1
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
2
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
3
|
Möller MN, Vitturi DA. The chemical biology of dinitrogen trioxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100026. [PMID: 38957295 PMCID: PMC11218869 DOI: 10.1016/j.rbc.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dinitrogen trioxide (N 2 O 3 ) mediates low-molecular weight and protein S- and N-nitrosation, with recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-dependent hypoxic vasodilatation. However, the reactivity ofN 2 O 3 in biological systems results in an extremely short half-life that renders this molecule essentially undetectable by currently available technologies. As a result, evidence for in vivoN 2 O 3 formation derives from the detection of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, and spectroscopic analyses. This review will discuss mechanisms ofN 2 O 3 formation, reactivity and decomposition, as well as address the role of sub-cellular localization as a key determinant of its actions. Finally, evidence will be discussed supporting different roles forN 2 O 3 as a biologically relevant signaling molecule.
Collapse
Affiliation(s)
- Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Darío A. Vitturi
- Department of Pathology. University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Chen PL, Huang KT, Chen LY, Hsu K. Erythroid anion Exchanger-1 (band 3) transports nitrite for nitric oxide metabolism. Free Radic Biol Med 2024; 210:237-245. [PMID: 38042224 DOI: 10.1016/j.freeradbiomed.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Nitrite (NO2-) interacts with hemoglobin (Hb) in various ways to regulate blood flow. During hypoxic vasodilation, nitrite is reduced by deoxyHb to yield nitric oxide (NO). While NO, a hydrophobic gas, could freely diffuse across the cell membrane, how the reactant nitrite anion could permeate through the red blood cell (RBC) membrane remains unclear. We hypothesized that Cl-/HCO3- anion exchanger-1 (AE1; band 3) abundantly embedded in the RBC membrane could transport NO2-, as HCO3- and NO2- exhibit similar hydrated radii. Here, we monitored NO/N2O3 generated from NO2- inside human RBCs by DAF-FM fluorophore. NO2-, not NO3-, increased intraerythrocytic DAF-FM fluorescence. To test the involvement of AE1-mediated transport in intraerythrocytic NO/N2O3 production from nitrite, we lowered Cl- or HCO3- in the RBC-incubating buffer by 20 % and indeed observed slower rise of the DAF-FM fluorescence. Anti-extracellular AE1, but not anti-intracellular AE1 antibodies, reduced the rates of NO formation from nitrite. The AE1 blocker DIDS similarly reduced the rates of NO/N2O3 production from nitrite in a dose-dependent fashion, confirming that nitrite entered RBCs through AE1. Nitrite inside the RBCs reacted with both deoxyHb and oxyHb, as evidenced by 6.1 % decrease in deoxyHb, 14.7 % decrease in oxyHb, and 20.7 % increase in methemoglobin (metHb). Lowering Cl- in the milieu equally delayed metHb production from nitrite-oxyHb and nitrite-deoxyHb reactions. Thus, AE1-mediated NO2- transport facilitates NO2--Hb reactions inside the red cells, supporting NOx metabolism in circulation.
Collapse
Affiliation(s)
- Pin-Lung Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan
| | - Kuang-Tse Huang
- Department of Chemical Engineering, National Chung-Cheng University, Chia-Yi, Taiwan
| | - Li-Yang Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan
| | - Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Foley EL, Hvitved AN, Eich RF, Olson JS. Mechanisms of nitric oxide reactions with Globins using mammalian myoglobin as a model system. J Inorg Biochem 2022; 233:111839. [DOI: 10.1016/j.jinorgbio.2022.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
|
6
|
Chen YC, Hsu KN, Lai JCY, Chen LY, Kuo MS, Liao CC, Hsu K. Influence of hemoglobin on blood pressure among people with GP.Mur blood type ☆. J Formos Med Assoc 2022; 121:1721-1727. [PMID: 35000824 DOI: 10.1016/j.jfma.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND/PURPOSE GP.Mur is a clinically important red blood cell (RBC) type. GP.Mur and band 3 interact on the RBCs. We previously observed that healthy adults with GP.Mur type present slightly higher blood pressure (BP). Because band 3 and Hb comodulate nitric oxide (NO)-dependent vasodilation and hemoglobin (Hb) is positively associated with BP, we aimed to test whether these could contribute to higher BP in GP.Mur+ people. METHODS We recruited 989 non-elderly adults (21% GP.Mur) free of catastrophic illness and not on cardiovascular or anti-hypertensive medication. Their body indices, blood lab data and lifestyle data were collected for analyses of potential BP-related factors (BMI, age, smoking, Hb, and GP.Mur). RESULTS BMI and age remained the most significant contributors to BP. GP.Mur slightly increased systolic BP (SBP). The direct correlation between Hb and BP was only found in Taiwanese non-anemic men, not women. After age and BMI adjusted, we estimated an increase of 1.8 mmHg and 2.6 mmHg of SBP by 1 g/dL Hb among men without and with GP.Mur type, respectively. Hb was generally lower among people expressing GP.Mur, which likely limited their larger impact on BP. CONCLUSION GP.Mur contributed to BP in both Hb-dependent and Hb-independent fashion. A pronounced impact of hemoglobin on BP likely requires sufficient Hb, as GP.Mur increased the sensitivity of SBP to Hb only in non-anemic Taiwanese men, and not in Taiwanese women or anemic men. The mechanism through which GP.Mur affected BP independent of Hb is unknown.
