in vivo. EXPERIMENTAL APPROACH Proliferation of human coronary artery smooth muscle cells (hCASMCs), vasorelaxation of murine aorta and reductions in mean arterial BP (MABP) in response to NO donors or natriuretic peptides were determined in the absence and presence of the MRP inhibitor MK571. The ability of MRP inhibition to reverse morphological and contractile deficits in a murine model of pressure overload-induced heart failure was also explored. KEY RESULTS MK571 attenuated hCASMC growth and enhanced the anti-proliferative effects of NO and atrial natriuretic peptide (ANP). MRP blockade caused concentration-dependent relaxations of murine aorta and augmented responses to ANP (and to a lesser extent NO). MK571 did not decrease MABP per se but enhanced the hypotensive actions of ANP and improved structural and functional indices of disease severity in experimental heart failure. These beneficial actions of MRP inhibition were associated with a greater intracellular:extracellular cGMP ratio in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS MRP blockade promotes the cardiovascular functions of natriuretic peptides in vitro and in vivo, with more modest effects on NO. MRP inhibition may have therapeutic utility in cardiovascular diseases triggered by dysfunctional cGMP signalling, particularly those associated with altered natriuretic peptide bioactivity. LINKED ARTICLES This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.
Collapse
Affiliation(s)
- Robert M H Grange
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E J Preedy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aniruthan Renukanthan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vanessa J Lowe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cristina Pérez-Ternero
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Aramide Modupe Dosunmu-Ogunbi A, Galley JC, Yuan S, Schmidt HM, Wood KC, Straub AC. Redox Switches Controlling Nitric Oxide Signaling in the Resistance Vasculature and Implications for Blood Pressure Regulation: Mid-Career Award for Research Excellence 2020. Hypertension 2021; 78:912-926. [PMID: 34420371 DOI: 10.1161/hypertensionaha.121.16493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The arterial resistance vasculature modulates blood pressure and flow to match oxygen delivery to tissue metabolic demand. As such, resistance arteries and arterioles have evolved a series of highly orchestrated cell-cell communication mechanisms between endothelial cells and vascular smooth muscle cells to regulate vascular tone. In response to neurohormonal agonists, release of several intracellular molecules, including nitric oxide, evokes changes in vascular tone. We and others have uncovered novel redox switches in the walls of resistance arteries that govern nitric oxide compartmentalization and diffusion. In this review, we discuss our current understanding of redox switches controlling nitric oxide signaling in endothelial and vascular smooth muscle cells, focusing on new mechanistic insights, physiological and pathophysiological implications, and advances in therapeutic strategies for hypertension and other diseases.
Collapse
Affiliation(s)
- Atinuke Aramide Modupe Dosunmu-Ogunbi
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Joseph C Galley
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA.,Center for Microvascular Research (A.C.S.), University of Pittsburgh, PA
| |
Collapse
|
7
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
8
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
9
|
Chen Y, Zhu L, Fang Z, Jin Y, Shen C, Yao Y, Zhou C. Soluble guanylate cyclase contribute genetic susceptibility to essential hypertension in the Han Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:620. [PMID: 31930021 DOI: 10.21037/atm.2019.11.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Animal study found that soluble guanylate cyclase (sGC) plays an important role in development of hypertension (HT) by affecting the NO-sGC-CGMP signaling pathway. This study aims to evaluate the association of sGC with essential hypertension (EH) in the Han Chinese population. Methods This case-control study included 2,012 hypertensive cases and 2,210 controls, and 6 tagging single nucleotide polymorphisms (SNPs) were selected (rs3806777, rs3806782, rs3796576 and rs7698460 in GUCY1A3, as well as rs2229202 and rs1459853 in GUCY1B3). Then the association of the six SNPs with EH was further evaluated in this study. Results The results indicated that the A/A genotype of rs1459853 in GUCY1B3 was associated with higher HT risk, and the odds ratio (OR) of its recessive model was 1.191 (P=0.044). After adjusting for covariates, the association was still significant. Further stratification analyses showed that rs1459853 in non-drinking subjects and rs7698460 in women were associated with EH. In the follow-up study, rs1459853 were related to increased HT risk in men and smoker subjects. In adolescents, rs2229202 that in GUCY1B3 had significant association with prehypertension (Pre-HT), HT, and prehypertension with hypertension (Pre-HT + HT). After adjusted for covariates, the association was remaining significant. And in girls, rs3806782 was significantly connected with HT and Pre-HT + HT. Conclusions Overall, our findings suggest that sGC may contribute to the genetic susceptibility to EH, and it was validated for the first time in adolescents.
Collapse
Affiliation(s)
- Yan Chen
- Department of Social Medicine and Maternal & Child Health, School of Public Health, Shandong University, Jinan 250012, China.,Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Chengchao Zhou
- Department of Social Medicine and Maternal & Child Health, School of Public Health, Shandong University, Jinan 250012, China.,NHC Key Laboratory of Health Economics and Policy Research, Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Shah RC, Sanker S, Wood KC, Durgin BG, Straub AC. Redox regulation of soluble guanylyl cyclase. Nitric Oxide 2018; 76:97-104. [PMID: 29578056 DOI: 10.1016/j.niox.2018.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 11/15/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase (NO-sGC) signaling pathway regulates the cardiovascular, neuronal, and gastrointestinal systems. Impaired sGC signaling can result in disease and system-wide organ failure. This review seeks to examine the redox control of sGC through heme and cysteine regulation while discussing therapeutic drugs that target various conditions. Heme regulation involves mechanisms of insertion of the heme moiety into the sGC protein, the molecules and proteins that control switching between the oxidized (Fe3+) and reduced states (Fe2+), and the activity of heme degradation. Modifications to cysteine residues by S-nitrosation on the α1 and β1 subunits of sGC have been shown to be important in sGC signaling. Moreover, redox balance and localization of sGC is thought to control downstream effects. In response to altered sGC activity due to changes in the redox state, many therapeutic drugs have been developed to target decreased NO-sGC signaling. The importance and relevance of sGC continues to grow as sGC dysregulation leads to numerous disease conditions.
Collapse
Affiliation(s)
- Rohan C Shah
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Subramaniam Sanker
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brittany G Durgin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Bork NI, Nikolaev VO. cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging. Int J Mol Sci 2018. [PMID: 29534460 PMCID: PMC5877662 DOI: 10.3390/ijms19030801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system.
