1
|
Homme RP, George AK, Singh M, Smolenkova I, Zheng Y, Pushpakumar S, Tyagi SC. Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. Int J Mol Sci 2021; 22:ijms222413546. [PMID: 34948342 PMCID: PMC8706694 DOI: 10.3390/ijms222413546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although blood–heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.
Collapse
|
2
|
Yurista SR, Silljé HHW, Nijholt KT, Dokter MM, van Veldhuisen DJ, de Boer RA, Westenbrink BD. Factor Xa Inhibition with Apixaban Does Not Influence Cardiac Remodelling in Rats with Heart Failure After Myocardial Infarction. Cardiovasc Drugs Ther 2021; 35:953-963. [PMID: 32458320 PMCID: PMC8452585 DOI: 10.1007/s10557-020-06999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) is considered to be a prothrombotic condition and it has been suggested that coagulation factors contribute to maladaptive cardiac remodelling via activation of the protease-activated receptor 1 (PAR1). We tested the hypothesis that anticoagulation with the factor Xa (FXa) inhibitor apixaban would ameliorate cardiac remodelling in rats with HF after myocardial infarction (MI). METHODS AND RESULTS Male Sprague-Dawley rats were either subjected to permanent ligation of the left ascending coronary artery (MI) or sham surgery. The MI and sham animals were randomly allocated to treatment with placebo or apixaban in the chow (150 mg/kg/day), starting 2 weeks after surgery. Cardiac function was assessed using echocardiography and histological and molecular markers of cardiac hypertrophy were assessed in the left ventricle (LV). Apixaban resulted in a fivefold increase in anti-FXa activity compared with vehicle, but no overt bleeding was observed and haematocrit levels remained similar in apixaban- and vehicle-treated groups. After 10 weeks of treatment, LV ejection fraction was 42 ± 3% in the MI group treated with apixaban and 37 ± 2 in the vehicle-treated MI group (p > 0.05). Both vehicle- and apixaban-treated MI groups also displayed similar degrees of LV dilatation, LV hypertrophy and interstitial fibrosis. Histological and molecular markers for pathological remodelling were also comparable between groups, as was the activity of signalling pathways downstream of the PAR1 receptor. CONCLUSION FXa inhibition with apixaban does not influence pathological cardiac remodelling after MI. These data do not support the use of FXa inhibitor in HF patients with the aim to amend the severity of HF. Graphical Abstract.
Collapse
Affiliation(s)
- Salva R Yurista
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Kirsten T Nijholt
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
3
|
Translational Sciences in Cardiac Failure Secondary to Arteriovenous Fistula in Hemodialysis Patients. Ann Vasc Surg 2021; 74:431-449. [PMID: 33556504 DOI: 10.1016/j.avsg.2021.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 01/03/2021] [Indexed: 01/07/2023]
Abstract
High-output cardiac failure is a rare form of heart failure associated with the formation of arteriovenous fistula (AVF) in hemodialysis patients. The pathophysiology underlying the HOCF is complex and multifactorial. Presence of AVF can cause long term hemodynamic changes that ultimately lead to increased cardiac output and consequently cardiac failure. A number of risk factors have been associated with the development of HOCF post-AVF construction, including male sex, a proximally located AVF and a state of volume overload. Dysregulation of tissue inhibitor of matrix metalloproteinase 4, Sirtuin-1 and Sirtuin-3 gene expression have been associated with the development of heart failure. The differences observed between genders have been attributed to altered activity of the β-adrenoceptor system. Numerous biomarkers including cardiac troponin T and I, atrial natriuretic peptide, brain natriuretic peptide among others have shown both prognostic and diagnostic potential; however further research is needed to establish their utility in clinical practice for patients with AVF associated HOCF. In recent years risk stratification models have been developed to help identify patients at the highest risk of developing HOCF post AVF which could be revolutionary in its identification and management. Potential options for managing HOCF post-AVF include AVF ligation, banding and anastoplasty however these procedures are not without their own associated risks. In this review, we discuss the pathophysiology, risk stratification and management of patients with AVF associated HOCF.
Collapse
|
4
|
Okamura K, Nakagama Y, Takeda N, Soma K, Sato T, Isagawa T, Kido Y, Sakamoto M, Manabe I, Hirata Y, Komuro I, Ono M. Therapeutic targeting of mitochondrial ROS ameliorates murine model of volume overload cardiomyopathy. J Pharmacol Sci 2019; 141:56-63. [PMID: 31611176 DOI: 10.1016/j.jphs.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/18/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022] Open
Abstract
Concomitant heart failure is associated with poor clinical outcome in dialysis patients. The arteriovenous shunt, created as vascular access for hemodialysis, increases ventricular volume-overload, predisposing patients to developing cardiac dysfunction. The integral function of mitochondrial respiration is critically important for the heart to cope with hemodynamic overload. The involvement, however, of mitochondrial activity or reactive oxygen species (ROS) in the pathogenesis of ventricular-overload-induced heart failure has not been fully elucidated. We herein report that disorganization of mitochondrial respiration increases mitochondrial ROS production in the volume-overloaded heart, leading to ventricular dysfunction. We adopted the murine arteriovenous fistula (AVF) model, which replicates the cardinal features of volume-overload-induced ventricular dysfunction. Enzymatic assays of cardiac mitochondria revealed that the activities of citrate synthase and NADH-quinone reductase (complex Ⅰ) were preserved in the AVF heart. In contrast, the activity of NADH oxidase supercomplex was significantly compromised, resulting in elevated ROS production. Importantly, the antioxidant N-acetylcysteine prevented the development of ventricular dilatation and cardiac dysfunction, suggesting a pathogenic role for ROS in dialysis-related cardiomyopathy. A cardioprotective effect was also observed in metformin-treated mice, illuminating its potential use in the management of heart failure complicating diabetic patients on dialysis.