Collapse
Affiliation(s)
- Yung-Chih Chen
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Kuang-Nan Hsu
- Department of Neurology, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Jerry Cheng-Yen Lai
- Department of Medical Research, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Li-Yang Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan
| | - Mei-Shin Kuo
- The Department of Laboratory Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Chiu-Chu Liao
- The Department of Laboratory Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Hsu K, Liu YY, Tseng WC, Huang KT, Liu CY, Chen LY, Lee HL, Lin HJ, Tseng KW, Yeh HI. Comodulation of NO-Dependent Vasodilation by Erythroid Band 3 and Hemoglobin: A GP.Mur Athlete Study. Front Cardiovasc Med 2021; 8:740100. [PMID: 34912857 PMCID: PMC8666951 DOI: 10.3389/fcvm.2021.740100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/05/2021] [Indexed: 01/27/2023] Open
Abstract
GP.Mur, a red blood cell (RBC) hybrid protein encoded by glycophorin B-A-B, increases expression of erythroid band 3 (Anion Exchanger-1, SLC4A1). GP.Mur is extremely rare but has a prevalence of 1–10% in regions of Southeast Asia. We unexpectedly found slightly higher blood pressure (BP) among healthy Taiwanese adults with GP.Mur. Since band 3 has been suggested to interact with hemoglobin (Hb) to modulate nitric oxide (NO)-dependent hypoxic vasodilation during the respiratory cycle, we hypothesized that GP.Mur red cells could exert differentiable effects on vascular tone. Here we recruited GP.Mur-positive and GP.Mur-negative elite male college athletes, as well as age-matched, GP.Mur-negative non-athletes, for NO-dependent flow-mediated dilation (FMD) and NO-independent dilation (NID). The subjects were also tested for plasma nitrite and nitrate before and after arterial occlusion in FMD. GP.Mur+ and non-GP.Mur athletes exhibited similar heart rates and blood pressure, but GP.Mur+ athletes showed significantly lower FMD (4.8 ± 2.4%) than non-GP.Mur athletes (6.5 ± 2.1%). NO-independent vasodilation was not affected by GP.Mur. As Hb controls intravascular NO bioavailability, we examined the effect of Hb on limiting FMD and found it to be significantly stronger in GP.Mur+ subjects. Biochemically, plasma nitrite levels were directly proportional to individual band 3 expression on the red cell membrane. The increase of plasma nitrite triggered by arterial occlusion also showed small dependency on band 3 levels in non-GP.Mur subjects. By the GP.Mur comparative study, we unveiled comodulation of NO-dependent vasodilation by band 3 and Hb, and verified the long-pending role of erythroid band 3 in this process.
Collapse
Affiliation(s)
- Kate Hsu
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Yen-Yu Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.,Department of Critical Care Medicine, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Wei-Chin Tseng
- Department of Physical Education, University of Taipei, Taipei, Taiwan
| | - Kuang-Tse Huang
- Department of Chemical Engineering, National Chung-Cheng University, Chia-Yi, Taiwan
| | - Chia-Yuan Liu
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Li-Yang Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Lin Lee
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Ju Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Kuo-Wei Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Hung-I Yeh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
9
|
Shear Stress and RBC-NOS Serine1177 Phosphorylation in Humans: A Dose Response. Life (Basel) 2021; 11:life11010036. [PMID: 33429979 PMCID: PMC7828091 DOI: 10.3390/life11010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Red blood cells (RBC) express a nitric oxide synthase isoform (RBC-NOS) that appears dependent on shear stress for Serine1177 phosphorylation. Whether this protein is equally activated by varied shears in the physiological range is less described. Here, we explored RBC-NOS Serine1177 phosphorylation in response to shear stress levels reflective of in vivo conditions. Whole blood samples were exposed to specific magnitudes of shear stress (0.5, 1.5, 4.5, 13.5 Pa) for discrete exposure times (1, 10, 30 min). Thereafter, RBC-NOS Serine1177 phosphorylation was measured utilising immunofluorescence labelling. Shear stress exposure at 0.5, 1.5, and 13.5 Pa significantly increased RBC-NOS Serine1177 phosphorylation following 1 min (p < 0.0001); exposure to 4.5 Pa had no effect after 1 min. RBC-NOS Serine1177 phosphorylation was significantly increased following 10 min at each magnitude of shear stress (0.5, 1.5, 13.5 Pa, p < 0.0001; 4.5 Pa, p = 0.0042). Shear stress exposure for 30 min significantly increased RBC-NOS Serine1177 phosphorylation at 0.5 Pa and 13.5 Pa (p < 0.0001). We found that RBC-NOS phosphorylation via shear stress is non-linear and differs for a given magnitude and duration of exposure. This study provides a new understanding of the discrete relation between RBC-NOS and shear stress.
Collapse
|
10
|
Application of methylene blue -vitamin C -N-acetyl cysteine for treatment of critically ill COVID-19 patients, report of a phase-I clinical trial. Eur J Pharmacol 2020; 885:173494. [PMID: 32828741 PMCID: PMC7440159 DOI: 10.1016/j.ejphar.2020.173494] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is a global catastrophic event that causes severe acute respiratory syndrome. The mechanism of the disease remains unclear, and hypoxia is one of the main complications. There is no currently approved protocol for treatment. The microbial threat as induced by COVID-19 causes the activation of macrophages to produce a huge amount of inflammatory molecules and nitric oxide (NO). Activation of macrophages population into a pro-inflammatory phenotype induces a self-reinforcing cycle. Oxidative stress and NO contribute to this cycle, establishing a cascade inflammatory state that can kill the patient. Interrupting this vicious cycle by a simple remedy may save critical patients' lives. Nitrite, nitrate (the metabolites of NO), methemoglobin, and prooxidant-antioxidant-balance levels were measured in 25 ICU COVID-19 patients and 25 healthy individuals. As the last therapeutic option, five patients were administered methylene blue-vitamin C-N-acetyl Cysteine (MCN). Nitrite, nitrate, methemoglobin, and oxidative stress were significantly increased in patients in comparison to healthy individuals. Four of the five patients responded well to treatment. In conclusion, NO, methemoglobin and oxidative stress may play a central role in the pathogenesis of critical COVID-19 disease. MCN treatment seems to increase the survival rate of these patients. Considering the vicious cycle of macrophage activation leading to deadly NO, oxidative stress, and cytokine cascade syndrome; the therapeutic effect of MCN seems to be reasonable. Accordingly, a wider clinical trial has been designed. It should be noted that the protocol is using the low-cost drugs which the FDA approved for other diseases. TRIAL REGISTRATION NUMBER: NCT04370288.
