1
|
Liu S, Li J, Wang W, Zhang Y, Li S, Li T, Jiang J, Zhao F. Prenatal exposure to dibutyl phthalate contributes to erectile dysfunction in offspring male rats by activating the RhoA/ROCK signalling pathway. Toxicology 2024; 508:153925. [PMID: 39151608 DOI: 10.1016/j.tox.2024.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianying Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yijun Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shufeng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
2
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
4
|
TNF-α Plus IL-1β Induces Opposite Regulation of Cx43 Hemichannels and Gap Junctions in Mesangial Cells through a RhoA/ROCK-Dependent Pathway. Int J Mol Sci 2022; 23:ijms231710097. [PMID: 36077498 PMCID: PMC9456118 DOI: 10.3390/ijms231710097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Connexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-α plus IL-1β increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.
Collapse
|
5
|
Miyahara S, Jenke A, Yazdanyar M, Kistner J, Immohr MB, Sugimura Y, Aubin H, Kamiya H, Okita Y, Lichtenberg A, Akhyari P. The combination approach with Rho-kinase inhibition and mechanical circulatory support in myocardial ischemia-reperfusion injury: Rho-kinase inhibition and ventricular unloading. Asian Cardiovasc Thorac Ann 2022; 30:894-905. [PMID: 35837687 PMCID: PMC9513506 DOI: 10.1177/02184923221114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background It remains unclear whether the Rho-kinase (ROCK) inhibition in combination
with mechanical circulatory support (MCS) had a synergic protective effect
on myocardial ischemia (MI)/reperfusion injury in therapeutic strategies for
acute myocardial infarction (AMI). We report the results of an approach
using a rat model consisting of a miniaturized cardiopulmonary bypass (CPB)
and AMI. Methods A total of 25 male Wistar rats were randomized into 5 groups: (1) Sham: a
suture was passed under the left anterior descending artery (LAD) creating
no MI. A vehicle solution (0.9% saline) was injected intraperitoneally. (2)
Myocardial ischemia (MI) + vehicle (MI + V): LAD was ligated for 30 min and
reperfused for 120 min, followed by administration of vehicle solution. (3)
MI + fasudil (MI + F): the work sequence of group 2, but the selective ROCK
inhibitor fasudil (10 mg/kg) was administered instead. (4) MI + V + CPB: CPB
was initiated 15 min after the ligation of the LAD to the end of the
reperfusion, in addition to the work sequence in group 2. (5) In the
MI + F + CPB group, the work sequence of group 4, but with fasudil
administration (10 mg/kg). Results Measurements of cardiac function through conductance catheter indicated that
the drop of + dP/dt after reperfusion was moderately limited in MI + F + CPB
(vs. MI + V, dP/dt p = 0.22). The preload recruitable
stroke work was moderately improved in the MI + F + CPB
(p = 0.23) compared with the corresponding control animals
(MI + V). Phosphorylated protein kinase B expression in the MI + V + CPB and
MI + F + CPB was higher than that in MI + V (p = 0.33). Conclusion Therefore, fasudil administration with MCS resulted in a moderately better
left ventricular performance.
Collapse
Affiliation(s)
- Shunsuke Miyahara
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander Jenke
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mariam Yazdanyar
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Kistner
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Moritz Benjamin Immohr
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hiroyuki Kamiya
- Department of Cardiac Surgery, 38051Asahikawa Medical University, Asahikawa, Japan
| | - Yutaka Okita
- Department of Surgery, Division of Cardiovascular Surgery, 38303Kobe University Graduate School of Medicine, Kobe, Japan
| | - Artur Lichtenberg
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Wang W, Li C, Zhuang C, Zhang H, Wang Q, Fan X, Qi M, Sun R, Yu J. Research on the Mechanism and Prevention of Hypertension Caused by Apatinib Through the RhoA/ROCK Signaling Pathway in a Mouse Model of Gastric Cancer. Front Cardiovasc Med 2022; 9:873829. [PMID: 35811723 PMCID: PMC9262125 DOI: 10.3389/fcvm.2022.873829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is one of the main adverse effects of antiangiogenic tumor drugs and thus limits their application. The mechanism of hypertension caused by tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors is mainly related to inhibition of the nitric oxide (NO) pathway and activation of the endothelin pathway, as well as vascular rarefaction and increased salt sensitivity; consequently, prevention and treatment differ for this type of hypertension compared with primary hypertension. Apatinib is a highly selective TKI approved in China for the treatment of advanced or metastatic gastric cancer. The RhoA/ROCK pathway is involved in the pathogenesis of hypertension and mediates smooth muscle contraction, eNOS inhibition, endothelial dysfunction and vascular remodeling. In this study, in vivo experiments were performed to explore whether the RhoA/ROCK signaling pathway is part of a possible mechanism of apatinib in the treatment of gastric cancer-induced hypertension and the impairment of vascular remodeling and left ventricular function. Y27632, a selective small inhibitor of both ROCK1 and ROCK2, was combined with apatinib, and its efficacy was evaluated, wherein it can reduce hypertension induced by apatinib treatment in gastric cancer mice and weaken the activation of the RhoA/ROCK pathway by apatinib and a high-salt diet (HSD). Furthermore, Y-27632 improved aortic remodeling, fibrosis, endothelial dysfunction, superior mesenteric artery endothelial injury, left ventricular dysfunction and cardiac fibrosis in mice by weakening the activation of the RhoA/ROCK pathway. The expression of RhoA/ROCK pathway-related proteins and relative mRNA levels in mice after apatinib intervention were analyzed by various methods, and blood pressure and cardiac function indexes were compared. Endothelial and cardiac function and collagen levels in the aorta were also measured to assess vascular and cardiac fibrosis and to provide a basis for the prevention and treatment of this type of hypertension.
Collapse
|
7
|
Effect of Rho-Kinase and Autophagy on Remote Ischemic Conditioning-Induced Cardioprotection in Rat Myocardial Ischemia/Reperfusion Injury Model. Cardiovasc Ther 2022; 2022:6806427. [PMID: 35082919 PMCID: PMC8758291 DOI: 10.1155/2022/6806427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Objective. Remote ischemic conditioning (RIC) is a cardioprotective method in ischemia/reperfusion (I/R) injury. This study investigated the mechanism of Rho-kinase-mediated autophagy in RIC. Methods. Sixty male Sprague–Dawley rats were randomly divided into six groups: sham, I/R, RIC, I/R+fasudil, RIC+wortmannin, and RIC+fasudil+wortmannin. Throughout the experiment, mean arterial pressure and heart rate were continuously monitored. Histopathology and ultrastructure and myocardial enzymes’ expression were evaluated to determine the degree of cardiac injury. The protein expression of the Rho-kinase substrates myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1), autophagy-related protein light chain 3-II (LC3-II) and Beclin 1, and protein kinase B (AKT) was measured in the myocardial tissue. Results. Compared with the sham group, the mean arterial pressure and heart rate were decreased, myocardial enzyme levels were increased, and myocardial damage was aggravated in the I/R group; however, RIC improved these alterations. The expression of phosphorylated MLC and MYPT1 was lower, while LC3-II, Beclin 1, and phospho-AKT expression levels were higher in the RIC group compared with the I/R group. Obviously, treatment of the I/R group rats with fasudil, a Rho-kinase inhibitor, significantly ameliorated the I/R effects, whereas treatment of the RIC group rats with wortmannin, a phosphatidylinositol-3 kinase (PI3K) inhibitor, inhibited the RIC protective effects. Moreover, the rats in the RIC+fasudil+wortmannin group showed similar changes to those in the RIC+wortmannin group. Conclusion. These results showed that RIC protected the myocardium from I/R injury by suppressing Rho-kinase and the underlying mechanism may be related to enhancing autophagy via the PI3K/AKT pathway.