Collapse
Affiliation(s)
- Kenichi Okamura
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Nakagama
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan; Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Katsura Soma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuyuki Sato
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takayuki Isagawa
- Graduate School of Biomedical Science, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasutoshi Kido
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masaya Sakamoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Yasutaka Hirata
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
5
|
Shi G, Yang X, Pan M, Sun J, Ke H, Zhang C, Geng H. Apixaban attenuates ischemia-induced myocardial fibrosis by inhibition of Gq/PKC signaling. Biochem Biophys Res Commun 2018; 500:550-556. [DOI: 10.1016/j.bbrc.2018.04.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
|
6
|
Dong A, Mueller P, Yang F, Yang L, Morris A, Smyth SS. Direct thrombin inhibition with dabigatran attenuates pressure overload-induced cardiac fibrosis and dysfunction in mice. Thromb Res 2017; 159:58-64. [PMID: 28982031 DOI: 10.1016/j.thromres.2017.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The multifunctional serine protease thrombin exerts proinflammatory and profibrotic cellular effects that may contribute to cardiac remodeling. This study was designed to investigate whether direct thrombin inhibition with dabigatran attenuates myocardial injury in the setting of pressure overload-induced heart failure. MATERIAL AND METHODS Transverse aortic constriction (TAC) surgery was performed on C57Bl/6J male mice to elicit cardiac hypertrophy. TAC, or sham, mice were randomly assigned to receive chow supplemented with the oral anticoagulant, dabigatran etexilate, or placebo. RESULTS Dabigatran did not affect cardiac hypertrophy, as measured by heart weight-to-body weight or the heart weight-to-tibia length, although a non-significant reduction in myocardial hypertrophic markers (ANP, BNP and MHC) occurred. Dabigatran reduced perivascular fibrosis by 25%, interstitial fibrosis by 54%, and the expression of myocardial fibrosis markers collagen I & III, MMP9, SMA, and PAR-1. These changes were associated with significant improvement in both coronary flow reserve and global left ventricular function. In cultured cardiac fibroblasts, dabigatran decreased thrombin and PAR-1-mediated collagen deposition by 30% and 37%, respectively. CONCLUSIONS Dabigatran attenuates cardiac fibrosis in the setting of pressure overload and improves coronary flow reserve and global cardiac function possibly by inhibiting thrombin activity and down-regulating PAR-1 expression in the absence of an effect on cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Anping Dong
- Division of Cardiovascular Medicine, The Gill Heart Institute, 741 S. Limestone Street, 252 BBSRB, Lexington, KY 40536-0509, United States; Lexington VA Medical Center, 1101 Veterans Drive, Lexington, KY 40502, United States
| | - Paul Mueller
- Division of Cardiovascular Medicine, The Gill Heart Institute, 741 S. Limestone Street, 252 BBSRB, Lexington, KY 40536-0509, United States.
| | - Fanmuyi Yang
- Division of Cardiovascular Medicine, The Gill Heart Institute, 741 S. Limestone Street, 252 BBSRB, Lexington, KY 40536-0509, United States.
| | - Liping Yang
- Division of Cardiovascular Medicine, The Gill Heart Institute, 741 S. Limestone Street, 252 BBSRB, Lexington, KY 40536-0509, United States.
| | - Andrew Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, 741 S. Limestone Street, 252 BBSRB, Lexington, KY 40536-0509, United States; Lexington VA Medical Center, 1101 Veterans Drive, Lexington, KY 40502, United States.
| | - Susan S Smyth
- Division of Cardiovascular Medicine, The Gill Heart Institute, 741 S. Limestone Street, 252 BBSRB, Lexington, KY 40536-0509, United States; Lexington VA Medical Center, 1101 Veterans Drive, Lexington, KY 40502, United States.
| |
Collapse
|
7
|
Chaturvedi P, Tyagi SC. Epigenetic silencing of TIMP4 in heart failure. J Cell Mol Med 2016; 20:2089-2101. [PMID: 27396717 PMCID: PMC5082395 DOI: 10.1111/jcmm.12901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of matrix metalloprotease 4 (TIMP4) is endogenously one of the key modulators of matrix metalloprotease 9 (MMP9) and we have reported earlier that cardiac specific TIMP4 instigates contractility and helps in differentiation of cardiac progenitor cells. Although studies show that the expression of TIMP4 goes down in heart failure but the mechanism is unknown. This study aims to determine the mechanism of silencing of TIMP4 in heart failure progression created by aorta-vena cava (AV) fistula. We hypothesize that there is epigenetic silencing of TIMP4 in heart failure. To validate this hypothesis, we created heart failure model by creating AV fistula in C57BL/6 mice and looked into the promoter methylation (methylation specific PCR, high resolution melting, methylation sensitive restriction enzyme and Na bisulphite treatment followed by sequencing), histone modification (ChIP assay) and microRNAs that regulate TIMP4 (mir122a) and MMP9 (mir29b and mir455-5p). The physiological parameters in terms of cardiac function after AV fistula were assessed by echocardiography. We observed that there are 7 CpG islands in the TIMP4 promoter which get methylated during the progression of heart failure which leads to its epigenetic silencing. In addition, the up-regulated levels of mir122a in part, contribute to regulation of TIMP4. Consequently, MMP9 gets up-regulated and leads to cardiac remodeling. This is a novel report to explain the epigenetic silencing of TIMP4 in heart failure.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
8
|
Chaturvedi P, Kalani A, Familtseva A, Kamat PK, Metreveli N, Tyagi SC. Cardiac tissue inhibitor of matrix metalloprotease 4 dictates cardiomyocyte contractility and differentiation of embryonic stem cells into cardiomyocytes: Road to therapy. Int J Cardiol 2015; 184:350-363. [PMID: 25745981 PMCID: PMC4417452 DOI: 10.1016/j.ijcard.2015.