Collapse
|
11
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Mindukshev IV, Sudnitsyna JS, Skverchinskaya EA, Andreyeva AY, Dobrylko IA, Senchenkova EY, Krivchenko AI, Gambaryan SP. Erythrocytes’ Reactions to Osmotic, Ammonium, and Oxidative Stress Are Inhibited under Hypoxia. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819040081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Cellular microdomains for nitric oxide signaling in endothelium and red blood cells. Nitric Oxide 2020; 96:44-53. [PMID: 31911123 DOI: 10.1016/j.niox.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
There is accumulating evidence that biological membranes are not just homogenous lipid structures, but are highly organized in microdomains, i.e. compartmentalized areas of protein and lipid complexes, which facilitate necessary interactions for various signaling pathways. Each microdomain exhibits unique composition, membrane location and dynamics, which ultimately shape their functional characteristics. In the vasculature, microdomains are crucial for organizing and compartmentalizing vasodilatory signals that contribute to blood pressure homeostasis. In this review we aim to describe how membrane microdomains in both the endothelium and red blood cells allow context-specific regulation of the vasodilatory signal nitric oxide (NO) and its corresponding metabolic products, and how this results in tightly controlled systemic physiological responses. We will describe (1) structural characteristics of microdomains including lipid rafts and caveolae; (2) endothelial cell caveolae and how they participate in mechanosensing and NO-dependent mechanotransduction; (3) the myoendothelial junction of resistance arterial endothelial cells and how protein-protein interactions within it have profound systemic effects on blood pressure regulation, and (4) putative/proposed NO microdomains in RBCs and how they participate in control of systemic NO bioavailability. The sum of these discussions will provide a current view of NO regulation by cellular microdomains.
Collapse
|
14
|
Abstract
Dietary nitrate is mainly obtained from vegetables, especially green leafy vegetables and beetroot. As a result of early research, dietary nitrate is currently viewed as a contaminant linked to increased risks of stomach cancer and methaemoglobinaemia. Consequently, nitrate levels are restricted in certain vegetables and in water supplies to ensure exposure levels remain below an acceptable daily intake of 3·7 mg/kg per d. The average nitrate intake in the UK is approximately 70 mg/d, although some population groups, such as vegetarians, may consume three times that amount. However, recent studies in the last decade suggest that dietary nitrate can significantly reduce systolic blood pressure via the nitrate-nitrite-NO pathway. A small, downward shift in systolic blood pressure across the population could significantly reduce the incidence of hypertension and mortality from CVD such as stroke. Interestingly, vegetarians tend to have lower levels of blood pressure than omnivores and epidemiological studies suggest that vegetarians have lower risks of CVD. Recent evidence is mainly focused on the acute effects of dietary nitrate supplementation and there is a lack of data looking at the chronic effects of high nitrate consumption in humans. Nevertheless, due to potential health benefits, some authors are recommending that nitrate should be considered as a nutrient necessary for health, rather than as a contaminant which needs to be restricted. This review will discuss the emerging role of dietary nitrate in the control of blood pressure and whether there is sufficient evidence to state that nitrate is a 'new' nutrient.
Collapse
|
15
|
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017; 26:794-813. [PMID: 27650096 PMCID: PMC5421591 DOI: 10.1089/ars.2016.6806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. CRITICAL ISSUES While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. FUTURE DIRECTIONS Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.
Collapse
Affiliation(s)
- Rhoda Elison Hirsch
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Helms CC, Liu X, Kim-Shapiro DB. Recent insights into nitrite signaling processes in blood. Biol Chem 2017; 398:319-329. [PMID: 27611767 DOI: 10.1515/hsz-2016-0263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.
Collapse
|
17
|
Tsikas D. WITHDRAWN: Editor's Forum. Redox Biol 2015; 5:151-152. [DOI: 10.1016/j.redox.2015.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
|
19
|
The red blood cell: a new key player in cardiovascular homoeostasis? Focus on the nitric oxide pathway. Biochem Soc Trans 2015; 42:996-1000. [PMID: 25109992 DOI: 10.1042/bst20140122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RBCs (red blood cells) have a fundamental role in the regulation of vascular homoeostasis thanks to the ability of these cells to carry O2 (oxygen) between respiratory surfaces and metabolizing tissues and to release vasodilator compounds, such as ATP and NO (nitric oxide), in response to tissue oxygenation. More recently it has been shown that RBCs are also able to produce NO endogenously as they express a functional NOS (nitric oxide synthase), similar to the endothelial isoform. In addition, RBCs carry important enzymes and molecules involved in L-arginine metabolism, such as arginase, NO synthesis inhibitors and the cationic amino acid transporters. Altogether these findings strongly support the role of these cells as producers, vehicles and scavengers of NO, therefore affecting several physiological processes such as blood rheology and cell adhesion. Consequently, the importance of alterations in the L-arginine/NO metabolic pathway induced by specific conditions, e.g. oxidative stress, in different pathological settings have been investigated. In the present review we discuss the role of RBCs in vascular homoeostasis, focusing our attention on the importance of the NO pathway alterations in cardiovascular diseases and their relationship to major risk factors.
Collapse
|
20
|
Dogaru CB, Capusa C, Gaman L, Torac E, Lixandru D, Gilca M, Iosif L, Muscurel C, Stoian I, Mircescu G, Atanasiu V. Venous versus arterial iron administration in haemodialysis. Influence on erythrocytes antioxidant parameters. J Med Life 2015; 8 Spec Issue:69-73. [PMID: 26361515 PMCID: PMC4564030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2015] [Indexed: 10/26/2022] Open
Abstract
Introduction Intravenous iron administration in patients treated by haemodialysis for end stage renal disease can exacerbate oxidative stress by increasing the level of free redox active iron. A way to reduce the impact of iron on oxidative stress in haemodialysis patients may be the administration of iron through arterial extracorporeal circuit. Objective The aim of our study was to compare the influence of iron route of administration (venous versus arterial extracorporeal circuit infusion) on antioxidant parameters in red blood cells of haemodialysis patients in order to clarify if arterial iron administration can have positive impacts related to iron induced oxidative stress. Method Twenty stable patients on regular haemodialysis treatment were selected for the study. They were investigated in a cross-over design at 3 mid-week HD sessions, one week apart, without iron [HD basal] and with either IV infusion of 100mg iron sucrose over the first 20 minutes of HD session, via venous line [HDvenous], or the same solution infused on the arterial extracorporeal circulation [HDarterial]. Blood samples were drawn at 0 min, 40 min and 270 min. Erythrocytes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activity, non-protein thiol levels and total antioxidant capacity (TEAC) were analysed. Conclusion Haemodialysis significantly decreases the total antioxidant activity in erythrocytes. Iron supplementation, through venous or arterial extracorporeal route has no impact on the total antioxidant activity in red blood cells. Venous iron administration increases GPx activity in erythrocytes suggesting increased lipid peroxidation compared with arterial extracorporeal administration.