Collapse
|
8
|
Yu B, Sladojevic N, Blair JE, Liao JK. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opin Ther Targets 2020; 24:47-62. [PMID: 31906742 PMCID: PMC7662835 DOI: 10.1080/14728222.2020.1712593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Pathological cardiac fibrosis, through excessive extracellular matrix protein deposition from fibroblasts and pro-fibrotic immune responses and vascular stiffening is associated with most forms of cardiovascular disease. Pathological cardiac fibrosis and stiffening can lead to heart failure and arrythmias and vascular stiffening may lead to hypertension. ROCK, a serine/threonine kinase downstream of the Rho-family of GTPases, may regulate many pro-fibrotic and pro-stiffening signaling pathways in numerous cell types.Areas covered: This article outlines the molecular mechanisms by which ROCK in fibroblasts, T helper cells, endothelial cells, vascular smooth muscle cells, and macrophages mediate fibrosis and stiffening. We speculate on how ROCK could be targeted to inhibit cardiovascular fibrosis and stiffening.Expert opinion: Critical gaps in knowledge must be addressed if ROCK inhibitors are to be used in the clinic. Numerous studies indicate that each ROCK isoform may play differential roles in regulating fibrosis and may have opposing roles in specific tissues. Future work needs to highlight the isoform- and tissue-specific contributions of ROCK in fibrosis, and how isoform-specific ROCK inhibitors in murine models and in clinical trials affect the pathophysiology of cardiac fibrosis and stiffening. This could progress knowledge regarding new treatments for heart failure, arrythmias and hypertension and the repair processes after myocardial infarction.
Collapse
Affiliation(s)
- Brian Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nikola Sladojevic
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Duan JS, Chen S, Sun XQ, Du J, Chen ZW. Urotensin-#receptor antagonist SB-706375 protected isolated rat heart from ischaemia-reperfusion injury by attenuating myocardial necrosis via RhoA/ROCK/RIP3 signalling pathway. Inflammopharmacology 2019; 27:1309-1318. [PMID: 31168686 DOI: 10.1007/s10787-019-00598-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
SB-706375 is a selective receptor antagonist of human urotensin-II (hU-II), which can block the aorta contraction induced by hU-II in rats. The effect of SB-706375 on myocardial ischaemia-reperfusion (I/R) injury is unclear. The major objective of this study was to investigate whether SB-706375 has a protective effect on myocardial I/R injury in rats and explore its possible mechanisms. Isolated hearts of Adult Sprague-Dawley were perfused in a Langendorff apparatus, and haemodynamic parameters, lactate dehydrogenase (LDH), creatine phosphokinase-MB (CK-MB), cardiac troponin I (cTnI), RhoA, and the protein expressions of U-II receptor (UTR), receptor-interacting protein 3 (RIP3), Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) and Rho-associated coiled-coil-containing protein kinase 2 (ROCK2) were assessed. We found that SB-706375 (1 × 10-6 and 1 × 10-5 mol/L) significantly inhibited the changes of haemodynamic parameters and reduced LDH and CK-MB activities and also cTnI level in the coronary effluents in the heart subjected to myocardial I/R injury. Further experiments studies showed that SB-706375 obviously prevented myocardial I/R increased RhoA activity and UTR, RIP3, ROCK1, and ROCK2 protein expressions. ROCK inhibition abolished the improving effect of SB-706375 on myocardial I/R-induced haemodynamic change in the isolated perfused rat heart. These findings suggested that SB-706375 provides cardio-protection against I/R injury in isolated rats by blocking UTR-RhoA/ROCK-RIP3 pathway.
Collapse
Affiliation(s)
- Jing-Si Duan
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Cardiovascular Surgery, The 1st Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shuo Chen
- Department of Physiology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiao-Qing Sun
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Du
- Department of Physiology, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Wu N, Zhang X, Bao Y, Yu H, Jia D, Ma C. Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. J Cell Mol Med 2019; 23:8420-8431. [PMID: 31625671 PMCID: PMC6850918 DOI: 10.1111/jcmm.14724] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Growth arrest‐specific transcript 5 (GAS5), along non‐coding RNA (LncRNA), is highly expressed in hypoxia/reoxygenation (H/R)‐cardiomyocytes and promotes H/R‐induced apoptosis. In this study, we determined whether down‐regulation of GAS5 ameliorates myocardial ischaemia/reperfusion (I/R) injury and further explored its mechanism. GAS5 expression in cardiomyocytes and rats was knockdown by transfected or injected with GAS5‐specific small interfering RNA or adeno‐associated virus delivering small hairpin RNAs, respectively. The effects of GAS5 knockdown on myocardial I/R injury were detected by CCK‐8, myocardial enzyme test, flow cytometry, TTC and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. qRT‐PCR and luciferase reporter assay were carried out to analyse the relationship between GAS5 and miR‐335. The regulation of GAS5 on Rho‐associated protein kinase 1 (ROCK1) expression, the activation of PI3K/AKT/GSK‐3β pathway and mitochondrial permeability transition pore (mPTP) opening was further evaluated. The results indicated that GAS5 knockdown enhanced the viability, decreased apoptosis and reduced the levels of lactate dehydrogenase and creatine kinase‐MB in H/R‐treatment cardiomyocytes. Meanwhile, down‐regulation of GAS5 limited myocardial infarct size and reduced apoptosis in I/R‐heart. GAS5 was found to bind to miR‐335 and displayed a reciprocal inhibition between them. Furthermore, GAS5 knockdown repressed ROCK1 expression, activated PI3K/AKT, thereby leading to inhibition of GSK‐3β and mPTP opening. These suppressions were abrogated by miR‐335 inhibitor treatment. Taken together, our results demonstrated that down‐regulation of GAS5 ameliorates myocardial I/R injury via the miR‐335/ROCK1/AKT/GSK‐3β axis. Our findings suggested that GAS5 may be a new therapeutic target for the prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Nan Wu
- The Central Laboratory of the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yandong Bao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hang Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Jiao Y, Li YN, Chen ZW, Guo Y. Mechanism of H 2S-mediated ROCK inhibition of total flavones of Rhododendra against myocardial ischemia injury. Exp Ther Med 2019; 18:3783-3792. [PMID: 31611932 PMCID: PMC6781799 DOI: 10.3892/etm.2019.8004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous studies have indicated that pretreatment with total flavones of Rhododendra flower (TFR) may protect against myocardial ischemic injuries in rats and mice. The cystathionine γ-lyase/hydrogen sulfide (CSE/H2S) pathway have been associated with several cardiovascular diseases, but the effect of TFR on the Rho-associated protein kinase (ROCK) and CSE/H2S signaling pathways remains unknown. In the present study, the protective effects of TFR as a ROCK inhibitor in a mice model of myocardial infarction induced by isoproterenol (ISO) were investigated, and the hearts from the wild type and CSE knockout (KO) mice were examined. It was identified that the CSE KO mice exhibited decreased levels of ST segment elevation following anoxia/reoxygenation damage, increased LDH and CK-MB levels, aggravated pathological damage, and increased ROCK1, ROCK2 and MLC1 protein levels. In the CSE KO mice, there were no marked changes of the above experimental results between the TFR group and the model group. These results suggested that TFR-based inhibition of the RhoA/ROCK signal pathway may be mediated by the CSE-H2S signalling pathway and may be a novel therapeutic target for myocardial ischemia injury.