Collapse
Affiliation(s)
- Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| |
Collapse
|
12
|
Abstract
While the biological role of nitric oxide (NO) synthase (NOS) is appreciated, several fundamental aspects of the NOS/NO-related signaling pathway(s) remain incompletely understood. Canonically, the NOS-derived NO diffuses through the (inter)cellular milieu to bind the prosthetic ferro(Fe2+)-heme group of the soluble guanylyl cyclase (sGC). The formation of ternary NO-ferroheme-sGC complex results in the enzyme activation and accelerated production of the second messenger, cyclic GMP. This paper argues that cells dynamically generate mobile/exchangeable NO-ferroheme species, which activate sGC and regulate the function of some other biomolecules. In contrast to free NO, the mobile NO-ferroheme may ensure safe, efficient and coordinated delivery of the signal within and between cells. The NO-heme signaling may contribute to a number of NOS/NO-related phenomena (e.g. nitrite bioactivity, selective protein S-(N-)nitrosation, endothelium and erythrocyte-dependent vasodilation, some neural and immune NOS functions) and predicts new NO-related discoveries, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Andrei L Kleschyov
- Laboratory of Biophysics, Freiberg Instruments GmbH, 09599 Freiberg, Germany.
| |
Collapse
|
13
|
Ghosh A, Stuehr DJ. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives. Antioxid Redox Signal 2017; 26:182-190. [PMID: 26983679 PMCID: PMC5278824 DOI: 10.1089/ars.2016.6690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. CRITICAL ISSUES In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. FUTURE DIRECTIONS We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182-190.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
14
|
Beuve A. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:137-149. [PMID: 26906466 PMCID: PMC5240013 DOI: 10.1089/ars.2015.6591] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl cyclase (sGC), which produces the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP), is at the crossroads of nitric oxide (NO) signaling: sGC catalytic activity is both stimulated by NO binding to the heme and inhibited by NO modification of its cysteine (Cys) thiols (S-nitrosation). Modulation of sGC activity by thiol oxidation makes sGC a therapeutic target for pathologies originating from oxidative or nitrosative stress. sGC has an unusually high percentage of Cys for a cytosolic protein, the majority solvent exposed and therefore accessible modulatory targets for biological and pathophysiological signaling. Recent Advances: Thiol oxidation of sGC contributes to the development of cardiovascular diseases by decreasing NO-dependent cGMP production and thereby vascular reactivity. This thiol-based resistance to NO (e.g., increase in peripheral resistance) is observed in hypertension and hyperaldosteronism. CRITICAL ISSUES Some roles of specific Cys thiols have been identified in vitro. So far, it has not been possible to pinpoint the roles of specific Cys of sGC in vivo and to investigate the molecular mechanisms in an animal model. FUTURE DIRECTIONS The role of Cys as redox sensors, intermediates of activation, and mediators of change in sGC conformation, activity, and dimerization remains largely unexplored. To understand modulation of sGC activity, it is critical to investigate the roles of specific oxidative thiol modifications that are formed during these processes. Where the redox state of sGC thiols contribute to pathologies (vascular resistance and sGC desensitization by NO donors), it becomes crucial to design therapeutic strategies to restore sGC to its normal, physiological thiol redox state. Antioxid. Redox Signal. 26, 137-149.
Collapse
Affiliation(s)
- Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers , Newark, New Jersey
| |
Collapse
|
15
|
Kennard S, Ruan L, Buffett RJ, Fulton D, Venema RC. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol 2016; 81:61-8. [PMID: 27073025 DOI: 10.1016/j.vph.2016.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 01/25/2023]
Abstract
Production of NO by the endothelial nitric oxide synthase (eNOS) has a major role in blood pressure control and suppression of atherosclerosis. In a previous study, we presented evidence implicating the Pin1 prolyl isomerase in negative modulation of eNOS activity in bovine aortic endothelial cells (BAECs). Pin1 recognizes phosphoserine/phosphothreonine-proline motifs in target proteins and catalyzes prolyl isomerization at the peptide bond. In the present study, we show, first, with purified proteins, that Pin1 binds to eNOS directly via the Pin1 WW domain. Binding is enhanced by mimicking phosphorylation of eNOS at S116. Interaction of Pin1 with eNOS markedly reduces eNOS enzymatic activity. Second, in BAECs, we show that TNFα induces ERK 1/2-mediated S116 phosphorylation of eNOS, accompanied by Pin1 binding. TNFα treatment of BAECs results in a reduction in NO release from the cells in a manner that depends on the activities of both Pin1 and ERK 1/2. Evidence is also presented that this mechanism of eNOS regulation cannot occur in rat and mouse cells because there is no proline residue in the mouse and rat amino acid sequences adjacent to the putative phosphorylation site. Moreover, we find that phosphorylation of this site is not detectable in mouse eNOS.
Collapse
Affiliation(s)
- Simone Kennard
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA
| | - Ling Ruan
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA
| | - Ryan J Buffett
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA
| | - Richard C Venema
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA; Department of Pediatrics, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, Georgia 30912, USA.
| |
Collapse
|
16
|
Beuve A, Wu C, Cui C, Liu T, Jain MR, Huang C, Yan L, Kholodovych V, Li H. Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. J Proteomics 2016; 138:40-7. [PMID: 26917471 DOI: 10.1016/j.jprot.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/18/2022]
Abstract
Soluble Guanylyl Cyclase (sGC) is the main receptor for nitric oxide (NO). NO activates sGC to synthesize cGMP, triggering a plethora of signals. Recently, we discovered that NO covalently modifies select sGC cysteines via a post-translational modification termed S-nitrosation or S-nitrosylation. Earlier characterization was conducted on a purified sGC treated with S-nitrosoglutathione, and identified three S-nitrosated cysteines (SNO-Cys). Here we describe a more biologically relevant mapping of sGC SNO-Cys in cells to better understand the multi-faceted interactions between SNO and sGC. Since SNO-Cys are labile during LC/MS/MS, MS analysis of nitrosation typically occurs after a biotin switch reaction, in which a SNO-Cys is converted to a biotin-Cys. Here we report the identification of ten sGC SNO-Cys in rat neonatal cardiomyocytes using an Orbitrap MS. A majority of the SNO-Cys identified is located at the solvent-exposed surface of the sGC, and half of them in the conserved catalytic domain, suggesting biological significance. These findings provide a solid basis for future studies of the regulations and functions of diverse sGC S-nitrosation events in cells.
Collapse
Affiliation(s)
- Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Changgong Wu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Chuanlong Cui
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Can Huang
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Lin Yan
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Vladyslav Kholodovych
- High Performance and Research Computing, OIRT, Rutgers University, New Brunswick, NJ 07103, United States; Department of Pharmacology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States.
| |
Collapse
|
17
|
Garza AE, Pojoga LH, Moize B, Hafiz WM, Opsasnick LA, Siddiqui WT, Horenstein M, Adler GK, Williams GH, Khalil RA. Critical Role of Striatin in Blood Pressure and Vascular Responses to Dietary Sodium Intake. Hypertension 2015; 66:674-80. [PMID: 26169051 DOI: 10.1161/hypertensionaha.115.05600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Striatin is a protein regulator of vesicular trafficking in neurons that also binds caveolin-1 and Ca(2+)-calmodulin and could activate endothelial nitric oxide synthase. We have shown that striatin colocalizes with the mineralocorticoid receptor and that mineralocorticoid receptor activation increases striatin levels in vascular cells. To test whether striatin is a regulator of vascular function, wild-type and heterozygous striatin-deficient mice (Strn(+/-)) were randomized in crossover intervention to restricted (0.03%) and liberal sodium (1.6%) diets for 7 days on each diet, and blood pressure and aortic vascular function were measured. Compared with wild-type, sodium restriction significantly reduced blood pressure in Strn(+/-). On liberal salt intake, phenylephrine and high KCl caused a greater vascular contraction in Strn(+/-) than wild-type, and endothelium removal, nitric oxide synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ enhanced phenylephrine contraction to a smaller extent in Strn(+/-) than wild-type. On liberal salt, acetylcholine relaxation was less in Strn(+/-) than in wild-type, and endothelium removal, L-NAME, and ODQ blocked acetylcholine relaxation, suggesting changes in endothelial NO-cGMP. On liberal salt, endothelial nitric oxide synthase mRNA expression and the ratio of endothelial nitric oxide synthase activator pAkt/total Akt were decreased in Strn(+/-) versus wild-type. Vascular relaxation to NO donor sodium nitroprusside was not different among groups. Thus, striatin deficiency is associated with salt sensitivity of blood pressure, enhanced vasoconstriction, and decreased vascular relaxation, suggesting a critical role for striatin, through modulation of endothelial NO-cGMP, in regulation of vascular function and BP during changes in sodium intake.