Collapse
Affiliation(s)
- C B Dogaru
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - C Capusa
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - L Gaman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; R&D Irist Labmed, Bucharest, Romania
| | - E Torac
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - D Lixandru
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - M Gilca
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; R&D Irist Labmed, Bucharest, Romania
| | - L Iosif
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; R&D Irist Labmed, Bucharest, Romania
| | - C Muscurel
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - I Stoian
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; R&D Irist Labmed, Bucharest, Romania
| | - G Mircescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - V Atanasiu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Almeida LEF, Kamimura S, Kenyon N, Khaibullina A, Wang L, de Souza Batista CM, Quezado ZMN. Validation of a method to directly and specifically measure nitrite in biological matrices. Nitric Oxide 2014; 45:54-64. [PMID: 25445633 DOI: 10.1016/j.niox.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ≈ 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role.
Collapse
Affiliation(s)
- Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Nicholas Kenyon
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | | | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
22
|
Fens MH, Larkin SK, Oronsky B, Scicinski J, Morris CR, Kuypers FA. The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions. PLoS One 2014; 9:e101626. [PMID: 25007272 PMCID: PMC4090171 DOI: 10.1371/journal.pone.0101626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/09/2014] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) is a key regulator of vascular tone. Endothelial nitric oxide synthase (eNOS) is responsible for NO generation under normoxic conditions. Under hypoxia however, eNOS is inactive and red blood cells (RBC) provide an alternative NO generation pathway from nitrite to regulate hypoxic vasodilation. While nitrite reductase activity of hemoglobin is well acknowledged, little is known about generation of NO by intact RBC with physiological hemoglobin concentrations. We aimed to develop and apply a new approach to provide insights in the ability of RBC to convert nitrite into NO under hypoxic conditions. We established a novel experimental setup to evaluate nitrite uptake and the release of NO from RBC into the gas-phase under different conditions. NO measurements were similar to well-established clinical measurements of exhaled NO. Nitrite uptake was rapid, and after an initial lag phase NO release from RBC was constant in time under hypoxic conditions. The presence of oxygen greatly reduced NO release, whereas inhibition of eNOS and xanthine oxidoreductase (XOR) did not affect NO release. A decreased pH increased NO release under hypoxic conditions. Hypothermia lowered NO release, while hyperthermia increased NO release. Whereas fetal hemoglobin did not alter NO release compared to adult hemoglobin, sickle RBC showed an increased ability to release NO. Under all conditions nitrite uptake by RBC was similar. This study shows that nitrite uptake into RBC is rapid and release of NO into the gas-phase continues for prolonged periods of time under hypoxic conditions. Changes in the RBC environment such as pH, temperature or hemoglobin type, affect NO release.
Collapse
Affiliation(s)
- Marcel H. Fens
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Sandra K. Larkin
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bryan Oronsky
- RadioRx, Inc., Mountain View, California, United States of America
| | - Jan Scicinski
- RadioRx, Inc., Mountain View, California, United States of America
| | - Claudia R. Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Frans A. Kuypers
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Truong GT, Schröder HJ, Liu T, Zhang M, Kanda E, Bragg S, Power GG, Blood AB. Role of nitrite in regulation of fetal cephalic circulation in sheep. J Physiol 2014; 592:1785-94. [PMID: 24535441 DOI: 10.1113/jphysiol.2013.269340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrite has been postulated to provide a reservoir for conversion to nitric oxide (NO), especially in tissues with reduced oxygen levels as in the fetus. Nitrite would thus provide local vasodilatation and restore a balance between oxygen supply and need, a putative mechanism of importance especially in the brain. The current experiments test the hypothesis that exogenous nitrite acts as a vasodilator in the cephalic vasculature of the intact, near term fetal sheep. Fetuses were first instrumented to measure arterial blood pressure and carotid artery blood flow and then studied 4-5 days later while in utero without anaesthesia. Initially l-nitro-arginine (LNNA) was given to block endogenous NO production. Carotid resistance to flow increased 2-fold from 0.54 ± 0.01 (SEM) to 1.20 ± 0.08 mmHg min ml(-1) (in 13 fetuses, P < 0.001), indicating NO tonically reduces cerebral vascular tone. Sodium nitrite (or saline as control) was then infused in increasing step-doses from 0.01 to 33 μm in half-log increments over a period of 2 h. Carotid artery pressure, blood flow and vascular resistance did not change compared to fetuses receiving saline, even at plasma nitrite concentrations two orders of magnitude above the physiological range. The results indicate that while cephalic vascular tone is controlled by endogenous nitric oxide synthase activity, exogenously administered nitrite is not a vasodilator at physiological concentrations in the vasculature served by the carotid artery of fetal sheep.
Collapse
Affiliation(s)
- Giang T Truong
- Department of Pediatrics, 11175 Campus Street, 11121 Coleman, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2014; 2:251-8. [PMID: 24494200 PMCID: PMC3909820 DOI: 10.1016/j.redox.2013.12.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/06/2023] Open
Abstract
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as "NO sinks", but exert an erythrocrine function - i.e an endocrine function of RBC - by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Long-Term Infusion of Sodium Nitrite in Humans. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e60. [PMID: 23903463 PMCID: PMC3731826 DOI: 10.1038/psp.2013.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/09/2013] [Indexed: 01/08/2023]
Abstract
A long-term sodium nitrite infusion is intended for the treatment of vascular disorders. Phase I data demonstrated a significant nonlinear dose-exposure-toxicity relationship within the therapeutic dosage range. This study aims to develop a quantitative systems pharmacology model characterizing nitric oxide (NO) metabolome and methemoglobin after sodium nitrite infusion. Nitrite, nitrate, and methemoglobin concentration–time profiles in plasma and RBC were used for model development. Following intravenous sodium nitrite administration, nitrite undergoes conversion in RBC and tissue. Nitrite sequestered by RBC interacts more extensively with deoxyhemoglobin, which contributes greatly to methemoglobin formation. Methemoglobin is formed less-than-proportionally at higher nitrite doses as characterized with facilitated methemoglobin removal. Nitrate-to-nitrite reduction occurs in tissue and via entero-salivary recirculation. The less-than-proportional increase in nitrite and nitrate exposure at higher nitrite doses is modeled with a dose-dependent increase in clearance. The model provides direct insight into NO metabolome disposition and is valuable for nitrite dosing selection in clinical trials.