Collapse
Affiliation(s)
- Yi Jiao
- Department of Human Anatomy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ya-Nan Li
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Guo
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
12
|
Li L, Liu B. ROCK inhibitor Y‑27632 protects rats against cerebral ischemia/reperfusion‑induced behavioral deficits and hippocampal damage. Mol Med Rep 2019; 20:3395-3405. [PMID: 31432130 DOI: 10.3892/mmr.2019.10584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/24/2019] [Indexed: 11/05/2022] Open
Abstract
Cerebral ischemic injury is a major cause of death and long‑term disability worldwide that leads to neurological and behavioral deficits, and for which successful treatments are still lacking. Ras homolog family member A (RhoA) and Rho‑associated coiled‑coil containing protein kinase (ROCK) are associated with the growth of neurons and the movement of neuronal growth cones. RhoA/ROCK inhibitors have been demonstrated to promote the recovery of motor function following nerve injury, but the underlying mechanism requires further investigation. The present study aimed to investigate the effects of the ROCK inhibitor Y‑27632 on middle cerebral artery occlusion (MCAO)‑induced cerebral ischemic injury. Rats were randomly assigned to the Control, Y‑27632, MCAO + Vehicle or MCAO + Y‑27632 group. Firstly, infarct volume, cognitive ability and cerebral injury were assessed. Secondly, indicators of cerebral inflammation, oxidative stress and apoptosis were evaluated. Finally, the expression of recombinant glial fibrillary acidic protein (GFAP) and allograft inflammatory factor 1 (AIF1) in the brain were measured to assess the activation of astrocytes and microglia, respectively. The results showed that Y‑27632 effectively increased the survival rate and behavioral performance of rats, and attenuated the cerebral injury, oxidative stress and cerebral inflammation levels following MCAO. The disturbance in hippocampal neurons caused by MCAO was also alleviated following treatment with Y‑27632. Neuronal apoptosis was also decreased following Y‑27632 treatment, as demonstrated by the TUNEL assay and the expression levels of Caspases‑3, 8 and 9 and Bax/Bcl‑2 ratio. The levels of GFAP and AIF1 were increased by MCAO and further promoted by Y‑27632, indicating the activation of astrocytes and microglia. In conclusion, the present study offered evidence of a protective effect of Y‑27632 administration on cerebral ischemia/reperfusion induced behavioral and hippocampal damage by activating astrocytes and microglia.
Collapse
Affiliation(s)
- Lihe Li
- Department of Clinical Laboratory, Baodi District People's Hospital, Tianjin 301800, P.R. China
| | - Baoyang Liu
- Department of Clinical Laboratory, Baodi District People's Hospital, Tianjin 301800, P.R. China
| |
Collapse
|
13
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Robertson‐Gray OJ, Walsh SK, Ryberg E, Jönsson‐Rylander A, Lipina C, Wainwright CL. l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway. Pharmacol Res Perspect 2019; 7:e00487. [PMID: 31149342 PMCID: PMC6533556 DOI: 10.1002/prp2.487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury. While LPI activates multiple signaling pathways, little is known about which ones are important in cardiomyocytes. In this study we explored whether activation of the Rho kinase/ROCK/p38 MAPK pathway is responsible for LPI-induced extension of I/R injury. Using a high-throughput screening method (dynamic mass redistribution; DMR), mouse- and human-induced pluripotent stem cell (iPSC) cardiomyocytes exposed to LPI were shown to exhibit a rapid, sustained, and concentration-dependent (1 nmol L-1-30 μmol L-1) cellular response. Y-27632 (ROCK inhibitor; 10 & 50 μmol L-1) and CBD (1 μmol L-1) both abolished the DMR response to LPI (10 μmol L-1). In murine iPSC cardiomyocytes, LPI-induced ROCK and p38 MAPK phosphorylation, both of which were prevented by Y-27632 and CBD, but did not induce JNK activation or cleavage of caspase-3. In hearts isolated from wild type (WT) mice subjected to 30 minutes global I/R, LPI (10 μmol L-1) administered via the coronary circulation increased infarct size when applied prior to ischemia onset, but not when given at the time of reperfusion. The exacerbation of tissue injury by LPI was not seen in hearts from GPR55-/- mice or in the presence of Y-27632, confirming that injury is mediated via the GPR55/ROCK/p38 MAPK pathway. These findings suggest that raised levels of LPI in the vicinity of a developing infarct may worsen the outcome of AMI.
Collapse
Affiliation(s)
- Olivia J. Robertson‐Gray
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
- Present address:
Institute of Cardiovascular & Medical SciencesCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowScotlandUK
| | - Sarah K. Walsh
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
| | - Erik Ryberg
- Cardiovascular& Metabolic Disease IMEDAstraZeneca R&DMölndalSweden
| | | | - Christopher Lipina
- Division of Cell Signalling & ImmunologySchool of Life SciencesUniversity of DundeeDundeeScotlandUK
| | - Cherry L. Wainwright
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
| |
Collapse
|
15
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
16
|
See Hoe LE, Foster SR, Wendt L, Patel HH, Headrick JP, Peart JN. Regulation of the β-Adrenergic Receptor Signaling Pathway in Sustained Ligand-Activated Preconditioning. J Pharmacol Exp Ther 2019; 369:37-46. [PMID: 30635471 DOI: 10.1124/jpet.118.251660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/10/2019] [Indexed: 03/08/2025] Open
Abstract
Sustained ligand-activated preconditioning (SLP), induced with chronic opioid receptor (OR) agonism, enhances tolerance to ischemia/reperfusion injury in young and aged hearts. Underlying mechanisms remain ill-defined, although early data implicate phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) during the induction phase, and β 2-adrenoceptor (β 2-AR), Gs alpha subunit (Gα s), and protein kinase A (PKA) involvement in subsequent cardioprotection. Here, we tested for induction of a protective β 2-AR/Gα s/PKA signaling axis with SLP to ascertain whether signaling changes were PI3K-dependent (by sustained cotreatment with wortmannin), and whether the downstream PKA target Rho kinase (ROCK) participates in subsequent cardioprotection (by acute treatment with fasudil). A protected phenotype was evident after 5 days of OR agonism (using morphine) in association with increased membrane versus reduced cytosolic levels of total and phosphorylated β 2-ARs; increased membrane and cytosolic expression of 52 and 46 kDa Gα s isoforms, respectively; and increased phosphorylation of PKA and Akt. Nonetheless, functional sensitivities of β 2-ARs and adenylyl cyclase were unchanged based on concentration-response analyses for formoterol, fenoterol, and 6-[3-(dimethylamino)propionyl]-forskolin. Protection with SLP was not modified by ROCK inhibition, and changes in β 2-AR, Gα s, and PKA expression appeared insensitive to PI3K inhibition, although 5 days of wortmannin alone exerted unexpected effects on signaling (also increasing membrane β 2-AR and PKA expression/phosphorylation and Gα s levels). In summary, sustained OR agonism upregulates cardiac membrane β 2-AR expression and phosphorylation in association with increased Gα s subtype levels and PKA phosphorylation. While Akt phosphorylation was evident, PI3K activity appears nonessential to OR upregulation of the β 2-AR signal axis. This opioidergic remodeling of β 2-AR signaling may explain β 2-AR, Gα s, and PKA dependence of SLP protection.