Collapse
Affiliation(s)
- Amanda E Garza
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Luminita H Pojoga
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Burhanuddin Moize
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wan M Hafiz
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lauren A Opsasnick
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Waleed T Siddiqui
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michael Horenstein
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gail K Adler
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gordon H Williams
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
18
|
Wilkins MR, Aldashev AA, Wharton J, Rhodes CJ, Vandrovcova J, Kasperaviciute D, Bhosle SG, Mueller M, Geschka S, Rison S, Kojonazarov B, Morrell NW, Neidhardt I, Surmeli NB, Surmeli NB, Aitman TJ, Stasch JP, Behrends S, Marletta MA. α1-A680T variant in GUCY1A3 as a candidate conferring protection from pulmonary hypertension among Kyrgyz highlanders. ACTA ACUST UNITED AC 2014; 7:920-9. [PMID: 25373139 DOI: 10.1161/circgenetics.114.000763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human variation in susceptibility to hypoxia-induced pulmonary hypertension is well recognized. High-altitude residents who do not develop pulmonary hypertension may host protective gene mutations. METHODS AND RESULTS Exome sequencing was conducted on 24 unrelated Kyrgyz highlanders living 2400 to 3800 m above sea level, 12 (10 men; mean age, 54 years) with an elevated mean pulmonary artery pressure (mean±SD, 38.7±2.7 mm Hg) and 12 (11 men; mean age, 52 years) with a normal mean pulmonary artery pressure (19.2±0.6 mm Hg) to identify candidate genes that may influence the pulmonary vascular response to hypoxia. A total of 140 789 exomic variants were identified and 26 116 (18.5%) were classified as novel or rare. Thirty-three novel or rare potential pathogenic variants (frameshift, essential splice-site, and nonsynonymous) were found exclusively in either ≥3 subjects with high-altitude pulmonary hypertension or ≥3 highlanders with a normal mean pulmonary artery pressure. A novel missense mutation in GUCY1A3 in 3 subjects with a normal mean pulmonary artery pressure encodes an α1-A680T soluble guanylate cyclase (sGC) variant. Expression of the α1-A680T sGC variant in reporter cells resulted in higher cyclic guanosine monophosphate production compared with the wild-type enzyme and the purified α1-A680T sGC exhibited enhanced sensitivity to nitric oxide in vitro. CONCLUSIONS The α1-A680T sGC variant may contribute to protection against high-altitude pulmonary hypertension and supports sGC as a pharmacological target for reducing pulmonary artery pressure in humans at altitude.
Collapse
Affiliation(s)
- Martin R Wilkins
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.).
| | - Almaz A Aldashev
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - John Wharton
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Christopher J Rhodes
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Jana Vandrovcova
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Dalia Kasperaviciute
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Shriram G Bhosle
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Michael Mueller
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Sandra Geschka
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Stuart Rison
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Baktybek Kojonazarov
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Nicholas W Morrell
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Inga Neidhardt
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | | | - Nur Basek Surmeli
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Tim J Aitman
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Johannes-Peter Stasch
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Soenke Behrends
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| | - Michael A Marletta
- From the Department of Medicine, Imperial College London, London, United Kingdom (M.R.W., J.W., C.J.R., S.R.); National Academy of Sciences of Kyrgyz Republic, Bishkek, Kyrgyz Republic (A.A.A.); Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom (J.V., T.J.A.); NIHR BRC Clinical Genome Informatics Facility, Imperial College London, London, United Kingdom (D.K., S.G.B., M.M.); Cardiology Research, Bayer Pharma AG, Wuppertal, Germany (S.G., J.-P.S.); Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany (J.-P.S.); Department of Pulmonary Pharmacotherapy, University of Giessen and Marburg Lung Center, Giessen, Germany (B.K.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (N.W.M.); Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Braunschweig-Center of Pharmaceutical Engineering, Braunschweig, Germany (I.N., S.B.); and Department of Chemistry, The Scripps Research Institute, La Jolla, CA (N.B.S., M.A.M.)
| |
Collapse
|
19
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
20
|
Rogers NM, Seeger F, Garcin ED, Roberts DD, Isenberg JS. Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Front Physiol 2014; 5:134. [PMID: 24772092 PMCID: PMC3983488 DOI: 10.3389/fphys.2014.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) maintains cardiovascular health by activating soluble guanylate cyclase (sGC) to increase cellular cGMP levels. Cardiovascular disease is characterized by decreased NO-sGC-cGMP signaling. Pharmacological activators and stimulators of sGC are being actively pursued as therapies for acute heart failure and pulmonary hypertension. Here we review molecular mechanisms that modulate sGC activity while emphasizing a novel biochemical pathway in which binding of the matricellular protein thrombospondin-1 (TSP1) to the cell surface receptor CD47 causes inhibition of sGC. We discuss the therapeutic implications of this pathway for blood flow, tissue perfusion, and cell survival under physiologic and disease conditions.
Collapse
Affiliation(s)
- Natasha M Rogers
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Franziska Seeger
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH Bethesda, MD, USA
| | - Jeffrey S Isenberg
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
21
|
Su Y. Regulation of endothelial nitric oxide synthase activity by protein-protein interaction. Curr Pharm Des 2014; 20:3514-20. [PMID: 24180383 PMCID: PMC7039309 DOI: 10.2174/13816128113196660752] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is expressed in vascular endothelial cells and plays an important role in the regulation of vascular tone, platelet aggregation and angiogenesis. Protein-protein interactions represent an important posttranslational mechanism for eNOS regulation. eNOS has been shown to interact with a variety of regulatory and structural proteins which provide fine tuneup of eNOS activity and eNOS protein trafficking between plasma membrane and intracellular membranes in a number of physiological and pathophysiological processes. eNOS interacts with calmodulin, heat shock protein 90 (Hsp90), dynamin-2, β-actin, tubulin, porin, high-density lipoprotein (HDL) and apolipoprotein AI (ApoAI), resulting in increases in eNOS activity. The negative eNOS interacting proteins include caveolin, G protein-coupled receptors (GPCR), nitric oxide synthase-interacting protein (NOSIP), and nitric oxide synthase trafficking inducer (NOSTRIN). Dynamin-2, NOSIP, NOSTRIN, and cytoskeleton are also involved in eNOS trafficking in endothelial cells. In addition, eNOS associations with cationic amino acid transporter-1 (CAT-1), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and soluble guanylate cyclase (sGC) facilitate directed delivery of substrate (L-arginine) to eNOS and optimizing NO production and NO action on its target. Regulation of eNOS by protein-protein interactions would provide potential targets for pharmacological interventions in NO-compromised cardiovascular diseases.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912.
| |
Collapse
|
22
|
Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 2013; 4:347. [PMID: 24379783 PMCID: PMC3861784 DOI: 10.3389/fphys.2013.00347] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) is a short-lived gaseous signaling molecule. In blood vessels, it is synthesized in a dynamic fashion by endothelial nitric oxide synthase (eNOS) and influences vascular function via two distinct mechanisms, the activation of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The regulation of eNOS activity and NO bioavailability is critical to maintain blood vessel function. The activity of eNOS and ability to generate NO is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Post-translational modifications acutely impact eNOS activity and dysregulation of these mechanisms compromise eNOS activity and foster the development of cardiovascular diseases (CVDs). This review will intergrate past and current literature on the post-translational modifications of eNOS in both health and disease.