Collapse
|
26
|
Kallakunta VM, Slama-Schwok A, Mutus B. Protein disulfide isomerase may facilitate the efflux of nitrite derived S-nitrosothiols from red blood cells. Redox Biol 2013; 1:373-80. [PMID: 24024174 PMCID: PMC3757710 DOI: 10.1016/j.redox.2013.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022] Open
Abstract
Protein disulfide isomerase (PDI) is an abundant protein primarily found in the endoplasmic reticulum and also secreted into the blood by a variety of vascular cells. The evidence obtained here, suggests that PDI could directly participate in the efflux of NO+ from red blood cells (RBC). PDI was detected both in RBC membranes and in the cytosol. PDI was S-nitrosylated when RBCs were exposed to nitrite under ∼50% oxygen saturation but not under ∼100% oxygen saturation. Furthermore, it was observed that hemoglobin (Hb) could promote PDI S-nitrosylation in the presence of ∼600 nM nitrite. In addition, three lines of evidence were obtained for PDI–Hb interactions: (1) Hb co-immunoprecipitated with PDI; (2) Hb quenched the intrinsic PDI fluorescence in a saturable manner; and (3) Hb–Fe(II)–NO absorption spectrum decreased in a [PDI]-dependent manner. Finally, PDI was detected on the surface RBC under ∼100% oxygen saturation and released as soluble under ∼50% oxygen saturation. The soluble PDI detected under ∼50% oxygen saturation was S-nitrosylated. Based on these data it is proposed that PDI is taken up by RBC and forms a complex with Hb. Hb–Fe(II)–NO that is formed from nitrite reduction under ∼50% O2, then transfers NO+ to either Hb–Cys β93 or directly to PDI resulting in S-nitroso-PDI which transverses the RBC membrane and attaches to the RBC surface. When RBCs enter tissues the S-nitroso-PDI is released from the RBC-surface into the blood where its NO+ is transferred into the endothelium thereby inducing vasodilation, suggesting local oxygen-dependent dynamic interplays between nitrite, NO and S-nitrosylation. Red blood cells (RBC) contain protein disulfide isomerase (PDI) that can associate with hemoglobin. Formation of S-nitroso-PDI is an oxygen- and Hb-dependent process. S-nitroso-PDI associates with RBC surface in an oxygen dependent manner that facilitates its release under hypoxia.
Collapse
Key Words
- BCA, bicinchoninic acid
- EDTA, ethylenediaminetetraacetic acid
- Hb, hemoglobin
- Hypoxic vasodilation
- NOx, nitric oxide related species
- NP-40, nonyl phenoxypolyethoxylethanol
- Nitrite reductase
- PDI, protein disulfide isomerase
- PMSF, penylmethylsulfenylfluoride
- Protein disulfide isomerase
- RBC, red blood cells
- Red blood cells
- S-nitroso-protein disulfide isomerase
- S-nitrosohemoglobin
- SDS-PAGE, sodium dodecyl sulfate, poly acrylamide gel electrophoresis
- SNO, S-nitrosothiol
- SNO-Hb, S-nitrosohemoglobin
Collapse
|
27
|
Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med 2013; 55. [PMID: 23183324 PMCID: PMC3605573 DOI: 10.1016/j.freeradbiomed.2012.11.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circulating nitrate (NO(3)(-)), derived from dietary sources or endogenous nitric oxide production, is extracted from blood by the salivary glands, accumulates in saliva, and is then reduced to nitrite (NO(2)(-)) by the oral microflora. This process has historically been viewed as harmful, because nitrite can promote formation of potentially carcinogenic N-nitrosamines. More recent research, however, suggests that nitrite can also serve as a precursor for systemic generation of vasodilatory nitric oxide, and exogenous administration of nitrate reduces blood pressure in humans. However, whether oral nitrate-reducing bacteria participate in "setting" blood pressure is unknown. We investigated whether suppression of the oral microflora affects systemic nitrite levels and hence blood pressure in healthy individuals. We measured blood pressure (clinic, home, and 24-h ambulatory) in 19 healthy volunteers during an initial 7-day control period followed by a 7-day treatment period with a chlorhexidine-based antiseptic mouthwash. Oral nitrate-reducing capacity and nitrite levels were measured after each study period. Antiseptic mouthwash treatment reduced oral nitrite production by 90% (p < 0.001) and plasma nitrite levels by 25% (p = 0.001) compared to the control period. Systolic and diastolic blood pressure increased by 2-3 .5mmHg, increases correlated to a decrease in circulating nitrite concentrations (r(2) = 0.56, p = 0.002). The blood pressure effect appeared within 1 day of disruption of the oral microflora and was sustained during the 7-day mouthwash intervention. These results suggest that the recycling of endogenous nitrate by oral bacteria plays an important role in determination of plasma nitrite levels and thereby in the physiological control of blood pressure.
Collapse
Affiliation(s)
- Vikas Kapil
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Syed M.A. Haydar
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Vanessa Pearl
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Amrita Ahluwalia
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Corresponding author. Fax: +44 207 882 3408.
| |
Collapse
|
28
|
Erythrocyte storage increases rates of NO and nitrite scavenging: implications for transfusion-related toxicity. Biochem J 2012; 446:499-508. [PMID: 22720637 DOI: 10.1042/bj20120675] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25 days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk.
Collapse
|
29
|
Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012; 120:4229-37. [PMID: 23007404 DOI: 10.1182/blood-2012-07-442277] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.
Collapse
|
30
|
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 17:684-716. [PMID: 22304560 DOI: 10.1089/ars.2011.4196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis.