Collapse
Affiliation(s)
- L E See Hoe
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland (L.E.S.H., L.W., J.P.H., J.N.P.); School of Biomedical Sciences, University of Queensland, Brisbane, Australia (S.R.F.); and VA San Diego Healthcare System and University of California San Diego, San Diego, California (H.H.P.)
| | - S R Foster
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland (L.E.S.H., L.W., J.P.H., J.N.P.); School of Biomedical Sciences, University of Queensland, Brisbane, Australia (S.R.F.); and VA San Diego Healthcare System and University of California San Diego, San Diego, California (H.H.P.)
| | - L Wendt
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland (L.E.S.H., L.W., J.P.H., J.N.P.); School of Biomedical Sciences, University of Queensland, Brisbane, Australia (S.R.F.); and VA San Diego Healthcare System and University of California San Diego, San Diego, California (H.H.P.)
| | - H H Patel
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland (L.E.S.H., L.W., J.P.H., J.N.P.); School of Biomedical Sciences, University of Queensland, Brisbane, Australia (S.R.F.); and VA San Diego Healthcare System and University of California San Diego, San Diego, California (H.H.P.)
| | - J P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland (L.E.S.H., L.W., J.P.H., J.N.P.); School of Biomedical Sciences, University of Queensland, Brisbane, Australia (S.R.F.); and VA San Diego Healthcare System and University of California San Diego, San Diego, California (H.H.P.)
| | - J N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland (L.E.S.H., L.W., J.P.H., J.N.P.); School of Biomedical Sciences, University of Queensland, Brisbane, Australia (S.R.F.); and VA San Diego Healthcare System and University of California San Diego, San Diego, California (H.H.P.)
| |
Collapse
|
17
|
Kant S, Freytag B, Herzog A, Reich A, Merkel R, Hoffmann B, Krusche CA, Leube RE. Desmoglein 2 mutation provokes skeletal muscle actin expression and accumulation at intercalated discs in murine hearts. J Cell Sci 2019; 132:jcs.199612. [PMID: 30659114 DOI: 10.1242/jcs.199612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/30/2018] [Indexed: 01/05/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is an incurable progressive disease that is linked to mutations in genes coding for components of desmosomal adhesions that are localized to the intercalated disc region, which electromechanically couples adjacent cardiomyocytes. To date, the underlying molecular dysfunctions are not well characterized. In two murine AC models, we find an upregulation of the skeletal muscle actin gene (Acta1), which is known to be a compensatory reaction to compromised heart function. Expression of this gene is elevated prior to visible morphological alterations and clinical symptoms, and persists throughout pathogenesis with an additional major rise during the chronic disease stage. We provide evidence that the increased Acta1 transcription is initiated through nuclear activation of the serum response transcription factor (SRF) by its transcriptional co-activator megakaryoblastic leukemia 1 protein (MKL1, also known as MRTFA). Our data further suggest that perturbed desmosomal adhesion causes Acta1 overexpression during the early stages of the disease, which is amplified by transforming growth factor β (TGFβ) release from fibrotic lesions and surrounding cardiomyocytes during later disease stages. These observations highlight a hitherto unknown molecular AC pathomechanism.
Collapse
Affiliation(s)
- Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Benjamin Freytag
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Antonia Herzog
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Reich
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7, Biomechanics, 52428 Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7, Biomechanics, 52428 Jülich, Germany
| | - Claudia A Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
18
|
Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, Reece TB, Ambardekar AV, Bristow MR, Mestroni L, Taylor MRG. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics 2018; 19:812. [PMID: 30419824 PMCID: PMC6233272 DOI: 10.1186/s12864-018-5213-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/31/2018] [Indexed: 01/17/2023] Open
Abstract
Background Current heart failure (HF) treatment is based on targeting symptoms and left ventricle dysfunction severity, relying on a common HF pathway paradigm to justify common treatments for HF patients. This common strategy may belie an incomplete understanding of heterogeneous underlying mechanisms and could be a barrier to more precise treatments. We hypothesized we could use RNA-sequencing (RNA-seq) in human heart tissue to delineate HF etiology-specific gene expression signatures. Results RNA-seq from 64 human left ventricular samples: 37 dilated (DCM), 13 ischemic (ICM), and 14 non-failing (NF). Using a multi-analytic approach including covariate adjustment for age and sex, differentially expressed genes (DEGs) were identified characterizing HF and disease-specific expression. Pathway analysis investigated enrichment for biologically relevant pathways and functions. DCM vs NF and ICM vs NF had shared HF-DEGs that were enriched for the fetal gene program and mitochondrial dysfunction. DCM-specific DEGs were enriched for cell-cell and cell-matrix adhesion pathways. ICM-specific DEGs were enriched for cytoskeletal and immune pathway activation. Using the ICM and DCM DEG signatures from our data we were able to correctly classify the phenotypes of 24/31 ICM and 32/36 DCM samples from publicly available replication datasets. Conclusions Our results demonstrate the commonality of mitochondrial dysfunction in end-stage HF but more importantly reveal key etiology-specific signatures. Dysfunctional cell-cell and cell-matrix adhesion signatures typified DCM whereas signals related to immune and fibrotic responses were seen in ICM. These findings suggest that transcriptome signatures may distinguish end-stage heart failure, shedding light on underlying biological differences between ICM and DCM. Electronic supplementary material The online version of this article (10.1186/s12864-018-5213-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary E Sweet
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA
| | - Andrea Cocciolo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Dobromir Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, USA
| | - Joseph R Sweet
- Department of Statistics, E. & J. Gallo, Modesto, CA, USA
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - T Brett Reece
- Department of Cardiothoracic Surgery, University of Colorado Hospital, Aurora, CO, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Michael R Bristow
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Luisa Mestroni
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA.,Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Matthew R G Taylor
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA. .,Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
19
|
Huang YY, Wu JM, Su T, Zhang SY, Lin XJ. Fasudil, a Rho-Kinase Inhibitor, Exerts Cardioprotective Function in Animal Models of Myocardial Ischemia/Reperfusion Injury: A Meta-Analysis and Review of Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2018; 9:1083. [PMID: 30327600 PMCID: PMC6174418 DOI: 10.3389/fphar.2018.01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023] Open
Abstract
Fasudil, a Rho-kinase inhibitor, has shown outstanding therapeutic effects against cerebral vasospasm after subarachnoid hemorrhage (SAH) in humans. Studies show various biological effects of fasudil in the cardiovascular system. We conducted a preclinical systematic review to determine the efficacy and possible mechanisms of fasudil on animal models of myocardial ischemia/reperfusion (I/R) injury. Nineteen studies involving 400 animals were identified after searching 8 databases for articles published till June 2018. The methodological quality was assessed by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) 10-item checklist. The data were analyzed using Rev-Man 5.3 software, and the score of study quality ranged from 3 to 6 points. Compared to the control group, fasudil treated animals showed reduced myocardial infarct size (P < 0.05), lower levels of cardiac enzymes (P < 0.05) and cardiac troponin T (P < 0.05), improved systolic and diastolic functions (P < 0.05), and increased degree of decline in the ST-segment (P < 0.05). The possible mechanisms of fasudil action against myocardial I/R injury are improvement in coronary vasodilation, inhibition of apoptosis and oxidative stress, relieving inflammation, and reduction in endoplasmic reticulum stress and metabolism. In conclusion, fasudil exerts a cardio-protective function through multiple signaling pathways in animal models of myocardial I/R injury.