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/08/2015] [Accepted: 01/24/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND TIMP4 (Tissue Inhibitors of Matrix Metalloprotease 4), goes down in failing hearts and mice lacking TIMP4 show poor regeneration capacity after myocardial infarction (MI). This study is based on our previous observation that administration of cardiac inhibitor of metalloproteinase (~TIMP4) attenuates oxidative stress and remodeling in failing hearts. Therefore, we hypothesize that TIMP4 helps in cardiac regeneration by augmenting contractility and inducing the differentiation of cardiac progenitor cells into cardiomyocytes. METHODS To validate this hypothesis, we transfected mouse cardiomyocytes with TIMP4 and TIMP4-siRNA and performed contractility studies in the TIMP4 transfected cardiomyocytes as compared to siRNA-TIMP4 transfected cardiomyocytes. We evaluated the calcium channel gene serca2a (sarcoplasmic reticulum calcium ATPase2a) and mir122a which tightly regulates serca2a to explain the changes in contractility. We treated mouse embryonic stem cells with cardiac extract and cardiac extract minus TIMP4 (using TIMP4 monoclonal antibody) to examine the effect of TIMP4 on differentiation of cardiac progenitor cells. RESULTS Contractility was augmented in the TIMP4 transfected cardiomyocytes as compared to siRNA-TIMP4 transfected cardiomyocytes. There was elevated expression of serca2a in the TIMP4 transformed myocytes and down regulation of mir122a. The cells treated with cardiac extract containing TIMP4 showed cardiac phenotype in terms of Ckit+, GATA4+ and Nkx2.5 expression. CONCLUSION This is a novel report suggesting that TIMP4 augments contractility and induces differentiation of progenitor cells into cardiac phenotype. In view of the failure of MMP9 inhibitors for cardiac therapy, TIMP4 provides an alternative approach, being an indigenous molecule and a natural inhibitor of MMP9.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| | - Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Pradip Kumar Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| |
Collapse
|
9
|
Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, Tyynismaa H, Yamasaki T, Yamada KI, Kang D, Suomalainen A, Sunagawa K. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One 2015; 10:e0119687. [PMID: 25822152 PMCID: PMC4379048 DOI: 10.1371/journal.pone.0119687] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 12/01/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) copy number decreases in animal and human heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle helicase in volume overload (VO)-induced HF. Methods and Results Two strains of transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT) mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP) activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS) upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM) overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice. Conclusions The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Arai
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Saku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamori Kakino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Toshihide Yamasaki
- Department of Biofunctional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-ichi Yamada
- Department of Biofunctional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Chien PTY, Hsieh HL, Chi PL, Yang CM. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol 2014; 171:4504-19. [PMID: 24902855 PMCID: PMC4209155 DOI: 10.1111/bph.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Different protease-activated receptors (PARs) activated by thrombin are involved in cardiovascular disease, via up-regulation of inflammatory proteins including COX-2. However, the mechanisms underlying thrombin-regulated COX-2 expression in human cardiomyocytes remain unclear. EXPERIMENTAL APPROACH Human cardiomyocytes were used in the study. Thrombin-induced COX-2 protein and mRNA expression, and signalling pathways were determined by Western blot, real-time PCR and COX-2 promoter luciferase reporter assays, and pharmacological inhibitors or siRNAs. PGE2 generation and cell proliferation were also determined. KEY RESULTS Thrombin-induced COX-2 protein and mRNA expression, promoter activity and PGE2 release was attenuated by the PAR1 antagonist (SCH79797) or the inhibitors of proteinase activity (PPACK), MEK1/2 (U0126), p38 MAPK (SB202190) or JNK1/2 (SP600125), and transfection with small interfering RNA (siRNA) of PAR1, p38, p42 or JNK2. These results suggested that PAR1-dependent MAPKs participate in thrombin-induced COX-2 expression in human cardiomyocytes. Moreover, thrombin stimulated phosphorylation of MAPKs, which was attenuated by PPACK and SCH79797. Furthermore, thrombin-induced COX-2 expression was blocked by the inhibitors of AP-1 (tanshinone IIA) and NF-κB (helenalin). Moreover, thrombin-stimulated phosphorylation of c-Jun/AP-1 and p65/NF-κB was attenuated by tanshinone IIA and helenalin, respectively, suggesting that thrombin induces COX-2 expression via PAR1/MAPKs/AP-1 or the NF-κB pathway. Functionally, thrombin increased human cardiomyocyte proliferation through the COX-2/PGE2 system linking to EP2 receptors, as determined by proliferating cell nuclear antigen and cyclin D1 expression. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that MAPKs-mediated activation of AP-1/NF-κB pathways is, at least in part, required for COX-2/PGE2 /EP2 -triggered cell proliferation in human cardiomyocytes.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| |
Collapse
|
11
|
El Hajj EC, El Hajj MC, Voloshenyuk TG, Mouton AJ, Khoutorova E, Molina PE, Gilpin NW, Gardner JD. Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation. Alcohol Clin Exp Res 2013; 38:448-56. [PMID: 24033327 DOI: 10.1111/acer.12239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic alcohol consumption has been shown in human and animal studies to result in collagen accumulation, myocardial fibrosis, and heart failure. Cardiac fibroblasts produce collagen and regulate extracellular matrix (ECM) homeostasis through the synthesis and activity of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), with the balance of MMPs/TIMPs determining the rate of collagen turnover. Dynamic changes of MMP and TIMP expression were reported in alcohol-induced hepatic fibrosis; however, the effect of alcohol on MMP/TIMP balance in the heart and cardiac fibroblasts is unknown. We hypothesized that alcohol exposure alters cardiac fibroblast MMP and TIMP expression to promote collagen accumulation in the heart. METHODS Cardiac fibroblasts isolated from adult rats were cultured in the presence of alcohol (12.5 to 200 mM) for 48 hours. MMP, TIMP, and collagen type I and III expression were assayed by Western blot analysis. Hydroxyproline (HPro) was used as a marker of collagen production. The in vivo cardiac effects of ethanol (EtOH) were determined using rats exposed to EtOH vapor for 2 weeks, resulting in blood alcohol levels of 150 to 200 mg/dl. Cardiac collagen volume fraction (CVF), as well as MMP, TIMP, and collagen expression, was assessed. RESULTS EtOH-exposed rats exhibited up-regulation of TIMP-1, TIMP-3 and TIMP-4 in the heart, with no significant increases in MMPs. Cardiac fibroblasts exhibited transformation to a profibrotic phenotype following exposure to alcohol. These changes were reflected by increased α-smooth muscle actin and collagen I and III expression, as well as increased collagen secretion. In vivo EtOH exposure also produced fibrosis, indicated by increased CVF and expression of collagens. CONCLUSIONS Alcohol exposure modulates cardiac fibroblast MMP/TIMP expression favoring a profile associated with collagen accumulation. Our data suggest that this disrupted MMP/TIMP profile may contribute to the development of myocardial fibrosis and cardiac dysfunction resulting from chronic alcohol abuse.