Collapse
Affiliation(s)
- Nicoletta Castiglione
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Owusu BY, Stapley R, Patel RP. Nitric oxide formation versus scavenging: the red blood cell balancing act. J Physiol 2012; 590:4993-5000. [PMID: 22687616 DOI: 10.1113/jphysiol.2012.234906] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a key modulator of vascular homeostasis controlling critical functions related to blood flow, respiration, cell death and proliferation, and protecting the vasculature from pro-inflammatory and coagulative stresses. Inhibition of NO formation, and/or diversion of NO away from its physiological signalling targets lead to dysregulated NO bioavailability, a hallmark of numerous vascular and pulmonary diseases. Current concepts suggest that the balance between NO formation and NO scavenging is critical in disease development, with the corollary being that redressing the balance offers a target for therapeutic intervention. Evidence presented over the last two decades has seen red blood cells (RBCs) and haemoglobin specifically emerge as prominent effectors in this paradigm. In this symposium review article, we discuss recent insights into the mechanisms by which RBCs may modulate the balance between NO-formation and inhibition. We discuss how these mechanisms may become dysfunctional to cause disease, highlight key questions that remain, and discuss the potential impact of these insights on therapeutic opportunities.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, BMRII 532, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
32
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
33
|
Srihirun S, Sriwantana T, Unchern S, Kittikool D, Noulsri E, Pattanapanyasat K, Fucharoen S, Piknova B, Schechter AN, Sibmooh N. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation. PLoS One 2012; 7:e30380. [PMID: 22276188 PMCID: PMC3262819 DOI: 10.1371/journal.pone.0030380] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023] Open
Abstract
Background Nitrite is a nitric oxide (NO) metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated. Methodology/Finding Platelet aggregation was studied in platelet-rich plasma (PRP) and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM) inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger), suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes. Conclusion Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.
Collapse
Affiliation(s)
- Sirada Srihirun
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanaporn Sriwantana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supeenun Unchern
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dusadee Kittikool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Egarit Noulsri
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Science and Technology for Research and Development, Mahidol University, Nakhonpathom, Thailand
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan N. Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
34
|
Buerk DG, Barbee KA, Jaron D. Modeling O₂-dependent effects of nitrite reductase activity in blood and tissue on coupled NO and O₂ transport around arterioles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 701:271-6. [PMID: 21445797 DOI: 10.1007/978-1-4419-7756-4_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent evidence in the literature suggests that tissues play a greater role than blood in reducing nitrite to NO under ischemic or hypoxic conditions. Our previous mathematical model for coupled NO and O(2) transport around an arteriole, modified to include superoxide generation from dysfunctional endothelium, was developed further to include nitrite reductase activity in blood and tissue. Steady-state radial and axial NO and pO(2) profiles in the arteriole and surrounding tissue were simulated for different blood flow rates and arterial blood pO(2) values. The resulting computer simulations demonstrate that nitrite reductase activity in blood is not a very effective mechanism for conserving NO due to the strong scavenging of NO by hemoglobin. In contrast, nitrite reductase activity in tissue is much more effective in increasing NO bioavailability in the vascular wall and contributes progressively more NO as tissue hypoxia becomes more severe.
Collapse
Affiliation(s)
- Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | | | | |
Collapse
|
35
|
Vitturi DA, Patel RP. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic Biol Med 2011; 51:805-12. [PMID: 21683783 PMCID: PMC3148353 DOI: 10.1016/j.freeradbiomed.2011.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 12/20/2022]
Abstract
Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO signaling, especially during hypoxia. This concept has been discussed in the context of nitrite serving a role as an endogenous modulator of NO homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replenish NO signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology, and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology.
Collapse
Affiliation(s)
- Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
36
|
Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 2011; 51:576-93. [PMID: 21619929 PMCID: PMC4414241 DOI: 10.1016/j.freeradbiomed.2011.04.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one-electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability, which is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO-based therapeutic agent through the unique action of sodium nitrite as an NO prodrug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities for nitrite-based therapies.
Collapse
Affiliation(s)
- Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
37
|
Ishibashi T, Nishizawa N, Nakamoto-Nomura M, Abe F, Liu H, Yoshida J, Kawada T, Nishio M. Different Disappearance Rates of Plasma Nitrite (NO2-) Contribute to Apparent Steady-State Arterio-Venous Differences in Anesthetized Animals. Biol Pharm Bull 2011; 34:528-37. [DOI: 10.1248/bpb.34.528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takaharu Ishibashi
- Department of Pharmacology, School of Nursing, Kanazawa Medical University
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Naoki Nishizawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | | | - Fusae Abe
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - He Liu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Junko Yoshida
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Tomie Kawada
- Department of Clinical Pharmacology, Faculty of Pharmacy, Musashino University
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| |
Collapse
|
38
|
Honavar J, Samal AA, Bradley KM, Brandon A, Balanay J, Squadrito GL, MohanKumar K, Maheshwari A, Postlethwait EM, Matalon S, Patel RP. Chlorine gas exposure causes systemic endothelial dysfunction by inhibiting endothelial nitric oxide synthase-dependent signaling. Am J Respir Cell Mol Biol 2010; 45:419-25. [PMID: 21131444 DOI: 10.1165/rcmb.2010-0151oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Patel RP, Hogg N, Kim-Shapiro DB. The potential role of the red blood cell in nitrite-dependent regulation of blood flow. Cardiovasc Res 2010; 89:507-15. [PMID: 20952416 DOI: 10.1093/cvr/cvq323] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitrite was once thought to have little physiological relevance. However, nitrite is now being increasingly recognized as a therapeutic or possibly even physiological precursor of nitric oxide (NO) that is utilized when needed to increase blood flow. It is likely that different mechanisms for nitrite bioconversion occur in different tissues, but in the vascular system, there is evidence that erythrocyte haemoglobin (Hb) is responsible for the oxygen-dependent reduction of nitrite to modulate blood flow. Here, we review the complex chemical interactions of Hb and nitrite and discuss evidence supporting its role in vasodilation. We also discuss ongoing work focused on defining the precise mechanisms for export of NO activity from red blood cells and of other pathways that may mediate nitrite-dependent vasodilation.