Collapse
Affiliation(s)
- Yue-Yue Huang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Ming Wu
- Department of Dermatovenereology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Su
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song-Yue Zhang
- Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ji Lin
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Yan LL, Zhang WY, Wei XH, Yan L, Pan CS, Yu Y, Fan JY, Liu YY, Zhou H, Han JY, Yao XS. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation. Front Physiol 2018; 9:296. [PMID: 29674972 PMCID: PMC5895855 DOI: 10.3389/fphys.2018.00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Lu-Lu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Wei-Yang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing-Yu Fan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Sheng Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Li L, Pan CS, Yan L, Cui YC, Liu YY, Mu HN, He K, Hu BH, Chang X, Sun K, Fan JY, Huang L, Han JY. Ginsenoside Rg1 Ameliorates Rat Myocardial Ischemia-Reperfusion Injury by Modulating Energy Metabolism Pathways. Front Physiol 2018; 9:78. [PMID: 29467677 PMCID: PMC5808323 DOI: 10.3389/fphys.2018.00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/22/2018] [Indexed: 12/22/2022] Open
Abstract
As a major ingredient of Radix ginseng, ginsenoside Rg1 (Rg1) has been increasingly recognized to benefit the heart condition, however, the rationale behind the role is not fully understood. In vitro study in H9c2 cardiomyocytes has shown the potential of Rg1 to increase ATP content in the cells. We thus speculated that the protective effect of Rg1 on heart ischemia and reperfusion (I/R) injury implicates energy metabolism regulation. The present study was designed to verify this speculation. Male Sprague-Dawley rats were subjected to 30 min of occlusion of left coronary anterior descending artery followed by reperfusion for 90 min. Rg1 (5 mg/kg/h) was continuously administrated intravenously 30 min before occlusion until the end of reperfusion. Myocradial blood flow and heart function were monitored over the period of I/R. Myocardial infarct size, structure and apoptosis, energy metabolism, and change in RhoA signaling pathway were evaluated 90 min after reperfusion. Binding of Rg1 to RhoA was assessed using Surface Plasmon Resonance (SPR). Rg1 prevented I/R-elicited insults in myocardium, including myocardial infarction and apoptosis, decreased myocardial blood flow (MBF) and heart function, and alteration in myocardium structure. Rg1 restored the production of ATP in myocardium after I/R. Rg1 was able to bind to RhoA and down-regulate the activity of RhoA signaling pathway. These results indicated that Rg1 had protective potential against I/R-induced myocardial injury, which may be related to inhibiting myocardial apoptosis and modulating energy metabolism through binding to RhoA.
Collapse
Affiliation(s)
- Lin Li
- Department of Integrative Cardiology, Beijing China-Japan Friendship Hospital, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Hong-Na Mu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Ke He
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Huang
- Department of Integrative Cardiology, Beijing China-Japan Friendship Hospital, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
22
|
Dholakia S, Fildes JE, Friend PJ. The use of kinase inhibitors in solid organ transplantation. Transplant Rev (Orlando) 2017; 31:166-171. [PMID: 28396194 DOI: 10.1016/j.trre.2017.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Despite the efficacy of current immunosuppression regimes used in solid organ transplantation, graft dysfunction, graft lost and antibody-mediated rejection continue to be problematic. As a result, clear attraction in exploiting key potential targets controlled by kinase phosphorylation has led to a number of studies exploring the use of these drugs in transplantation. Aim In this review, we consider the role of tyrosine kinase as a target in transplantation and summarize the relevant studies on kinase inhibitors that have been reported to date. METHODS Narrative review of literature from inception to December 2016, using OVID interface searching EMBASE and MEDLINE databases. All studies related to kinase based immunosuppression were examined for clinical relevance with no exclusion criteria. Key ideas were extracted and referenced. CONCLUSION The higher incidence of infections when using kinase inhibitors is an important consideration, however the number and range inhibitors and their clinical indications are likely to expand, but their exact role in transplantation is yet to be determined.
Collapse
Affiliation(s)
- S Dholakia
- Nuffield Department of Surgical Science, Oxford Transplant Centre, Churchill Hospital, Oxford, OX3 7LE, UK; The Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, Manchester, M13 9NT, UK.
| | - J E Fildes
- Nuffield Department of Surgical Science, Oxford Transplant Centre, Churchill Hospital, Oxford, OX3 7LE, UK; The Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, Manchester, M13 9NT, UK
| | - P J Friend
- Nuffield Department of Surgical Science, Oxford Transplant Centre, Churchill Hospital, Oxford, OX3 7LE, UK; The Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
23
|
Cui YC, Pan CS, Yan L, Li L, Hu BH, Chang X, Liu YY, Fan JY, Sun K, -Li Q, Han JY. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci Rep 2017; 7:44579. [PMID: 28327605 PMCID: PMC5361119 DOI: 10.1038/srep44579] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
Cardiac ischemia and reperfusion (I/R) injury remains a challenge for clinicians. Ginsenoside Rb1 (Rb1) has been reported to have the ability to attenuate I/R injury, but its effect on energy metabolism during cardiac I/R and the underlying mechanism remain unknown. In this study, we detected the effect of Rb1 on rat myocardial blood flow, myocardial infarct size, cardiac function, velocity of venule red blood cell, myocardial structure and apoptosis, energy metabolism and change in RhoA signaling pathway during cardiac I/R injury. In addition, the binding affinity of RhoA to Rb1 was detected using surface plasmon resonance (SPR). Results showed that Rb1 treatment at 5 mg/kg/h protected all the cardiac injuries induced by I/R, including damaged myocardial structure, decrease in myocardial blood flow, impaired heart function and microcirculation, cardiomyocyte apoptosis, myocardial infarction and release of myocardial cTnI. Rb1 also inhibited the activation of RhoA signaling pathway and restored the production of ATP during cardiac I/R. Moreover, SPR assay showed that Rb1 was able to bind to RhoA in a dose-dependent manner. These results indicate that Rb1 may prevent I/R-induced cardiac injury by regulation of RhoA signaling pathway, and may serve as a potential regime to improve percutaneous coronary intervention outcome.
Collapse
Affiliation(s)
- Yuan-Chen Cui
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Lin Li
- Department of Cardiology, Beijing China-Japan Friendship Hospital, Beijing 100029, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Quan -Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| |
Collapse
|
24
|
Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels. BMC Cardiovasc Disord 2016; 16:193. [PMID: 27724862 PMCID: PMC5057502 DOI: 10.1186/s12872-016-0372-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Background Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. Methods Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 μM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. Results Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P < 0.05); inhibition of RhoA or ROCK partially reversed the effects of HG. Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P < 0.05). This HG-induced upregulation was attenuated by inhibition of RhoA or ROCK (P < 0.05). HG increased RhoA, ROCK1, and ROCK2 activity (P < 0.05). Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 μM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K+ channels 1.2 and 1.5. Conclusions Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.
Collapse
Affiliation(s)
- Zhijun Sun
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xing Wu
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Weiping Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Hui Peng
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xuhua Shen
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lu Ma
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Huirong Liu
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Hongwei Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
25
|
The Rho kinase inhibitor, fasudil, ameliorates diabetes-induced cardiac dysfunction by improving calcium clearance and actin remodeling. J Mol Med (Berl) 2016; 95:155-165. [PMID: 27576917 DOI: 10.1007/s00109-016-1469-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
Abstract
Previous study showed inhibition of RhoA and Rho kinase (ROCK) activity with fasudil could alleviate diabetes-induced cardiac dysfunction partially due to improvement of myocardial fibrosis. However, the effect of fasudil on intracellular calcium cycling and actin remodeling, both of which are important to regulate excitation-contract coupling, is still not fully elucidated. In this study, a diabetic cardiomyopathy model was induced by a single intraperitoneal injection of streptozotocin (STZ) in male Sprague Dawley rats. Diabetic rats were treated with fasudil or placebo for 8 weeks. We found that long-term administration of fasudil, a specific Rho kinase inhibitor, significantly ameliorated diabetes-induced contractile dysfunction both at cellular and whole organ levels. Fasudil-treated rats displayed improved diastolic intracellular calcium ([Ca2+]i) removal and rescued expression of protein responsible for [Ca2+]i clearance. Furthermore, our study indicated that fasudil treatment normalized the phosphorylation of the PKCβ2/Akt pathway in the diabetic heart, which might be the underlying mechanism accounting for the protective effect of fasudil on [Ca2+]i clearance. In addition, compared to the diabetes group, fasudil also normalized the G/F-actin ratio by preventing cofilin phosphorylation and promoted F-actin organization, suggesting a beneficial effect on actin remodeling. These findings indicate the protective effect of fasudil against diabetes-induced cardiac dysfunction via modulation of Ca2+ handling and actin remodeling. Overactivation of RhoA/ROCK plays a key role in the development of DCM. Inhibition of ROCK activity with fasudil improved [Ca2+]i removal in diabetic cardiomyocytes. Fasudil normalized the G/F-actin ratio and promoted F-actin organization. ROCK may be an excellent therapeutic target for the treatment of DCM. KEY MESSAGE Overactivation of RhoA/ROCK plays a key role in the development of DCM. Inhibition of ROCK activity with fasudil improved [Ca2+]i removal in diabetic cardiomyocytes. Fasudil normalized the G/F-actin ratio and promoted F-actin organization. ROCK may be an excellent therapeutic target for the treatment of DCM.