Collapse
Affiliation(s)
- Elia C El Hajj
- Department of Physiology , School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sonin DL, Wakatsuki T, Routhu KV, Harmann LM, Petersen M, Meyer J, Strande JL. Protease-activated receptor 1 inhibition by SCH79797 attenuates left ventricular remodeling and profibrotic activities of cardiac fibroblasts. J Cardiovasc Pharmacol Ther 2013; 18:460-75. [PMID: 23598708 DOI: 10.1177/1074248413485434] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Fibroblast activity promotes adverse left ventricular (LV) remodeling that underlies the development of ischemic cardiomyopathy. Transforming growth factor-β (TGF-β) is a potent stimulus for fibrosis, and the extracellular signal-regulated kinases(ERK) 1/2 pathway also contributes to the fibrotic response. The thrombin receptor, protease-activated receptor 1 (PAR1), has been shown to play an important role in the excessive fibrosis in different tissues. The aim of this study was to investigate the influence of a PAR1 inhibitor, SCH79797, on cardiac fibrosis, tissue stiffness and postinfarction remodeling, and effects of PAR1 inhibition on thrombin-induced TGF-β and (ERK) 1/2 activities in cardiac fibroblasts. METHODS We used a rat model of myocardial ischemia-reperfusion injury, isolated cardiac fibroblasts, and 3-dimensional (3D) cardiac tissue models fabricated to ascertain the contribution of PAR1 activation on cardiac fibrosis and LV remodeling. RESULTS The PAR1 inhibitor attenuated LV dilation and improved LV systolic function of the reperfused myocardium at 28 days. This improvement was associated with a nonsignificant decrease in scar size (%LV) from 23 ± % in the control group (n = 10) to 16% ± 5.5% in the treated group (n = 9; P = .052). In the short term, the PAR1 inhibitor did not rescue infarct size or LV systolic function after 3 days. The PAR1 inhibition abolished thrombin-mediated ERK1/2 phosphorylation, TGF-β and type I procollagen production, matrix metalloproteinase-2/9 activation, myofibroblasts transformation in vitro, and abrogated the remodeling of 3D tissues induced by chronic thrombin treatment. CONCLUSION These studies suggest PAR1 inhibition initiated after ischemic injury attenuates adverse LV remodeling through late-stage antifibrotic events.
Collapse
Affiliation(s)
- Dmitry L Sonin
- Division of Cardiovascular Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
High levels of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), are correlated with an increase in extracellular matrix remodelling (ECM) via the matrix metalloproteinases (MMPs) and plasminogen/plasmin system. This results in an increase deposition of collagen that leads to endothelial-myocyte (EM) and myocyte-myocyte (MM) uncoupling; the physiological consequences are a plethora of cardiovascular pathologies. Homocysteine-induced increase in intracellular and mitochondrial Ca(2+) plays an important role in increasing reactive oxygen species (ROS) within mitochondria and instigating mitophagy within the cell. This occurs via several Hcy-mitigated processes: agonizing N-methyl-d-aspartate receptor-1 (NMDA-R1), decreasing expression of peroxisome proliferator activator receptor (PPAR) [thereby increasing oxidation], impairing Ca(2+) handling via Na(+)/Ca(2+) exchanger (NCX1) and Sarco endoplasmic reticulum Ca(2+) ATPase (SERCA-2a). The end result is an increase in ROS that directly or indirectly lead to MMP activation within mitochondria or the cytoplasm. Hcy induces a mitochondrial permeability transition that allows MMPs to be released from mitochondria thereby metabolizing matrix and impairing cardiac function. Further work remains to be elucidated concerning the specific mitochondrial mitophagic mechanisms under which matrix metabolism and remodelling occurs. Moreover, the therapeutic implications of NMDA and PPAR ligands are some promise to patient.
Collapse
Affiliation(s)
- Thomas P Vacek
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
14
|
Munjal C, Givvimani S, Qipshidze N, Tyagi N, Falcone JC, Tyagi SC. Mesenteric vascular remodeling in hyperhomocysteinemia. Mol Cell Biochem 2011; 348:99-108. [PMID: 21076854 DOI: 10.1007/s11010-010-0643-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/28/2010] [Indexed: 12/25/2022]
Abstract
Remodeling by its very nature implies synthesis and degradation of extracellular matrix components (such as elastin, collagen, and connexins). Most of the vascular matrix metalloproteinase (MMP) are latent because of the presence of constitutive nitric oxide (NO). However, during oxidative stress peroxinitrite (ONOO-) activates the latent MMPs and instigates vascular remodeling. Interestingly, in mesenteric artery, homocysteine (Hcy) decreases the NO bio-availability, and folic acid (FA, an Hcy-lowering agent) mitigates the Hcy-mediated mesentery artery dysfunction. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) and endothelial nitric oxide synthase (eNOS) increases NO production. The hypothesis was that the Hcy decreased NO bio-availability, in part, activating MMP, decreasing elastin, DDAH-2, eNOS and increased vasomotor response by increasing connexin. To test this hypothesis,the authors used 12-week-old C57BJ/L6 wild type (WT) and hyperhomocysteinemic (HHcy)-cystathione beta synthase heterozygote knockout (CBS+/-) mice. Blood pressure measurements were made by radio-telemetry. WT and MMP-9 knockout mice were administered with Hcy (0.67 mg/ml in drinking water). Superior mesenteric artery and mesenteric arcade were analyzed with light and confocal microscopy. The protein expressions were measured by western blot analysis. The mRNA levels for MMP-9 were measured by RT-PCR. The data showed decreased DDAH-2 and eNOS expressions in mesentery in CBS-/+ mice compared with WT mice. Immuno-fluorescence and western blot results suggest increased MMP-9 and connexin-40 expression in mesenteric arcades of CBS-/+ mice compared with WT mice. The wall thickness of third-order mesenteric artery was increased in CBS-/+ mice compared to WT mice. Hcy treatment increased blood pressure in WT mice. Interestingly, in MMP-9 KO, Hcy did not increase blood pressure. These results may suggest that HHcy causes mesenteric artery remodeling and narrowing by activating MMP-9 and decreasing DDAH-2 and eNOS expressions, compromising the blood flow, instigating hypertension, and acute abdomen pain.