Collapse
Affiliation(s)
- Jin Qian
- Pulmonary and Critical Care, School of Medicine, Stanford University/VA Palo Alto Health Care System Palo Alto, CA, USA
| | - David Fulton
- Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
23
|
Pojoga LH, Yao TM, Opsasnick LA, Garza AE, Reslan OM, Adler GK, Williams GH, Khalil RA. Dissociation of hyperglycemia from altered vascular contraction and relaxation mechanisms in caveolin-1 null mice. J Pharmacol Exp Ther 2013; 348:260-70. [PMID: 24281385 DOI: 10.1124/jpet.113.209189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hyperglycemia and endothelial dysfunction are associated with hypertension, but the specific causality and genetic underpinning are unclear. Caveolin-1 (cav-1) is a plasmalemmal anchoring protein and modulator of vascular function and glucose homeostasis. Cav-1 gene variants are associated with reduced insulin sensitivity in hypertensive individuals, and cav-1(-/-) mice show endothelial dysfunction, hyperglycemia, and increased blood pressure (BP). On the other hand, insulin-sensitizing therapy with metformin may inadequately control hyperglycemia while affecting the vascular outcome in certain patients with diabetes. To test whether the pressor and vascular changes in cav-1 deficiency states are related to hyperglycemia and to assess the vascular mechanisms of metformin under these conditions, wild-type (WT) and cav-1(-/-) mice were treated with either placebo or metformin (400 mg/kg daily for 21 days). BP and fasting blood glucose were in cav-1(-/-) > WT and did not change with metformin. Phenylephrine (Phe)- and KCl-induced aortic contraction was in cav-1(-/-) < WT; endothelium removal, the nitric-oxide synthase (NOS) blocker L-NAME (N(ω)-nitro-L-arginine methyl ester), or soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) enhanced Phe contraction, and metformin blunted this effect. Acetylcholine-induced relaxation was in cav-1(-/-) > WT, abolished by endothelium removal, L-NAME or ODQ, and reduced with metformin. Nitric oxide donor sodium nitroprusside was more potent in inducing relaxation in cav-1(-/-) than in WT, and metformin reversed this effect. Aortic eNOS, AMPK, and sGC were in cav-1(-/-) > WT, and metformin decreased total and phosphorylated eNOS and AMPK in cav-1(-/-). Thus, metformin inhibits both vascular contraction and NO-cGMP-dependent relaxation but does not affect BP or blood glucose in cav-1(-/-) mice, suggesting dissociation of hyperglycemia from altered vascular function in cav-1-deficiency states.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruan L, Torres CM, Buffett RJ, Kennard S, Fulton D, Venema RC. Calcineurin-mediated dephosphorylation of eNOS at serine 116 affects eNOS enzymatic activity indirectly by facilitating c-Src binding and tyrosine 83 phosphorylation. Vascul Pharmacol 2013; 59:27-35. [PMID: 23727078 DOI: 10.1016/j.vph.2013.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/18/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
It has been shown previously that phosphorylation of the endothelial nitric oxide synthase (eNOS) at serine 116 (S116) under basal conditions suppresses eNOS enzymatic activity in endothelial cells. It has also been shown that vascular endothelial growth factor (VEGF) treatment of endothelial cells produces a rapid S116 dephosphorylation, which is blocked by the calcineurin inhibitor, cyclosporin A (CsA). In this study, we show that activation of eNOS in response to a variety of other eNOS-activating agonists and the cytosolic calcium-elevating agent, thapsigargin also involves CsA-inhibitable S116 dephosphorylation. Studies with the purified eNOS enzyme also demonstrate that neither mimicking phosphorylation at S116 nor phosphorylation of the purified enzyme at S116 in vitro has any effect on enzymatic activity. Phospho-mimicking, however, does interfere with the interaction of eNOS with c-Src, an interaction which is known to activate eNOS by phosphorylation at tyrosine 83 (Y83). Agonist-stimulated eNOS-Src complex formation, as well as agonist-stimulated Y83 phosphorylation, are blocked by calcineurin inhibition by CsA and by a cell-permeable calcineurin inhibitory peptide. Taken together, these data suggest a mechanism of eNOS regulation whereby calcineurin-mediated dephosphorylation of eNOS at S116 affects eNOS enzymatic activity indirectly, rather than directly, by facilitating c-Src binding and Y83 phosphorylation.
Collapse
Affiliation(s)
- Ling Ruan
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
25
|
The G-protein regulator LGN modulates the activity of the NO receptor soluble guanylate cyclase. Biochem J 2012; 446:445-53. [PMID: 22690686 DOI: 10.1042/bj20111882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
sGC (soluble guanylate cyclase) is the main mediator of NO signalling. Biochemical and physiological studies suggest that, besides NO, in vivo regulation of sGC involves direct interaction with other proteins. Using yeast two-hybrid screening, we identified that the multidomain LGN (Leu-Gly-Asn repeat-enriched protein) interacts with both α1 and β1 sGC subunits. LGN and sGC co-localized in the cell cytoplasm, and the LGN-sGC complex was co-immunoprecipitated from cells expressing both proteins and from native tissues. Their interaction requires the N-terminal tetratricopeptide repeats of LGN, but does not require the N-terminal portions of α1 or β1 sGC subunits. Overexpression of LGN decreases the activity of cellular sGC, whereas knockdown of LGN mRNA and protein correlated with increased sGC activity. Although purified LGN interacts directly with purified sGC, the inhibitory effect in vitro is observed only after supplementation of cell lysate to the reaction. Although resting sGC and sGC activated by the stimulator BAY41-2272 have very similar LGN-IC50 values to the NO-stimulated sGC, they have a much higher Hill coefficient, suggesting co-operative binding with respect to LGN in the low-activated state of sGC. AGS3 (activator of G-protein signalling 3), the closest LGN homologue, also inhibits sGC. The interaction of sGC with these scaffolding proteins may expand the cross-talk between NO/cGMP signalling and other cellular pathways and tailor sGC function to specific tissues or signals.