Collapse
|
26
|
Sanjari N, Pakravan M, Nourinia R, Esfandiari H, Hafezi-Moghadam A, Zandi S, Nakao S, Shah-Heidari MH, Jamali A, Yaseri M, Ahmadieh H. Intravitreal Injection of a Rho-Kinase Inhibitor (Fasudil) for Recent-Onset Nonarteritic Anterior Ischemic Optic Neuropathy. J Clin Pharmacol 2015; 56:749-53. [PMID: 26444290 DOI: 10.1002/jcph.655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 01/20/2023]
Abstract
This study evaluated the effects of intravitreal injection of fasudil (IVF), a Rho-kinase inhibitor, in cases of recent-onset nonarteritic anterior ischemic optic neuropathy (NAION). In this interventional case series, 13 eyes of 13 patients diagnosed with NAION within 14 days of onset were included. The affected eyes received a 0.025 mg/0.05 mL IVF. Functional and structural outcomes were assessed 1 and 3 months following treatment. Best corrected visual acuity (BCVA) was the main outcome measured, with mean deviation (MD) index of the VF test and peripapillary retinal nerve fiber layer thickness as secondary measures. There was a statistically significant improvement in the patients' BCVA 1 and 3 months following IVF; BCVA improved from 1.69 ± 0.55 logMAR at baseline to 0.98 ± 0.47 and 0.93 ± 0.51 logMAR at 1 and 3 months, respectively (P = .004). The change in BCVA was not significant between month 1 and month 3 (P = .22). Peripapillary retinal nerve fiber layer thickness decreased from 173.5 ± 29.28 µm in the baseline evaluation to 85.8 ± 8.8 µm at 1 month, and 62.9 ± 5.97 µm at 3 months (P = .003). MD values changed from 24.60 ± 3.80 to 21.0 ± 6.10 and 20.5 ± 6.50 at 1 and 3 months, respectively (P = .007 and .005, respectively). This pilot study suggests that IVF may be an effective treatment for patients with recent-onset NAION. Larger studies are required to establish the therapeutic role of fasudil for NAION.
Collapse
Affiliation(s)
- Nasrin Sanjari
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Pakravan
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Nourinia
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Esfandiari
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Souska Zandi
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Shintaro Nakao
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Mohamamad-Hassan Shah-Heidari
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arsia Jamali
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Kajikawa M, Noma K, Nakashima A, Maruhashi T, Iwamoto Y, Matsumoto T, Iwamoto A, Oda N, Hidaka T, Kihara Y, Aibara Y, Chayama K, Sasaki S, Kato M, Dote K, Goto C, Liao JK, Higashi Y. Rho-associated kinase activity is an independent predictor of cardiovascular events in acute coronary syndrome. Hypertension 2015; 66:892-9. [PMID: 26283039 PMCID: PMC4989242 DOI: 10.1161/hypertensionaha.115.05587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/25/2015] [Indexed: 11/16/2022]
Abstract
Rho-associated kinases play an important role in a variety of cellular functions. Although Rho-associated kinase activity has been shown to be an independent predictor for future cardiovascular events in a general population, there is no information on Rho-associated kinase activity in patients with acute coronary syndrome. We evaluated leukocyte Rho-associated kinase activity by Western blot analysis in 73 patients with acute coronary syndrome and 73 age- and gender-matched control subjects. Rho-associated kinase activity within 2 hours of acute coronary syndrome onset was higher in patients with acute coronary syndrome than in the control subjects (0.95±0.55 versus 0.69±0.31; P<0.001). Rho-associated kinase activity promptly increased from 0.95±0.55 to 1.11±0.81 after 3 hours and reached a peak of 1.21±0.76 after 1 day (P=0.03 and P=0.03, respectively) and then gradually decreased to 0.83±0.52 after 7 days, 0.78±0.42 after 14 days, and 0.72±0.30 after 6 months (P=0.22, P=0.29, and P=0.12, respectively). During a median follow-up period of 50.8 months, 31 first major cardiovascular events (death from cardiovascular causes, myocardial infarction, ischemic stroke, and coronary revascularization) occurred. After adjustment for age, sex, cardiovascular risk factors, and concomitant treatment with statins, increased Rho-associated kinase activity was associated with increasing risk of first major cardiovascular events (hazard ratio, 4.56; 95% confidence interval, 1.98–11.34; P<0.001). These findings suggest that Rho-associated kinase activity is dramatically changed after acute coronary syndrome and that Rho-associated kinase activity could be a useful biomarker to predict cardiovascular events in Japanese patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Masato Kajikawa
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Kensuke Noma
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Ayumu Nakashima
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Tatsuya Maruhashi
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yumiko Iwamoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Takeshi Matsumoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Akimichi Iwamoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Nozomu Oda
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Takayuki Hidaka
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yasuki Kihara
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yoshiki Aibara
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Kazuaki Chayama
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Shota Sasaki
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Masaya Kato
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Keigo Dote
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Chikara Goto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - James K Liao
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yukihito Higashi
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.).
| |
Collapse
|
28
|
Cheng YT, Yeih DF, Liang SM, Chien CY, Yu YL, Ko BS, Jan YJ, Kuo CC, Sung LY, Shyue SK, Chen MF, Yet SF, Wu KK, Liou JY. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells. Int J Cardiol 2015; 201:441-8. [PMID: 26313863 DOI: 10.1016/j.ijcard.2015.08.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. METHODS Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. RESULTS Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. CONCLUSIONS These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Ya-Ting Cheng
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Dong-Feng Yeih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan; Department of Internal Medicine, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Ying Chien
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ling Yu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Fong Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Metabolomic Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
29
|
Williams LJ, Mukherjee D, Fisher M, Reyes-Aldasoro CC, Akerman S, Kanthou C, Tozer GM. An in vivo role for Rho kinase activation in the tumour vascular disrupting activity of combretastatin A-4 3-O-phosphate. Br J Pharmacol 2015; 171:4902-13. [PMID: 24930520 PMCID: PMC4294113 DOI: 10.1111/bph.12817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose Combretastatin A-4 3-O-phosphate (CA4P) is in clinical trial as a tumour vascular disrupting agent (VDA) but the cause of blood flow disruption is unclear. We tested the hypothesis that activation of Rho/Rho kinase (ROCK) is fundamental to the effects of this drug in vivo. Experimental Approach Mouse models of human colorectal carcinoma (SW1222 and LS174T) were used. Effects of the ROCK inhibitor, Y27632, alone or in combination with CA4P, on ROCK activity, vascular function, necrosis and immune cell infiltration in solid tumours were determined. Mean arterial BP (MABP) was measured to monitor systemic interactions and the vasodilator, hydralazine, was used to control for the hypotensive effects of Y27632. Key Results Y27632 caused a rapid drop in blood flow in SW1222 tumours, with recovery by around 3 h, which was paralleled by MABP changes. Y27632 pretreatment reduced CA4P-induced ROCK activation and partially blocked CA4P-induced tumour vascular effects, in both tumour types. Y27632 also partially inhibited CA4P-induced tumour necrosis and was associated with reduced immune cell infiltration in SW1222 tumours. Hydralazine caused a similar hypotensive effect as Y27632 but had no protective effect against CA4P treatment. Conclusions and Implications These results demonstrate that ROCK activity is critical for full manifestation of the vascular activity of CA4P in vivo, providing the evidence for pharmacological intervention to enhance the anti-tumour efficacy of CA4P and related VDAs.