Collapse
MESH Headings
- Abdominal Pain/etiology
- Amidohydrolases/metabolism
- Animals
- Blood Pressure
- Blood Pressure Monitoring, Ambulatory
- Blotting, Western
- Connexins/metabolism
- Cystathionine beta-Synthase/genetics
- Cystathionine beta-Synthase/metabolism
- Disease Models, Animal
- Elasticity
- Elastin/metabolism
- Extracellular Matrix Proteins/metabolism
- Fluorescent Antibody Technique
- Homocysteine
- Hyperhomocysteinemia/chemically induced
- Hyperhomocysteinemia/genetics
- Hyperhomocysteinemia/metabolism
- Hyperhomocysteinemia/pathology
- Hyperhomocysteinemia/physiopathology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Male
- Matrix Metalloproteinase 9/deficiency
- Matrix Metalloproteinase 9/genetics
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/pathology
- Mesenteric Artery, Superior/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Video
- Nitric Oxide Synthase Type III/metabolism
- Nitrites/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Splanchnic Circulation
- Telemetry
- Vascular Resistance
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- C Munjal
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
15
|
Otani H, Yoshioka K, Nishikawa H, Inagaki C, Nakamura T. Involvement of protein kinase C and RhoA in protease-activated receptor 1-mediated F-actin reorganization and cell growth in rat cardiomyocytes. J Pharmacol Sci 2011; 115:135-143. [PMID: 21258176 DOI: 10.1254/jphs.10197fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) that can be activated by serine proteinases such as thrombin has been demonstrated to contribute to the development of cardiac remodeling and hypertrophy after myocardial injury. Here, we investigated the mechanisms by which PAR1 leads to hypertrophic cardiomyocyte growth using cultured rat neonatal ventricular myocytes. PAR1 stimulation with thrombin (1 U/ml) or a synthetic agonist peptide (TFLLR-NH(2), 50 µM) for 48 h induced an increase in cell size and myofibril formation associated with BNP (brain natriuretic peptide) production. This actin reorganization assessed by fluorescein isothiocyanate (FITC)-conjugated phalloidin staining appeared at 1 h after PAR1 stimulation, and this response was reduced by a protein kinase C (PKC) inhibitor, chelerythrine, inhibitors of Rho (simvastatin) and Rho-associated kinase (ROCK) (Y-27632), but not by pertussis toxin (PTX). By Western blot analysis, translocation of PKCα or PKCε from the cytosol to membrane fractions was observed in cells stimulated with thrombin or TFLLR-NH(2) for 2 - 5 min. In addition, PAR1 stimulation for 3 - 5 min increased the level of active RhoA. Furthermore, inhibitors of PKC and ROCK and Rho abrogated PAR1-mediated increase in cell size. Depletion of PKCα or PKCε by specific small interfering RNA also suppressed both actin reorganization and cell growth. These results suggest that PAR1 stimulation of cardiomyocytes induces cell hypertrophy with actin cytoskeletal reorganization through activation of PKCα and PKCε isoforms and RhoA via PTX-insensitive G proteins.
Collapse
Affiliation(s)
- Hitomi Otani
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | |
Collapse
|
16
|
Plasma heparin cofactor II activity is inversely associated with left atrial volume and diastolic dysfunction in humans with cardiovascular risk factors. Hypertens Res 2010; 34:225-31. [PMID: 21107326 DOI: 10.1038/hr.2010.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thrombin has a crucial role in cardiac remodeling through protease-activated receptor-1 activation in cardiac fibroblasts and cardiomyocytes. As heparin cofactor II (HCII) inhibits the action of tissue thrombin in the cardiovascular system, it is possible that HCII counteracts the development of cardiac remodeling. We investigated the relationships between plasma HCII activity and surrogate markers of cardiac geometry, including left atrial volume index (LAVI), relative wall thickness (RWT) and left ventricular mass index, and deceleration time (DcT) and the ratio of peak E velocity to early diastolic mitral annulus velocity (E/e' ratio) as surrogate markers of left ventricular diastolic dysfunction measured using echocardiography in 304 Japanese elderly individuals without systolic heart failure (169 men and 135 women; mean age: 65.4 ± 11.8 years). Mean plasma HCII activity in all participants was 95.8 ± 17.0% and there was no difference between the mean plasma HCII activities in males and females. Multiple regression analysis revealed that there were significant inverse relationships between plasma HCII activity and LAVI (coefficient: -0.2302, P<0.001), between HCII activity and RWT (coefficient: -0.0007, P<0.05), between HCII activity and DcT (coefficient: -0.5189, P<0.05) and between HCII activity and E/e' ratio (coefficient: -0.0558, P<0.01). Plasma HCII activity was independently and inversely associated with the development of cardiac remodeling, including cardiac concentric change, left atrial enlargement and left ventricular diastolic dysfunction. These findings suggest that cardiac tissue thrombin inactivation by HCII is a novel therapeutic target for cardiac remodeling and atherosclerosis.
Collapse
|
17
|
Mishra PK, Metreveli N, Tyagi SC. MMP-9 gene ablation and TIMP-4 mitigate PAR-1-mediated cardiomyocyte dysfunction: a plausible role of dicer and miRNA. Cell Biochem Biophys 2010; 57:67-76. [PMID: 20422465 PMCID: PMC2921878 DOI: 10.1007/s12013-010-9084-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although matrix metalloproteinase-9 (MMP-9) is involved in cardiomyocytes contractility dysfunction, tissue inhibitor of metalloproteinase-4 (TIMP-4) mitigates the effect of MMP-9, and proteinase-activated receptor-1 (PAR-1, a G-protein couple receptor, GPCR) is involved in the signaling cascade of MMP-9-mediated cardiac dysfunction, the mechanism(s) are unclear. To test the hypothesis that induction of dicer and differential expression of microRNAs (miRNAs) contribute, in part, to the down regulation of sarcoplasmic reticulum calcium ATPase isoform 2a (serca-2a) in MMP-9 and PAR-1-mediated myocytes dysfunction, ventricular cardiomyocytes were isolated from C57BL/6J mice and treated with 3 ng/ml of MMP-9, 12 ng/ml of TIMP-4, and 10 and 100 microM of PAR-1 antagonist with MMP-9. Specific role of MMP-9 was determined by using MMP-9 knock out (MMP-9KO) and their corresponding control (FVB) mice. Ion Optics video-edge detection system and Fura 2-AM loading were used for determining the contractility and calcium release from cardiomyocytes. Quantitative and semi-quantitative PCR were used to