Collapse
Affiliation(s)
- Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
40
|
Deonikar P, Kavdia M. A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: effect of reduced nitric oxide consumption by red blood cells and blood velocity. Microvasc Res 2010; 80:464-76. [PMID: 20888842 DOI: 10.1016/j.mvr.2010.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022]
Abstract
Bioavailability of vasoactive endothelium-derived nitric oxide (NO) in vasculature is a critical factor in regulation of many physiological processes. Consumption of NO by RBC plays a crucial role in maintaining NO bioavailability. Recently, Deonikar and Kavdia (2009b) reported an effective NO-RBC reaction rate constant of 0.2×10(5)M(-1)s(-1) that is ~7 times lower than the commonly used NO-RBC reaction rate constant of 1.4×10(5)M(-1)s(-1). To study the effect of lower NO-RBC reaction rate constant and nitrite and nitrate formation (products of NO metabolism in blood), we developed a 2D mathematical model of NO biotransport in 50 and 200μm ID arterioles to calculate NO concentration in radial and axial directions in the vascular lumen and vascular wall of the arterioles. We also simulated the effect of blood velocity on NO distribution in the arterioles to determine whether NO can be transported to downstream locations in the arteriolar lumen. The results indicate that lowering the NO-RBC reaction rate constant increased the NO concentration in the vascular lumen as well as the vascular wall. Increasing the velocity also led to increase in NO concentration. We predict increased NO concentration gradient along the axial direction with an increase in the velocity. The predicted NO concentration was 281-1163nM in the smooth muscle cell layer for 50μm arteriole over the blood velocity range of 0.5-4cms(-1) for k(NO-RBC) of 0.2×10(5)M(-1)s(-1), which is much higher than the reported values from earlier mathematical modeling studies. The NO concentrations are similar to the experimentally measured vascular wall NO concentration range of 300-1000nM in several different vascular beds. The results are significant from the perspective that the downstream transport of NO is possible under the right circumstances.
Collapse
Affiliation(s)
- Prabhakar Deonikar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
41
|
Gilchrist M, Shore AC, Benjamin N. Inorganic nitrate and nitrite and control of blood pressure. Cardiovasc Res 2010; 89:492-8. [PMID: 20884639 DOI: 10.1093/cvr/cvq309] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Continual nitric oxide (NO) synthesis is important in the regulation of vascular tone and thus blood pressure. Whereas classically NO is provided by the enzymatic oxidation of l-arginine via endothelial NO synthase, it is now clear that NO can also be generated in mammals from the reduction of nitrite and nitrate. Thus inorganic nitrate derived either from NO oxidation or from dietary sources may be an important storage form of reactive nitrogen oxides which can be reduced back to nitrite and NO when physiologically required or in pathological conditions. The very short half-life of NO and the ready availability of stored nitrite and nitrate make for a very sensitive and responsive blood pressure control system. This review will examine processes by which these storage forms are produced and how augmentation of dietary nitrate intake may have a beneficial effect on blood pressure and other vascular function in humans.
Collapse
Affiliation(s)
- Mark Gilchrist
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Barrack Road, Exeter EX2 5AX, UK.
| | | | | |
Collapse
|
42
|
Pattillo CB, Bir S, Rajaram V, Kevil CG. Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases. Cardiovasc Res 2010; 89:533-41. [PMID: 20851809 DOI: 10.1093/cvr/cvq297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ischaemic tissue damage represents the ultimate form of tissue pathophysiology due to cardiovascular disease, which is the leading cause of morbidity and mortality across the globe. A significant amount of basic research and clinical investigation has been focused on identifying cellular and molecular pathways to alleviate tissue damage and dysfunction due to ischaemia and subsequent reperfusion. Over many years, the gaseous molecule nitric oxide (NO) has emerged as an important regulator of cardiovascular health as well as protector against tissue ischaemia and reperfusion injury. However, clinical translation of NO therapy for these pathophysiological conditions has not been realized for various reasons. Work from our laboratory and several others suggests that a new form of NO-associated therapy may be possible through the use of nitrite anion (sodium nitrite), a prodrug which can be reduced to NO in ischaemic tissues. In this manner, nitrite anion serves as a highly selective NO donor in ischaemic tissues without substantially altering otherwise normal tissue. This surprising and novel discovery has reinvigorated hopes for effectively restoring NO bioavailability in vulnerable tissues while continuing to reveal the complexity of NO biology and metabolism within the cardiovascular system. However, some concerns may exist regarding the effect of nitrite on carcinogenesis. This review highlights the emergence of nitrite anion as a selective NO prodrug for ischaemic tissue disorders and discusses the potential therapeutic utility of this agent for peripheral vascular disease.
Collapse
Affiliation(s)
- Christopher B Pattillo
- Department of Pathology and Cardiology, LSU Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
43
|
Dreissigacker U, Wendt M, Wittke T, Tsikas D, Maassen N. Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men. Nitric Oxide 2010; 23:128-35. [PMID: 20451646 DOI: 10.1016/j.niox.2010.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/20/2010] [Accepted: 05/02/2010] [Indexed: 11/16/2022]
Abstract
Several studies suggest that exercise is associated with elevated oxidative stress which diminishes NO bioavailability. The aim of the present study was to investigate a potential link between NO synthesis and bioavailability and oxidative stress in the circulation of subjects performing high-intensive endurance exercise. Twenty-two male healthy subjects cycled at 80% of their maximal workload. Cubital venous blood was taken before, during and after exercise, and heparinized plasma was generated. Plasma concentrations of nitrite and nitrate were quantified by GC-MS and of the oxidative stress biomarker 15(S)-8-iso-PGF(2alpha) by GC-MS/MS. pH and pCO(2) fell and HbO(2) increased upon exercise. The duration of the 80% phase (d80) was 740+/-210s. Subjects cycled at 89.2+/-3.3% of their peak oxygen uptake. Plasma concentration of nitrite (P<0.01) and 15(S)-8-iso-PGF(2alpha) (P<0.05) decreased significantly during exercise. At the end of exercise, plasma nitrite concentration correlated positively with d80 and performed work (w80) (each P<0.05). Changes in nitrate concentration also correlated positively with d80 (P<0.05) and w80/kg (P<0.01). These findings provide evidence of a favorable effect of nitrite on high-intensive endurance exercise. The lack of association between 15(S)-8-iso-PGF(2alpha) and NO bioavailability (nitrite concentration) and NO biosynthesis (nitrate concentration) suggest that oxidative stress, notably lipid peroxidation, is not linked to the l-arginine/NO pathway in healthy male subjects being on endurance exercise.