Collapse
Affiliation(s)
- L J Williams
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, School of Medicine, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Protective Effect and Mechanism of Total Flavones from Rhododendron simsii Planch Flower on Cultured Rat Cardiomyocytes with Anoxia and Reoxygenation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:863531. [PMID: 25861370 PMCID: PMC4377486 DOI: 10.1155/2015/863531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/25/2014] [Accepted: 12/31/2014] [Indexed: 01/08/2023]
Abstract
Many flavonoids have cardioprotection against myocardial ischemia/reperfusion (I/R) injury. Total flavones from Rhododendron simsii Planch flower (TFR) can protect myocardial ischemic injuries. However, its protective mechanism is still unknown. The present study was designed to investigate the mechanism of TFR on myocardial I/R and anoxia/reoxygenation (A/R) injuries. Rat model of myocardial I/R injury was made, and myocardial infarction was determined. A/R injury was induced in cultured rat cardiomyocytes; cellular damage was evaluated by measuring cell viability, LDH and cTnT releases, and MDA content. Expressions of ROCK1 and ROCK2 protein were examined by Western blot analysis, and K+ currents were recorded by using whole-cell patch clamp technique. TFR 20~80 mg/kg markedly reduced I/R-induced myocardial infarction. TFR 3.7~300 mg/L significantly inhibited A/R-induced reduction of cell viability, LDH and cTnT releases, and MDA production. Exposure to A/R significantly increased ROCK1 and ROCK2 expressions in rat cardiomyocytes, but TFR 33.3~300 mg/L obviously inhibited this increase. 300 mg/L TFR significantly augmented inward rectifier K+ current and other K+ currents in rat cardiomyocytes. These results indicate that TFR has a protective effect on rat cardiomyocytes A/R damage, and the protective mechanism may be engaged with the inhibition of ROCK1 and ROCK2 and activation of K+ channels.
Collapse
|
31
|
Peak TC, Yafi FA, Sangkum P, Hellstrom WJG. Emerging drugs for the treatment of erectile dysfunction. Expert Opin Emerg Drugs 2015; 20:263-75. [PMID: 25740087 DOI: 10.1517/14728214.2015.1021682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Erectile dysfunction adversely affects the lives of millions of men, and is the most commonly treated sexual disorder today. The erectile process has been extensively investigated, with major advances made in elucidating many of the complex molecular pathways involved. These advances have allowed researchers to design and study drug formulations that target various aspects of this complex process. The initial culmination of this research was the introduction of phosphodiesterase 5-inhibitors. While effective in many patients, they are not satisfactory for all afflicted men. As a result, researchers are developing novel drugs that target different molecular pathways. AREAS COVERED The paper will review these pathways, and the potential agents that target them. More specifically, first dopaminergic and melanocortin receptor agonists that act centrally will be covered. Then, the paper will examine the "second-generation" phosphodiesterase 5-inhibitors, soluble guanylate cyclases, rho-kinase inhibitors, and maxi-k channel activators that act peripherally. EXPERT OPINION Most of these novel drugs have yet to reach Phase III studies. However, it is likely that in years to come, patients will be selectively treated with these novel agents as a monotherapy or in combination with others acting in a synergistic manner.
Collapse
Affiliation(s)
- Taylor C Peak
- Tulane University School of Medicine , New Orleans, LA , USA
| | | | | | | |
Collapse
|
32
|
Akaihata H, Nomiya M, Hata J, Yabe M, Takahashi N, Haga N, Kushida N, Ishibashi K, Aikawa K, Yamaguchi O, Kojima Y. Pelvic Arterial Occlusive Disease Affects the RhoA/Rho-Kinase Pathway in Bladder Smooth Muscle. J Urol 2015; 193:706-13. [DOI: 10.1016/j.juro.2014.09.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 11/17/2022]
Affiliation(s)
- Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Masanori Nomiya
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Michihiro Yabe
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Norio Takahashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Nobuhiro Haga
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Osamu Yamaguchi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| |
Collapse
|
33
|
Dong M, Ding W, Liao Y, Liu Y, Yan D, Zhang Y, Wang R, Zheng N, Liu S, Liu J. Polydatin prevents hypertrophy in phenylephrine induced neonatal mouse cardiomyocytes and pressure-overload mouse models. Eur J Pharmacol 2014; 746:186-97. [PMID: 25449040 DOI: 10.1016/j.ejphar.2014.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that polydatin (PD), a resveratrol glucoside, may have beneficial actions on the cardiac hypertrophy. Therefore, the current study focused on the underlying mechanism of the PD anti-hypertrophic effect in cultured cardiomyocytes and in progression from cardiac hypertrophy to heart failure in vivo. Experiments were performed on cultured neonatal rat, ventricular myocytes as well as adult mice subjected to transverse aortic constriction (TAC). Treatment of cardiomyocytes with phenylephrine for three days produced a marked hypertrophic effect as evidenced by significantly increased cell surface area and atrial natriuretic peptide (ANP) protein expression. These effects were attenuated by PD in a concentration-dependent manner with a complete inhibition of hypertrophy at the concentration of 50 µM. Phenylephrine increased ROCK activity, as well as intracellular reactive oxygen species production and lipid peroxidation. The oxidizing agent DTDP similarly increased Rho kinase (ROCK) activity and induced hypertrophic remodeling. PD treatment inhibited phenylephrine-induced oxidative stress and consequently suppressed ROCK activation in cardiomyocytes. Hypertrophic remodeling and heart failure were demonstrated in mice subjected to 13 weeks of TAC. Upregulation of ROCK signaling pathway was also evident in TAC mice. PD treatment significantly attenuated the increased ROCK activity, associated with a markedly reduced hypertrophic response and improved cardiac function. Our results demonstrated a robust anti-hypertrophic remodeling effect of polydatin, which is mediated by inhibition of reactive oxygen species dependent ROCK activation.