determine the expression of dicer, TIMP-4 and serca-2a. miRNA microarrays were used for assessing the expression of different miRNAs between MMP-9KO and FVB cardiomyocytes. The results suggest that MMP-9 treatment attenuates the voltage-induced contraction of primary cardiomyocytes while TIMP-4, an inhibitor of MMP-9, reverses the inhibition. MMP-9 treatment is also associated with reduced Ca(2+) transients. This effect is blocked by a PAR-1 antagonist, suggesting that PAR-1 mediates this effect. The effect is not as great at high concentrations (100 microM) perhaps due to mild toxicity. The PAR-1 antagonist effect did not affect calcium transients unlike TIMP-4. Interestingly, we show that MMP-KO myocytes contract more rapidly and release more Ca(2+) than FVB. The relevant RNA species serca-2a is induced and dicer is inhibited. There is selective inhibition of miR-376b and over-expression of miR-1, miR-26a, miR-30d, and miR-181c in MMP-9KO that are implicated in regulation of G-PCR and calcium handling.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, HSC –A -1215, 500S Preston Street, Louisville, KY 40202, USA
| | - Naira Metreveli
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, HSC –A -1215, 500S Preston Street, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, HSC –A -1215, 500S Preston Street, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Moshal KS, Zeldin DC, Sithu SD, Sen U, Tyagi N, Kumar M, Hughes WM, Metreveli N, Rosenberger DSE, Singh M, Vacek TP, Rodriguez WE, Ayotunde A, Tyagi SC. Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia. J Cell Physiol 2008; 215:771-81. [PMID: 18181170 DOI: 10.1002/jcp.21356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase-9 (MMP-9). Cytochrome P450 (CYP) epoxygenase-2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF-kappabeta. However, the underlying molecular mechanisms for MMP-9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)-induced MMP-9 activation. CYP2J2 was over-expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF-kappabeta-mediated MMP-9 regulation were evaluated using Western blot, in-gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K-dependent AKT signal. Hcy induced the nuclear translocation of NF-kappabeta via downregulation of IKbetaalpha (endogenous cytoplasmic inhibitor of NF-kappabeta). Hcy induced MMP-9 activation by increasing NF-kappabeta-DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9-EET phosphorylated the AKT and attenuated Hcy-induced MMP-9 activation. This occurred, in part, by the inhibition of NF-kappabeta nuclear translocation, NF-kappabeta-DNA binding and activation of IKbetaalpha. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP-9 signal.
Collapse
Affiliation(s)
- Karni S Moshal
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM, Andrade-Gordon P, Kotzsch M, Spring D, Luther T, Abe JI, Pohlman TH, Verrier ED, Blaxall BC, Mackman N. Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 2007; 116:2298-306. [PMID: 17967980 DOI: 10.1161/circulationaha.107.692764] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR-1) is the high-affinity receptor for the coagulation protease thrombin. It is expressed by a variety of cell types in the heart, including cardiomyocytes and cardiac fibroblasts. We have shown that tissue factor (TF) and thrombin contribute to infarct size after cardiac ischemia-reperfusion (I/R) injury. Moreover, in vitro studies have shown that PAR-1 signaling induces hypertrophy of cardiomyocytes and proliferation of cardiac fibroblasts. The purpose of the present study was to investigate the role of PAR-1 in infarction, cardiac remodeling, and hypertrophy after I/R injury. In addition, we analyzed the effect of overexpression of PAR-1 on cardiomyocytes. METHODS AND RESULTS We found that PAR-1 deficiency reduced dilation of the left ventricle and reduced impairment of left ventricular function 2 weeks after I/R injury. Activation of ERK1/2 was increased in injured PAR-1(-/-) mice compared with wild-type mice; however, PAR-1 deficiency did not affect infarct size. Cardiomyocyte-specific overexpression of PAR-1 in mice induced eccentric hypertrophy (increased left ventricular dimension and normal left ventricular wall thickness) and dilated cardiomyopathy. Deletion of the TF gene in cardiomyocytes reduced the eccentric hypertrophy in mice overexpressing PAR-1. CONCLUSIONS Our results demonstrate that PAR-1 contributes to cardiac remodeling and hypertrophy. Moreover, overexpression of PAR-1 on cardiomyocytes induced eccentric hypertrophy. Inhibition of PAR-1 after myocardial infarction may represent a novel therapy to reduce hypertrophy and heart failure in humans.
Collapse
Affiliation(s)
- Rafal Pawlinski
- The Scripps Research Institute, Department of Immunology, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Henderson BC, Tyagi N, Ovechkin A, Kartha GK, Moshal KS, Tyagi SC. Oxidative remodeling in pressure overload induced chronic heart failure. Eur J Heart Fail 2007; 9:450-7. [PMID: 17306621 DOI: 10.1016/j.ejheart.2006.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/28/2006] [Accepted: 12/14/2006] [Indexed: 01/19/2023] Open
Abstract
Despite extensive strides in understanding pressure overload induced heart failure, there is very little known about oxidative stress induced matrix metalloproteinase (MMP) activation, collagen degradation and remodeling in pressure overload heart failure. We hypothesize that pressure overload leads to redox imbalance causing increased expression/activity of MMP-2/9 producing collagen degradation and heart failure. To test this hypothesis, we created pressure overload heart failure by abdominal aortic stenosis (AS) in wild-type C57BL/6J and collagen mutant (Col1a1 with 129 s background) mice. At 4 weeks, post surgery, functional parameters were measured. Left ventricle (LV) tissue sections were analyzed by histology, Western Blot and PCR. The results suggest an increase in iNOS with a decrease in eNOS, an increase in nitrated protein modification and depletion of antioxidants thioredoxin and SOD in pressure overload. MMP-2/9 expression/activity and collagen degradation were increased in the AS animals. To determine whether a mutation in the collagen gene at the site of MMP cleavage mitigates cardiac hypertrophy, we used Col1a1 mice. In these mice, the AS induced LV hypertrophy (LVH) was ameliorated. In conclusion, our results suggest that AS leads to increased oxidative stress, expression/activity of MMP-2/9 and a decrease in antioxidant expression producing collagen degradation and heart failure.