Collapse
|
26
|
Intapad S, Dimitropoulou C, Snead C, Piyachaturawat P, Catravas JD. Regulation of asthmatic airway relaxation by estrogen and heat shock protein 90. J Cell Physiol 2012; 227:3036-43. [PMID: 22016308 DOI: 10.1002/jcp.23045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We tested the hypothesis that asthmatic mouse airways exhibit impaired relaxation to NO donors. Mouse tracheal rings were incubated overnight in serum from asthmatic human subjects or from nonasthmatic controls. The next day, cumulative concentration-response curves (CCRC) to sodium nitroprusside (SNP) and nitroglycerine (NTG) were obtained. Both SNP and NTG relaxed the pre-constricted normal tracheal rings. Tracheal rings exposed to serum from asthmatic patients exhibited a more than a threefold increase in the EC50 of SNP and NTG. Pre-incubation of tracheal rings with heat shock protein 90 inhibitors decreased the relaxation of both normal and asthmatic tracheal rings to SNP and NTG. Pre-incubation with estradiol did not affect normal tracheal ring relaxation but exhibited an increase in asthmatic tracheal ring relaxation, which was abolished by an estrogen receptor (ER) antagonist. ER subtype-selective agonists, but not GPR30 agonists, mimicked the action of estradiol on tracheal ring relaxation. Co-incubation of rings with radicicol and estradiol produced an ER-dependent increase in the relaxation response to SNP of both normal and asthmatic ASM. Estrogen-induced relaxation of ASM was abolished by overnight incubation with radicicol and this was associated with reduced expression of ERβ. These data suggest that asthmatic ASM is considerably less responsive to NO-donors and that both estrogen and hsp90 play important roles in ASM relaxation.
Collapse
Affiliation(s)
- S Intapad
- Vascular Biology Center, Georgia Health Sciences University, Augusta, GA, USA
| | | | | | | | | |
Collapse
|
27
|
Tsai EJ, Liu Y, Koitabashi N, Bedja D, Danner T, Jasmin JF, Lisanti MP, Friebe A, Takimoto E, Kass DA. Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ Res 2012; 110:295-303. [PMID: 22095726 PMCID: PMC4264382 DOI: 10.1161/circresaha.111.259242] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/08/2011] [Indexed: 01/17/2023]
Abstract
RATIONALE Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by nitric oxide (NO). Cardiac NO-sGC-cGMP signaling blunts cardiac stress responses, including pressure-overload-induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO generation and enhancing cGMP hydrolysis. OBJECTIVE We tested the hypothesis that the sGC response to NO also declines with pressure-overload stress and assessed the role of heme-oxidation and altered intracellular compartmentation of sGC as potential mechanisms. METHODS AND RESULTS C57BL/6 mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and dysfunction. NO-stimulated sGC activity was markedly depressed, whereas NO- and heme-independent sGC activation by BAY 60-2770 was preserved. Total sGCα(1) and β(1) expression were unchanged by TAC; however, sGCβ(1) subunits shifted out of caveolin-enriched microdomains. NO-stimulated sGC activity was 2- to 3-fold greater in Cav3-containing lipid raft versus nonlipid raft domains in control and 6-fold greater after TAC. In contrast, BAY 60-2770 responses were >10 fold higher in non-Cav3 domains with and without TAC, declining about 60% after TAC within each compartment. Mice genetically lacking Cav3 had reduced NO- and BAY-stimulated sGC activity in microdomains containing Cav3 for controls but no change within non-Cav3-enriched domains. CONCLUSIONS Pressure overload depresses NO/heme-dependent sGC activation in the heart, consistent with enhanced oxidation. The data reveal a novel additional mechanism for reduced NO-coupled sGC activity related to dynamic shifts in membrane microdomain localization, with Cav3-microdomains protecting sGC from heme-oxidation and facilitating NO responsiveness. Translocation of sGC out of this domain favors sGC oxidation and contributes to depressed NO-stimulated sGC activity.
Collapse
Affiliation(s)
- Emily J. Tsai
- Section in Cardiology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, MD
| | - Yuchuan Liu
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Norimichi Koitabashi
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, MD
| | - Djahida Bedja
- Department of Comparative Medicine and Comparative Pathology, Johns Hopkins University Medical Institutions, Baltimore, MD 21205
| | - Thomas Danner
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, MD
| | - Jean-Francois Jasmin
- Department of Stem Cell Biology & Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Michael P. Lisanti
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA
| | - Andreas Friebe
- Physiologisches Institut I, Universität Würzburg, Würzburg, Germany
| | - Eiki Takimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, MD
| | - David A. Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, MD
| |
Collapse
|
28
|
Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland. PLoS One 2011; 6:e29402. [PMID: 22216273 PMCID: PMC3247256 DOI: 10.1371/journal.pone.0029402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway.
Collapse
|
29
|
Müller BAL, Dhalla NS. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr Cardiol Rev 2011; 6:255-64. [PMID: 22043201 PMCID: PMC3083806 DOI: 10.2174/157340310793566118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
Cardiac function is compromised by oxidative stress which occurs upon exposing the heart to ischemia reperfusion (I/R) for a prolonged period. The reactive oxygen species (ROS) that are generated during I/R incur extensive damage to the myocardium and result in subcellular organelle remodeling. The cardiac nucleus, glycocalyx, myofilaments, sarcoplasmic reticulum, sarcolemma, and mitochondria are affected by ROS during I/R injury. On the other hand, brief periods of ischemia followed by reperfusion, or ischemic preconditioning (IPC), have been shown to be cardioprotective against oxidative stress by attenuating the cellular damage and alterations of subcellular organelles caused by subsequent I/R injury. Endogenous defense mechanisms, such as antioxidant enzymes and heat shock proteins, are activated by IPC and thus prevent damage caused by oxidative stress. Although these cardioprotective effects of IPC against I/R injury are considered to be a consequence of changes in the redox state of cardiomyocytes, IPC is considered to promote the production of NO which may protect subcellular organelles from the deleterious actions of oxidative stress. The article is intended to focus on the I/R-induced oxidative damage to subcellular organelles and to highlight the cardioprotective effects of IPC. In addition, the actions of various endogenous cardioprotective interventions are discussed to illustrate that changes in the redox state due to IPC are cardioprotective against I/R injury to the heart.
Collapse
Affiliation(s)
- By Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | |
Collapse
|
30
|
Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, Li H. Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal 2011; 15:2565-604. [PMID: 21453190 PMCID: PMC3176348 DOI: 10.1089/ars.2010.3831] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.
Collapse
Affiliation(s)
- Changgong Wu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sharina IG, Cote GJ, Martin E, Doursout MF, Murad F. RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase. Nitric Oxide 2011; 25:265-74. [PMID: 21867767 DOI: 10.1016/j.niox.2011.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a key protein in the nitric oxide (NO)/-cGMP signaling pathway. sGC activity is involved in a number of important physiological processes including smooth muscle relaxation, neurotransmission and platelet aggregation and adhesion. Regulation of sGC expression and activity emerges as a crucial factor in control of sGC function in normal and pathological conditions. Recently accumulated evidence strongly indicates that the regulation of sGC expression is a complex process modulated on several levels including transcription, post-transcriptional regulation, translation and protein stability. Presently our understanding of mechanisms governing regulation of sGC expression remains very limited and awaits systematic investigation. Among other ways, the expression of sGC subunits is modulated at the levels of mRNA abundance and transcript diversity. In this review we summarize available information on different mechanisms (including transcriptional activation, mRNA stability and alternative splicing) involved in the modulation of mRNA levels of sGC subunits in response to various environmental clues. We also summarize and cross-reference the information on human sGC splice forms available in the literature and in genomic databases. This review highlights the fact that the study of the biological role and regulation of sGC splicing will bring new insights to our understanding of NO/cGMP biology.