Collapse
Affiliation(s)
- Ulrike Dreissigacker
- Institute of Sport Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
44
|
Jensen FB, Rohde S. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies. Am J Physiol Regul Integr Comp Physiol 2010; 298:R972-82. [PMID: 20130222 DOI: 10.1152/ajpregu.00813.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.
Collapse
Affiliation(s)
- Frank B Jensen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | |
Collapse
|
45
|
Jensen FB. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. ACTA ACUST UNITED AC 2010; 212:3387-93. [PMID: 19837879 DOI: 10.1242/jeb.023697] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O(2) between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric interactions between Hb ligand-binding sites, and an adjustable intracellular chemical environment that allows fine-tuning of Hb O(2) affinity. Secondly, RBCs may sense tissue O(2) requirements via their degree of deoxygenation when they travel through the microcirculation and release vasodilatory compounds that enhance blood flow in hypoxic tissues. This latter function could be important in matching tissue O(2) delivery with local O(2) demand. Three main mechanisms by which RBCs can regulate their own distribution in the microcirculation have been proposed. These are: (1) deoxygenation-dependent release of ATP from RBCs, which stimulates production of nitric oxide (NO) and other vasodilators in the endothelium; (2) release of vasoactive NO from S-nitroso-Hb upon deoxygenation; and (3) reduction of naturally occurring nitrite to vasoactive NO by deoxygenated Hb. This Commentary inspects all three hypotheses with regard to their mechanisms, experimental evidence in their support and details that remain unresolved. The prime focus is on human/mammalian models, where most evidence for a role of erythrocyte ATP and NO release in blood flow regulation have accumulated. Information from other vertebrate groups is integrated in the analysis and used to discuss the evolutionary origin and general relevance of each hypothesis.
Collapse
Affiliation(s)
- Frank B Jensen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
46
|
Garcia JI, Seabra AB, Kennedy R, English AM. Nitrite and nitroglycerin induce rapid release of the vasodilator ATP from erythrocytes: Relevance to the chemical physiology of local vasodilation. J Inorg Biochem 2009; 104:289-96. [PMID: 20074809 DOI: 10.1016/j.jinorgbio.2009.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 01/06/2023]
Abstract
Extracellular ATP released from circulating erythrocytes induces vasodilation by stimulating receptor-mediated endothelium NO/EDRF (endothelium-derived relaxing factor) production. We report that pre-stimulation of freshly isolated human erythrocytes with physiological nitrite (100 nM NO(2)(-)) or pharmacological nitroglycerin (10microM) concentrations resulted in >200% spike in ATP release, which was detected on resuspending the cells in fresh medium. The observed response was instantaneous following NO(2)(-) pre-stimulation but a delay of approximately 20 s followed nitroglycerin pre-stimulation, reflecting the time required for prodrug activation within the erythrocyte to its vasoactive metabolites, NO(2)(-) and NO. The data provided here are consistent with ATP being a conveyor of a NO-induced vasodilatory signal from the erythrocyte to the endothelium. Extended erythrocyte pre-stimulation with the NO donors resulted in a dose-dependent decrease in extracellular ATP, which would attenuate the signal in intact vessels to prevent excessive vasodilation. Importantly, our study constitutes the first report of enhanced vasodilator (ATP) release following human erythrocyte pre-stimulation by an endogenous (NO(2)(-)) or pharmacological (nitroglycerin) NO donor. The relevance of our findings to the therapeutic effects of nitroglycerin as well as to nitrate tolerance is discussed.
Collapse
Affiliation(s)
- Juliana I Garcia
- Concordia University, Department of Chemistry and Biochemistry, 7141 Sherbrooke St. West, Montreal, QC, Canada H4B 1R6
| | | | | | | |
Collapse
|
47
|
Abstract
Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.
Collapse
|
48
|
Deonikar P, Kavdia M. An Integrated Computational and Experimental Model of Nitric Oxide–Red Blood Cell Interactions. Ann Biomed Eng 2009; 38:357-70. [DOI: 10.1007/s10439-009-9823-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/13/2009] [Indexed: 12/21/2022]
|
49
|
Sodium nitrite therapy attenuates the hypertensive effects of HBOC-201 via nitrite reduction. Biochem J 2009; 422:423-32. [PMID: 19555351 DOI: 10.1042/bj20090735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension secondary to scavenging of NO remains a limitation in the use of HBOCs (haemoglobin-based oxygen carriers). Recent studies suggest that nitrite reduction to NO by deoxyhaemoglobin supports NO signalling. In the present study we tested whether nitrite would attenuate HBOC-mediated hypertension using HBOC-201 (Biopure), a bovine cross-linked, low-oxygen-affinity haemoglobin. In a similar way to unmodified haemoglobin, deoxygenated HBOC-201 reduced nitrite to NO with rates directly proportional to the extent of deoxygenation. The functional importance of HBOC-201-dependent nitrite reduction was demonstrated using isolated aortic rings and a murine model of trauma, haemorrhage and resuscitation. In the former, HBOC-201 inhibited NO-donor and nitrite-dependent vasodilation when oxygenated. However, deoxygenated HBOC-201 failed to affect nitrite-dependent vasodilation but still inhibited NO-donor dependent vasodilation, consistent with a model in which nitrite-reduction by deoxyHBOC-201 counters NO scavenging. Finally, resuscitation using HBOC-201, after trauma and haemorrhage, resulted in mild hypertension ( approximately 5-10 mmHg). Administration of a single bolus nitrite (30-100 nmol) at the onset of HBOC-201 resuscitation prevented hypertension. Nitrite had no effect on mean arterial pressure during resuscitation with LR (lactated Ringer's solution), suggesting a role for nitrite-HBOC reactions in attenuating HBOC-mediated hypertension. Taken together these data support the concept that nitrite can be used as an adjunct therapy to prevent HBOC-dependent hypertension.
Collapse
|