Collapse
Affiliation(s)
- Brooke C Henderson
- Department of Physiology and Biophysics University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Rosenberger D, Moshal KS, Kartha GK, Tyagi N, Sen U, Lominadze D, Maldonado C, Roberts AM, Tyagi SC. Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia. Arch Physiol Biochem 2006; 112:219-27. [PMID: 17178594 PMCID: PMC3182485 DOI: 10.1080/13813450601093443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with arrhythmogenesis and sudden cardiac death (SCD). Hcy decreases constitutive neuronal and endothelial nitric oxide (NO), and cardiac diastolic relaxation. Hcy increases the iNOS/NO, peroxynitrite, mitochondrial NADPH oxidase, and suppresses superoxide dismutase (SOD) and redoxins. Hcy activates matrix metalloproteinase (MMP), disrupts connexin-43 and increases collagen/elastin ratio. The disruption of connexin-43 and accumulation of collagen (fibrosis) disrupt the normal pattern of cardiac conduction and attenuate NO transport from endothelium to myocyte (E-M) causing E-M uncoupling, leading to a pro-arrhythmic environment. The goal of this review is to elaborate the mechanism of Hcy-mediated iNOS/NO in E-M uncoupling and SCD. It is known that Hcy creates arrhythmogenic substrates (i.e. increase in collagen/elastin ratio and disruption in connexin-43) and exacerbates heart failure during chronic volume overload. Also, Hcy behaves as an agonist to N-methyl-D-aspartate (NMDA, an excitatory neurotransmitter) receptor-1, and blockade of NMDA-R1 reduces the increase in heart rate-evoked by NMDA-analog and reduces SCD. This review suggest that Hcy increases iNOS/NO, superoxide, metalloproteinase activity, and disrupts connexin-43, exacerbates endothelial-myocyte uncoupling and cardiac failure secondary to inducing NMDA-R1.
Collapse
Affiliation(s)
- Dorothea Rosenberger
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodriguez WE, Joshua IG, Falcone JC, Tyagi SC. Pioglitazone prevents cardiac remodeling in high-fat, high-calorie-induced Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 2006; 291:H81-7. [PMID: 16489101 DOI: 10.1152/ajpheart.01331.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The agonists of peroxisome proliferator-activated receptor-γ (PPARγ) ameliorate cardiovascular complications associated with diabetes mellitus. We tested the hypothesis that recovery from ailing to failing myocardium in diabetes by PPARγ agonist is in part due to decreased matrix metalloproteinase-9 (MMP-9) activation and left ventricular (LV) tissue levels of homocysteine (Hcy). C57BL/6J mice were made diabetic (D) by feeding them a high-fat calorie diet. PPARγ was activated by adding pioglitazone (Pi) to the diet. After 6 wk, mice were grouped into: normal calorie diet (N), D, N + Pi and D + Pi ( n = 6 in each group). LV variables were measured by echocardiography, endothelial-myocyte (E-M) coupling was measured in cardiac rings, and MMP-9 activation was measured by zymography. Blood glucose levels were twofold higher in D mice compared with N mice. Pi decreased the levels of glucose in D mice to the levels in N mice. LV Hcy levels were 3.5 ± 0.5 μM in N groups compared with 12.4 ± 0.6 μM in D groups. Treatment with Pi normalized the LV levels of Hcy but had no effect on plasma levels of Hcy. In the D group, LV contraction was reduced compared with that of the N group and was ameliorated by treatment with Pi. LV wall thickness was reduced to 0.25 ± 0.02 mm in the D group compared with 0.42 ± 0.01 mm in the N group. LV diastolic diameter was 3.05 ± 0.01 mm in the D group compared with 2.20 ± 0.02 mm in the N group. LV systolic diameter was 1.19 ± 0.02 mm in the D group and 0.59 ± 0.01 mm in the N group. Pi normalized the LV variables in D mice. The responses to ACh and nitroprusside were attenuated in diabetic hearts, suggesting that there was E-M uncoupling in the D group compared with the N group, which was ameliorated by Pi. Plasma and LV levels of MMP-2 and -9 activities were higher in the D group than in the N group but normalized after Pi treatment. These results suggest that E-M uncoupling in the myocardium, in part, is due to increased MMP activities secondary to suppressing PPARγ activity in high-fat, calorie-induced Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Walter E Rodriguez
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
23
|
Ovechkin AV, Tyagi N, Sen U, Lominadze D, Steed MM, Moshal KS, Tyagi SC. 3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. Am J Physiol Lung Cell Mol Physiol 2006; 291:L905-11. [PMID: 16815886 PMCID: PMC3182487 DOI: 10.1152/ajplung.00543.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic hyperhomocysteinemia (HHcy) is an important factor in development of arterial hypertension. HHcy is associated with activation of matrix metalloproteinases (MMPs); however, it is unclear whether HHcy-dependent extracellular matrix (ECM) accumulation plays a role in arterial hypertrophy and hypertension. We tested the hypothesis that in HHcy the mechanism of arterial hypertension involves arterial dysfunction in response to ECM accumulation between endothelial and arterial smooth muscle cells and subsequent endothelium-myocyte (E-M) uncoupling. To decrease plasma Hcy, dietary supplementation with 3-deazaadenosine (DZA), the S-adenosylhomocysteine hydrolase inhibitor, was administered to cystathionine beta-synthase (CBS) knockout (KO) mice. Mice were grouped as follows: wild type (WT; control), WT+DZA, CBSKO, and CBSKO+DZA (n = 4/group). Mean aortic blood pressure and heart rate were monitored in real time with a telemetric system before, during, and after DZA treatment (6 wk total). In vivo aorta function and morphology were analyzed by M-mode and Doppler echocardiography in anesthetized mice. Aorta MMP activity in unfixed cryostat sections was measured with DQ gelatin. Aorta MMP-2, MMP-9, and connexin 43 expression were measured by RT-PCR and Western blot analyses, respectively. HHcy caused increased aortic blood pressure and resistance, tachycardia, and increased wall thickness and ECM accumulation in aortic wall vs. control groups. There was a linear correlation between aortic wall thickness and plasma Hcy levels. MMP-2, MMP-9, and connexin 43 expression were increased in HHcy. In the CBSKO+DZA group, aortic blood pressure and levels of MMP and connexin 43 were close to those found in control groups. However, removal of DZA reversed the aortic lumen-to-wall thickness ratio in CBSKO mice, suggesting, in part, a role of vascular remodeling in the increase in blood pressure in HHcy. The results show that arterial hypertension in HHcy mice is, in part, associated with arterial remodeling and E-M uncoupling in response to MMP activation.