Collapse
Affiliation(s)
- Iraida G Sharina
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
32
|
Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 2011; 52:330-40. [PMID: 21843527 DOI: 10.1016/j.yjmcc.2011.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/03/2011] [Accepted: 07/29/2011] [Indexed: 12/31/2022]
Abstract
Cyclic guanosine 3'5'monophosphate (cGMP) is the common downstream second messenger of natriuretic peptides and nitric oxide. In cardiac myocytes, the physiological effects of cGMP are exerted through the activation of protein kinase G (PKG) signaling, and the activation and/or inhibition of phosphodiesterases (PDEs), providing an integration point between cAMP and cGMP signals. Specificity of cGMP signals is achieved through compartmentalization of cGMP synthesis by guanylate cyclases, and cGMP hydrolysis by PDEs. Increasing evidence suggests that cGMP-dependent signaling pathways play an important role in inhibiting cardiac remodeling, through the inhibition Ca(2+) handling upstream of pathological Ca(2+)-dependent signaling pathways. Thus, enhancing cardiac myocyte cGMP signaling represents a promising therapeutic target for treatment of cardiovascular disease. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
|
33
|
Chen F, Pandey D, Chadli A, Catravas JD, Chen T, Fulton DJR. Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production. Antioxid Redox Signal 2011; 14:2107-19. [PMID: 21194376 PMCID: PMC3085945 DOI: 10.1089/ars.2010.3669] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of this study was to identify whether heat-shock protein 90 (Hsp90) regulates the production of superoxide and other reactive oxygen species from the NADPH oxidases (Nox). We found that pharmacological and genetic inhibition of Hsp90 directly reduced Nox5-derived superoxide without secondarily modifying signaling events. Coimmunoprecipitation and bioluminescence resonance energy transfer studies suggest that the C-terminus of Nox5 binds to Hsp90. Long-term Hsp90 inhibition reduced Nox5 expression and provides further evidence that Nox5 is an Hsp90 client protein. Inhibitors of Hsp90 also reduced superoxide from Nox1, Nox2 (neutrophils), and Nox3. However, Nox4, which emits only hydrogen peroxide, was unaffected by Hsp90 inhibitors. Hydrogen peroxide production from the other Nox enzymes was not affected by short-term inhibition of Hsp90, but long-term inhibition reduced production of all reactive oxygen species coincident with loss of enzyme expression. Expression of chimeric Nox enzymes consisting of N-terminal Nox1 or Nox3 and C-terminal Nox4 resulted in only hydrogen peroxide formation that was insensitive to Hsp90 inhibitors. We conclude that Hsp90 binds to the C-terminus of Noxes1-3 and 5 and is necessary for enzyme stability and superoxide production. Hsp90 does not bind to the C-terminus of Nox4 and is not required for hydrogen peroxide formation.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Sciences, Xi'an Jiaotong University School of Medicine, Xi'an Shaanxi, P.R. China
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a 'whip-brake' system of the endocrine heart. ACTA ACUST UNITED AC 2010; 213:3081-103. [PMID: 20802109 DOI: 10.1242/jeb.027391] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, extensive evidence has shown the ability of vertebrate cardiac non-neuronal cells to synthesize and release catecholamines (CA). This formed the mindset behind the search for the intrinsic endocrine heart properties, culminating in 1981 with the discovery of the natriuretic peptides (NP). CA and NP, co-existing in the endocrine secretion granules and acting as major cardiovascular regulators in health and disease, have become of great biomedical relevance for their potent diagnostic and therapeutic use. The concept of the endocrine heart was later enriched by the identification of a growing number of cardiac hormonal substances involved in organ modulation under normal and stress-induced conditions. Recently, chromogranin A (CgA), a major constituent of the secretory granules, and its derived cardio-suppressive and antiadrenergic peptides, vasostatin-1 and catestatin, were shown as new players in this framework, functioning as cardiac counter-regulators in 'zero steady-state error' homeostasis, particularly under intense excitatory stimuli, e.g. CA-induced myocardial stress. Here, we present evidence for the hypothesis that is gaining support, particularly among human cardiologists. The actions of CA, NP and CgA, we argue, may be viewed as a hallmark of the cardiac capacity to organize 'whip-brake' connection-integration processes in spatio-temporal networks. The involvement of the nitric oxide synthase (NOS)/nitric oxide (NO) system in this configuration is discussed. The use of fish and amphibian paradigms will illustrate the ways that incipient endocrine-humoral agents have evolved as components of cardiac molecular loops and important intermediates during evolutionary transitions, or in a distinct phylogenetic lineage, or under stress challenges. This may help to grasp the old evolutionary roots of these intracardiac endocrine/paracrine networks and how they have evolved from relatively less complicated designs. The latter can also be used as an intellectual tool to disentangle the experimental complexity of the mammalian and human endocrine hearts, suggesting future investigational avenues.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Cell Biology, University of Calabria, 87030, Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
36
|
Martijn C, Wiklund L. Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain. BMC Med Genomics 2010; 3:27. [PMID: 20594294 PMCID: PMC2904268 DOI: 10.1186/1755-8794-3-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level. METHODS Pigs underwent either untreated cardiac arrest (CA) or CA with subsequent cardiopulmonary resuscitation (CPR) accompanied with an infusion of saline or an infusion of saline with MB. Genome-wide transcriptional profiling using the Affymetrix porcine microarray was performed to 1) gain understanding of delayed neuronal death initiation in porcine brain during ischemia and after 30, 60 and 180 min following reperfusion, and 2) identify the mechanisms behind the neuroprotective effect of MB after ischemic injury (at 30, 60 and 180 min). RESULTS Our results show that restoration of spontaneous circulation (ROSC) induces major transcriptional changes related to stress response, inflammation, apoptosis and even cytoprotection. In contrast, the untreated ischemic and anoxic insult affected only few genes mainly involved in intra-/extracellular ionic balance. Furthermore, our data show that the neuroprotective role of MB is diverse and fulfilled by regulation of the expression of soluble guanylate cyclase and biological processes accountable for inhibition of apoptosis, modulation of stress response, neurogenesis and neuroprotection. CONCLUSIONS Our results support that MB could be a valuable intervention and should be investigated as a therapeutic agent against neural damage associated with I/R injury induced by cardiac arrest.
Collapse
Affiliation(s)
- Cécile Martijn
- Department of Surgical Sciences/Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Lars Wiklund
- Department of Surgical Sciences/Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
37
|
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459:793-806. [PMID: 20012875 DOI: 10.1007/s00424-009-0767-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/08/2023]
Abstract
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to hemodynamic stimuli exerted on the luminal surface of endothelial cells by the streaming blood (shear stress) and the cyclic strain of the vascular wall. The endothelial NO synthase (eNOS) is activated in response to fluid shear stress and numerous agonists via cellular events such as; increased intracellular Ca(2+), interaction with substrate and co-factors, as well as adaptor and regulatory proteins, protein phosphorylation, and through shuttling between distinct sub-cellular domains. Dysregulation of these processes leads to attenuated eNOS activity and reduced NO output which is a characteristic feature of numerous patho-physiological disorders such as diabetes and atherosclerosis. This review summarizes some of the recent findings relating to the molecular events regulating eNOS activity.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Schmidt K, Martens-Lobenhoffer J, Meinitzer A, Graier WF, Torres CM, Venema RC, Mayer B. Activation of endothelial nitric oxide synthase by the pro-apoptotic drug embelin: Striking discrepancy between nitric oxide-mediated cyclic GMP accumulation and L-citrulline formation. Nitric Oxide 2010; 22:281-9. [PMID: 20144727 DOI: 10.1016/j.niox.2010.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/14/2010] [Accepted: 02/01/2010] [Indexed: 01/18/2023]
Abstract
The benzoquinone derivative embelin is a multifunctional drug that not only induces apoptosis by inhibiting XIAP, the X chromosome-linked inhibitor of apoptosis protein, but also blocks nuclear factor-kappaB signaling pathways, thereby leading to down-regulation of a variety of gene products involved in tumor cell survival, proliferation, invasion, angiogenesis, and inflammation. Here, we report that embelin activates and modulates l-arginine/nitric oxide/cyclic GMP signaling in cultured endothelial cells. Embelin elicited a rapid increase of intracellular free Ca(2+), leading to activation of endothelial nitric oxide synthase (eNOS) and NO-induced cGMP accumulation. While the cGMP response was comparable to that caused by other Ca(2+)-mobilizing agents, the stimulatory effect of embelin on l-citrulline formation (approximately 4-fold) was substantially lower than that observed upon activation of eNOS with the Ca(2+) ionophore A23187 (approximately 18-fold), the receptor agonist ATP (approximately 16-fold) or the sarco-endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin (approximately 14-fold). The apparent discrepancy between NO/cGMP and l-citrulline formation in embelin-treated cells was not due to enhanced metabolism and/or efflux of l-citrulline, increased NO bioavailability, inhibition of cGMP hydrolysis, sensitization of soluble guanylate cyclase (sGC) to NO, or enhanced formation of a sGC/eNOS complex. Our puzzling observations suggest that embelin improves coupling of endothelial NO synthesis to sGC activation through mobilization of an as yet unrecognized signaling pathway.
Collapse
Affiliation(s)
- Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kotlo KU, Rasenick MM, Danziger RS. Evidence for cross-talk between atrial natriuretic peptide and nitric oxide receptors. Mol Cell Biochem 2009; 338:183-9. [PMID: 20024606 DOI: 10.1007/s11010-009-0352-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/03/2009] [Indexed: 01/11/2023]
Abstract
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC's (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (alpha/beta) beta1 isoform of the beta subunit of NOGC (NOGCbeta1) was specifically focused. NOGCbeta1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCbeta1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCbeta1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 +/- 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 +/- 3.4 vs. 1.2 +/- 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCbeta1 abundance was reduced using specific siRNA to NOGCbeta1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCbeta1 (530.2 +/- 141.4 vs. 26.1 +/- 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCbeta1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 +/- 22 vs. 92 +/- 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCbeta1 and GC-A interact and that NOGCbeta1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.
Collapse
Affiliation(s)
- Kumar U Kotlo
- Department of Medicine, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
40
|
New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem 2009; 334:221-32. [PMID: 20012469 DOI: 10.1007/s11010-009-0318-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
The cellular counterpart of the "soluble" guanylyl cyclase found in tissue homogenates over 30 years ago is now recognized as the physiological receptor for nitric oxide (NO). The ligand-binding site is a prosthetic haem group that, when occupied by NO, induces a conformational change in the protein that propagates to the catalytic site, triggering conversion of GTP into cGMP. This review focuses on recent research that takes this basic information forward to the beginnings of a quantitative depiction of NO signal transduction, analogous to that achieved for other major transmitters. At its foundation is an explicit enzyme-linked receptor mechanism for NO-activated guanylyl cyclase that replicates all its main properties. In cells, NO signal transduction is subject to additional, activity-dependent modifications, notably through receptor desensitization and changes in the activity of cGMP-hydrolyzing phosphodiesterases. The measurement of these parameters under varying conditions in rat platelets has made it possible to formulate a cellular model of NO-cGMP signaling. The model helps explain cellular responses to NO and their modification by therapeutic agents acting on the guanylyl cyclase or phosphodiesterase limbs of the pathway.
Collapse
|
41
|
|
42
|
Mittal R, Prasadarao NV. Nitric oxide/cGMP signalling induces Escherichia coli K1 receptor expression and modulates the permeability in human brain endothelial cell monolayers during invasion. Cell Microbiol 2009; 12:67-83. [PMID: 19732056 DOI: 10.1111/j.1462-5822.2009.01379.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) mediated by outer membrane protein A (OmpA) results in the leakage of HBMEC monolayers. Despite the influence of nitric oxide (NO) in endothelial cell tight junction integrity, its role in E. coli-induced HBMEC monolayer permeability is poorly defined. Here, we demonstrate that E. coli invasion of HBMEC stimulates NO production by increasing the inducible nitric oxide synthase (iNOS) expression. Exposure to NO-producing agents enhanced the invasion of OmpA(+)E. coli and thereby increased the permeability of HBMEC. OmpA(+)E. coli-induced NO production lead to increased generation of cGMP and triggered the expression of OmpA receptor, Ec-gp96 in HBMEC. Pre-treatment of HBMEC with iNOS inhibitors or by introducing siRNA to iNOS, but not to eNOS or cGMP inhibitors abrogated the E. coli-induced expression of Ec-gp96. Overexpression of the C-terminal truncated Ec-gp96 in HBMEC prevented NO production and its downstream effector, cGMP generation and consequently, the invasion of OmpA(+)E. coli. NO/cGMP production also activates PKC-alpha, which is previously shown to be involved in HBMEC monolayer leakage. These results indicate that NO/cGMP signalling pathway plays a novel role in OmpA(+)E. coli invasion of HBMEC by enhancing the surface expression of Ec-gp96.
Collapse
Affiliation(s)
- Rahul Mittal
- The Saban Research Institute, Children's Hospital Los Angeles, CA 90027, USA
| | | |
Collapse
|
43
|
Meurer S, Pioch S, Pabst T, Opitz N, Schmidt PM, Beckhaus T, Wagner K, Matt S, Gegenbauer K, Geschka S, Karas M, Stasch JP, Schmidt HHHW, Müller-Esterl W. Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation. Circ Res 2009; 105:33-41. [PMID: 19478201 DOI: 10.1161/circresaha.109.198234] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and downregulation of its major intracellular receptor, the alphabeta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of the heme of sGC, as well as the responsiveness of sGC to NO. sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here, we show that oxidation-induced downregulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand BAY 58-2667 prevented sGC ubiquitination and stabilized both alpha and beta subunits. Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC.