Collapse
Affiliation(s)
- Alexander V Ovechkin
- Department of Physiology & Biophysics, Health Sciences Center A-1115, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005; 289:H2649-56. [PMID: 16085680 DOI: 10.1152/ajpheart.00548.2005] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia decreases vascular reactivity and is associated with cardiovascular morbidity and mortality. However, pathogenic mechanisms that increase oxidative stress by homocysteine (Hcy) are unsubstantiated. The aim of this study was to examine the molecular mechanism by which Hcy triggers oxidative stress and reduces bioavailability of nitric oxide (NO) in cardiac microvascular endothelial cells (MVEC). MVEC were cultured for 0-24 h with 0-100 microM Hcy. Differential expression of protease-activated receptors (PARs), thioredoxin, NADPH oxidase, endothelial NO synthase, inducible NO synthase, neuronal NO synthase, and dimethylarginine-dimethylaminohydrolase (DDAH) were measured by real-time quantitative RT-PCR. Reactive oxygen species were measured by using a fluorescent probe, 2',7'-dichlorofluorescein diacetate. Levels of asymmetric dimethylarginine (ADMA) were measured by ELISA and NO levels by the Griess method in the cultured MVEC. There were no alterations in the basal NO levels with 0-100 microM Hcy and 0-24 h of treatment. However, Hcy significantly induced inducible NO synthase and decreased endothelial NO synthase without altering neuronal NO synthase levels. There was significant accumulation of ADMA, in part because of reduced DDAH expression by Hcy in MVEC. Nitrotyrosine expression was increased significantly by Hcy. The results suggest that Hcy activates PAR-4, which induces production of reactive oxygen species by increasing NADPH oxidase and decreasing thioredoxin expression and reduces NO bioavailability in cultured MVEC by 1) increasing NO2-tyrosine formation and 2) accumulating ADMA by decreasing DDAH expression.
Collapse
Affiliation(s)
- Neetu Tyagi
- Dept. of Physiology and Biophysics, School of Medicine, 500 S. Preston St., 1115-A, Univ. of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ovechkin AV, Tyagi N, Rodriguez WE, Hayden MR, Moshal KS, Tyagi SC. Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice. J Appl Physiol (1985) 2005; 99:2398-405. [PMID: 16081621 DOI: 10.1152/japplphysiol.00442.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulation of oxidized extracellular matrix between endothelium and muscle is an important risk factor in the endothelium-myocytes uncoupling in congestive heart failure. Although ventricular remodeling is accompanied by increased matrix metalloproteinase (MMP)-9 activity, it is unclear whether MMP-9 plays a role in endothelial apoptosis in chronic volume overload congestive heart failure. We tested the hypothesis that, in chronic volume overload, myocardial dysfunction involves endocardial endothelial (EE) apoptosis in response to MMP-9 activation, extracellular matrix accumulation, and endothelium-myocytes uncoupling. Arteriovenous fistula (AVF) was created in control (FVB/NJ) and MMP-9 knockout (MMP-9KO; FVB.Cg-MMP9(tm1Tvu)/J) mice. Sham surgery was used as control. Mice were grouped as follows: wild type, n = 3 (sham control); MMP-9KO, n = 3 (sham); AVF, n = 3; and MMP-9KO + AVF (n = 3). Heart function was analyzed by M-mode and Doppler echocardiography, and with a pressure-tipped Millar catheter placed in the left ventricle of anesthetized mice 8 wk after AVF. Apoptosis was detected by measuring caspase-3, transferase-mediated dUTP nick-end labeling (TUNEL), and CD-31 by immunolabeling. Protease-activated receptors-1, connexin-43, and a disintegrin and MMP-12 (ADAM-12) expression were measured by Western blot analyses. MMP-2 and MMP-9 expression were measured by quantitative RT-PCR. Compared with control, AVF caused an increase in left ventricle end diastolic pressure and decrease in -dP/dt. In contrast, in the MMP-9KO + AVF group, these variables were changed toward control levels. Increased EE apoptosis (caspase-3 activation and TUNEL/CD-31 colabeling) in AVF mice was prevented in the MMP-9KO + AVF group. Protease-activated receptor-1, connexin-43, and ADAM-12 were induced in AVF. MMP-9 gene ablation ameliorated the induction. The results suggest that impaired cardiac function in volume overload is associated with EE apoptosis, cardiac remodeling, and endothelium-myocytes uncoupling in response to MMP-9 activation.
Collapse
Affiliation(s)
- Alexander V Ovechkin
- Dept. of Physiology & Biophysics, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
26
|
Moshal KS, Tyagi N, Moss V, Henderson B, Steed M, Ovechkin A, Aru GM, Tyagi SC. Early induction of matrix metalloproteinase-9 transduces signaling in human heart end stage failure. J Cell Mol Med 2005; 9:704-13. [PMID: 16202218 PMCID: PMC6741634 DOI: 10.1111/j.1582-4934.2005.tb00501.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Extracellular matrix (ECM) turnover is regulated by matrix metalloproteinases (MMPs) and plays an important role in cardiac remodeling. Previous studies from our lab demonstrated an increase in gelatinolytic-MMP-2 and -9 activities in endocardial tissue from ischemic cardiomyopathic (ICM) and idiopathic dilated cardiomyopathic (DCM) hearts. The signaling mechanism responsible for the left ventricular (LV) remodeling, however, is unclear. Administration of cardiac specific inhibitor of metalloproteinase (CIMP) prevented the activation of MMP-2 and -9 in ailing to failing myocardium. Activation of MMP-2 and -9 leads to induction of proteinase activated receptor-1 (PAR-1). We hypothesize that the early induction of MMP-9 is a key regulator for modulating intracellular signaling through activation of PAR and various downstream events which are implicated in development of cardiac fibrosis in an extracellular receptor mediated kinase-1 (ERK-1) and focal adhesion kinase (FAK) dependent manner. To test this hypothesis, explanted human heart tissues from ICM and DCM patients were obtained at the time of orthotopic cardiac transplants. Quantitative analysis of MMP-2 and -9 gelatinolytic activities was made by real-time quantitative zymography. Gel phosphorylation staining for PAR-1 showed a significant increase in ICM hearts. Western blot and RT-PCR analysis and in-situ labeling, showed significant increased expression of PAR-1, ERK-1and FAK in ICM and DCM. These observations suggest that the enhanced expression and potentially increased activity of LV myocardial MMP-9 triggers the signal cascade instigating cardiac remodeling. This early mechanism for the initiation of LV remodeling appears to have a role in end-stage human heart failure.
Collapse
Affiliation(s)
- Karni S Moshal
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|