Collapse
Affiliation(s)
- Sabine Meurer
- Department of Pharmacology & Centre for Vascular Health, University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pearce WJ, Williams JM, White CR, Lincoln TM. Effects of chronic hypoxia on soluble guanylate cyclase activity in fetal and adult ovine cerebral arteries. J Appl Physiol (1985) 2009; 107:192-9. [PMID: 19407253 DOI: 10.1152/japplphysiol.00233.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A broad variety of evidence obtained largely in pulmonary vasculature suggests that chronic hypoxia modulates vasoreactivity to nitric oxide (NO). The present study explores the general hypothesis that chronic hypoxia also modulates cerebrovascular reactivity to NO, and does so by modulating the activity of soluble guanylate cyclase (sGC), the primary target for NO in vascular smooth muscle. Pregnant and nonpregnant ewes were maintained at either sea level or at 3,820 m for the final 110 days of gestation, at which time middle cerebral arteries from term fetal lambs and nonpregnant adults were harvested. In both fetal and adult arteries, NO-induced vasodilatation was attenuated by chronic hypoxia and completely inhibited by 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of sGC. sGC abundance (in ng sGC/mg protein) measured via Western immunoblots was approximately 10-fold greater in fetal (17.6 +/- 1.6) than adult (1.7 +/- 0.3) arteries but was not affected by chronic hypoxia. The specific activity of sGC (in pmol cGMP.microg sGC(-1).min(-1)) was similar in fetal (255 +/- 64) and adult (280 +/- 75) arteries and was inhibited by chronic hypoxia in both fetal (120 +/- 10) and adult (132 +/- 26) arteries. Rates of cGMP degradation (in pmol cGMP.mg protein(-1).min(-1)) were similar in fetal (159 +/- 59) and adult (134 +/- 36) arteries but were not significantly depressed by chronic hypoxia in either fetal (115 +/- 25) or adult (108 +/- 25) arteries. The cGMP analog 8-(p-chlorophenylthio)-cGMP was a more potent vasorelaxant in fetal (pD(2) = 4.7 +/- 0.1) than adult (pD(2) = 4.3 +/- 0.1) arteries, but its ability to promote vasodilatation was not affected by chronic hypoxia in either age group. Together, these results reveal that hypoxic inhibition of NO-induced vasodilatation is attributable largely to attenuation of the specific activity of sGC and does not involve significant changes in sGC abundance, cGMP-phosphodiesterase activity, or the vasorelaxant activity of protein kinase G.
Collapse
Affiliation(s)
- William J Pearce
- Department of Physiology, Center for Perinatal Biology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
45
|
Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology 2009; 110:317-25. [PMID: 19194158 DOI: 10.1097/aln.0b013e3181942cb4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. METHODS Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. RESULTS APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. CONCLUSION The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.
Collapse
|
46
|
Kawada S, Ishii N. Peripheral venous occlusion causing cardiac hypertrophy and changes in biological parameters in rats. Eur J Appl Physiol 2009; 105:909-17. [DOI: 10.1007/s00421-008-0977-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
|
47
|
Schmidt HHHW, Schmidt PM, Stasch JP. NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 2009:309-339. [PMID: 19089335 DOI: 10.1007/978-3-540-68964-5_14] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxidative stress, a risk factor for several cardiovascular disorders, interferes with the NO/sGC/cGMP signalling pathway through scavenging of NO and formation of the strong intermediate oxidant, peroxynitrite. Under these conditions, endothelial and vascular dysfunction develops, culminating in different cardio-renal and pulmonary-vascular diseases. Substituting NO with organic nitrates that release NO (NO donors) has been an important principle in cardiovascular therapy for more than a century. However, the development of nitrate tolerance limits their continuous clinical application and, under oxidative stress and increased formation of peroxynitrite foils the desired therapeutic effect. To overcome these obstacles of nitrate therapy, direct NO- and haem-independent sGC activators have been developed, such as BAY 58-2667 (cinaciguat) and HMR1766 (ataciguat), showing unique biochemical and pharmacological properties. Both compounds are capable of selectively activating the oxidized/haem-free enzyme via binding to the enzyme's haem pocket, causing pronounced vasodilatation. The potential importance of these new drugs resides in the fact that they selectively target a modified state of sGC that is prevalent under disease conditions as shown in several animal models and human disease. Activators of sGC may be beneficial in the treatment of a range of diseases including systemic and pulmonary hypertension (PH), heart failure, atherosclerosis, peripheral arterial occlusive disease (PAOD), thrombosis and renal fibrosis. The sGC activator HMR1766 is currently in clinical development as an oral therapy for patients with PAOD. The sGC activator BAY 58-2667 has demonstrated efficacy in a proof-of-concept study in patients with acute decompensated heart failure (ADHF), reducing pre- and afterload and increasing cardiac output from baseline. A phase IIb clinical study for the indication of ADHF is currently underway.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- Department of Pharmacology and Centre for Vascular Health, Monash University, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
48
|
Zhang X, Jin Y, Xia L, Tao X, Bai M, Zhang J. Hsp90 mediates the balance of nitric oxide and superoxide anion in the lungs of rats with acute pulmonary thromboembolism. Int Immunopharmacol 2008; 9:43-8. [PMID: 18852069 DOI: 10.1016/j.intimp.2008.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 08/20/2008] [Accepted: 09/16/2008] [Indexed: 11/19/2022]
Abstract
Acute pulmonary thromboembolism (PTE) can result in serious vascular responses. The association of heat shock protein 90 (Hsp90) with endothelial nitric oxide synthase (eNOS), which generates nitric oxide (NO) and superoxide anion (O2(-)), is a critical mechanism on regulating vessel homeostasis. In this study, the role of Hsp90 association with eNOS in the balance of NO and O2(-) was examined in PTE rat model. PTE rats model was induced by intrajugular injection of autologous blood clots (0.04 g/kg), lung homogenate was collected at appointed time length to assess NO production and O2(-) production. The interaction of Hsp90 and eNOS protein in every group was detected. Treatment of PTE model rats with geldanamycin, a commonly used Hsp90 inhibitor, augmented eNOS phosphorylation at Thr-495, depressing eNOS activity. Together with the increase of NO production in lung homogenate of PTE rats at 1 h and its maximum reached at 3 d, geldanamycin treatment significantly attenuated the production of NO but augmented the production of O2(-) in the lungs of rats after PTE at indicated time length. These results suggest that geldanamycin may enhance eNOS phosphorylation at Thr-495 by inhibiting Hsp90, Hsp90 uncoupling eNOS protein results in increased eNOS-dependent O2(-) production.
Collapse
Affiliation(s)
- Xiaoju Zhang
- Key Lab of Pulmonary Diseases of Ministry of Health, Department of Respiratory Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WCIE 6BT, UK.
| |
Collapse
|
50
|
Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 2008; 49:134-40. [PMID: 18692595 DOI: 10.1016/j.vph.2008.06.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a gaseous lipophilic free radical generated by three distinct isoforms of nitric oxide synthases (NOS), type 1 or neuronal (nNOS), type 2 or inducible (iNOS) and type 3 or endothelial NOS (eNOS). Expression of eNOS is altered in many types of cardiovascular disease, such as atherosclerosis, diabetes and hypertension. The ubiquitous chaperone heat shock protein 90 (hsp90) associates with NOS and is important for its proper folding and function. Current studies point toward a therapeutic potential by modulating hsp90-NOS association in various vascular diseases. Here we review the transcriptional regulation of endothelial NOS and factors affecting eNOS activity and function, as well as the important vascular pathologies associated with altered NOS function, focusing on the regulatory role of hsp90 and other factors in NO-associated pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anuran Chatterjee
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA
| | | | | |
Collapse
|