Collapse
Affiliation(s)
- Ming Dong
- Medical College, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Wenwen Ding
- Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Yansong Liao
- Cardiology Division, Department of Medicine, The University of Hongkong, Hong Kong, China
| | - Ye Liu
- Department of Anatomy, Hebei Medical University, Hebei 050017, China
| | - Dewen Yan
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518060, China
| | - Yi Zhang
- Medical College, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Rongming Wang
- Medical College, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Na Zheng
- Medical College, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shuaiye Liu
- Medical College, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Jie Liu
- Medical College, Shenzhen University, Shenzhen 518000, Guangdong, China.
| |
Collapse
|
34
|
Huang Y, Chen JB, Yang B, Shen H, Liang JJ, Luo Q. RhoA/ROCK pathway regulates hypoxia-induced myocardial cell apoptosis. ASIAN PAC J TROP MED 2014; 7:884-8. [DOI: 10.1016/s1995-7645(14)60154-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/10/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022] Open
|
35
|
Lauriol J, Keith K, Jaffré F, Couvillon A, Saci A, Goonasekera SA, McCarthy JR, Kessinger CW, Wang J, Ke Q, Kang PM, Molkentin JD, Carpenter C, Kontaridis MI. RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci Signal 2014; 7:ra100. [PMID: 25336613 DOI: 10.1126/scisignal.2005262] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kimberly Keith
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Anthony Couvillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Abdel Saci
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chase W Kessinger
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jianxun Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Qingen Ke
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | | | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
He K, Yan L, Pan CS, Liu YY, Cui YC, Hu BH, Chang X, Li Q, Sun K, Mao XW, Fan JY, Han JY. ROCK-dependent ATP5D modulation contributes to the protection of notoginsenoside NR1 against ischemia-reperfusion-induced myocardial injury. Am J Physiol Heart Circ Physiol 2014; 307:H1764-76. [PMID: 25305180 DOI: 10.1152/ajpheart.00259.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac ischemia-reperfusion (I/R) injury remains a challenge for clinicians, which initiates with energy metabolism disorder. The present study was designed to investigate the protective effect of notoginsenoside R1 (NR1) on I/R-induced cardiac injury and underlying mechanism. Male Sprague-Dawley rats were subjected to 30-min occlusion of the left coronary anterior descending artery followed by reperfusion with or without NR1 pretreatment (5 mg·kg(-1)·h(-1)). In vitro, H9c2 cells were cultured under oxygen and glucose deprivation/reoxygenation conditions after NR1 (0.1 mM), Rho kinase (ROCK) inhibitor Y-27632 (10 μM), or RhoA/ROCK activator U-46619 (10 nM) administration. Myocardial infarct size, myocardial histology, and cardiac function were evaluated. Myofibril and mitochondria morphology were observed by transmission electron microscopy. F-actin and apoptosis were determined by immunofluorescence and TUNEL staining. ATP and AMP content were assessed by ELISA. Phosphorylated-AMP-activated protein kinase, ATP synthase subunits, apoptosis-related molecules, and the level and activity of ROCK were determined by Western blot analysis. We found that NR1 pretreatment ameliorated myocardial infarction, histological injury, and cardiac function induced by I/R. Furthermore, similar to the effect of Y-27632, NR1 improved H9c2 cell viability, maintained actin skeleton and mitochondria morphology, and attenuated apoptosis induced by oxygen and glucose deprivation/reoxygenation. Importantly, NR1 prevented energy abnormity, inhibited the expression and activation of ROCK, and restored the expression of the mitochondrial ATP synthase δ-subunit both in vivo and in vitro, whereas U-46619 suppressed the effect of NR1. These results prove NR1 as an agent able to prevent I/R-induced energy metabolism disorder via inhibiting ROCK and enhancing mitochondrial ATP synthase δ-subunits, which at least partially contributes to its protection against cardiac I/R injury.
Collapse
Affiliation(s)
- Ke He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Yuan-Chen Cui
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xiao-Wei Mao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; and Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| |
Collapse
|
37
|
Wu N, Li W, Shu W, Lv Y, Jia D. Inhibition of Rho-kinase by fasudil restores the cardioprotection of ischemic postconditioninng in hypercholesterolemic rat heart. Mol Med Rep 2014; 10:2517-24. [PMID: 25231456 DOI: 10.3892/mmr.2014.2566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 07/09/2014] [Indexed: 11/06/2022] Open
Abstract
Ischemic postconditioning (IPoC) reduces lethal reperfusion injury under normal conditions, but its effectiveness is blocked by hypercholesterolemia. The present study aimed to determine whether the inhibition of Rho‑kinase by fasudil restores the cardioprotection of IPoC in the hypercholesterolemic rat heart, and to elucidate the potential mechanisms underlying this process. The isolated rat hearts underwent 30 min global ischemia and 120 min reperfusion. IPoC was induced by six cycles of 10 sec ischemia and 10 sec reperfusion at the onset of the reperfusion. Fasudil was administered 15 min prior to ischemia, and wortmannin and L‑NAME were administered following IPoC. The myocardial infarct size, apoptosis, myocardial nitric oxide (NO) content and Rho‑kinase activity, as well as the activation of the phosphatidylinositol 3‑kinase/Akt/endothelial nitric oxide synthase (PI3K/Akt/eNOS) pathway, were examined. The results revealed that IPoC and 1 µM fasudil treatment alone failed to reduce the infarct size and apoptosis rate. However, IPoC combined with 1 µM fasudil treatment or 10 µM fasudil treatment alone restored the cardioprotection as evidenced by the decreasing in infarct size and apoptosis rate, whereas it was blocked by the administration of wortmannin or L‑NAME. Furthermore, IPoC combined with 1 µM fasudil treatment also enhanced the phosphorylation of Akt and eNOS and conferred a significant increase in the content of NO. By contrast, no significant improvements were demonstrated in the phosphorylation of Akt and eNOS, as well as myocardial NO content when treated with 1 µM fasudil and IPoC alone. The inhibition of Rho‑kinase by fasudil was able to restore the cardioprotection of IPoC in the hypercholesterolemic rat heart. The underlying mechanisms involved in this process appear to be mediated by the activation of the PI3K/Akt/eNOS signal pathway and an increase in the myocardial NO content.
Collapse
Affiliation(s)
- Nan Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenna Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenqi Shu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Lv
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Toque HA, Caldwell RW. New approaches to the design and discovery of therapies to prevent erectile dysfunction. Expert Opin Drug Discov 2014; 9:1447-69. [DOI: 10.1517/17460441.2014.949234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Kiss A, Tratsiakovich Y, Gonon AT, Fedotovskaya O, Lanner JT, Andersson DC, Yang J, Pernow J. The role of arginase and rho kinase in cardioprotection from remote ischemic perconditioning in non-diabetic and diabetic rat in vivo. PLoS One 2014; 9:e104731. [PMID: 25140754 PMCID: PMC4139318 DOI: 10.1371/journal.pone.0104731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background Pharmacological inhibition of arginase and remote ischemic perconditioning (RIPerc) are known to protect the heart against ischemia/reperfusion (IR) injury. Purpose The objective of this study was to investigate whether (1) peroxynitrite-mediated RhoA/Rho associated kinase (ROCK) signaling pathway contributes to arginase upregulation following myocardial IR; (2) the inhibition of this pathway is involved as a cardioprotective mechanism of remote ischemic perconditioning and (3) the influence of diabetes on these mechanisms. Methods Anesthetized rats were subjected to 30 min left coronary artery ligation followed by 2 h reperfusion and included in two protocols. In protocol 1 rats were randomized to 1) control IR, 2) RIPerc induced by bilateral femoral artery occlusion for 15 min during myocardial ischemia, 3) RIPerc and administration of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), 4) administration of the ROCK inhibitor hydroxyfasudil or 5) the peroxynitrite decomposition catalyst FeTPPS. In protocol 2 non-diabetic and type 1 diabetic rats were randomosed to IR or RIPerc as described above. Results Infarct size was significantly reduced in rats treated with FeTPPS, hydroxyfasudil and RIPerc compared to controls (P<0.001). FeTPPS attenuated both ROCK and arginase activity (P<0.001 vs. control). Similarly, RIPerc reduced arginase and ROCK activity, peroxynitrite formation and enhanced phospho-eNOS expression (P<0.05 vs. control). The cardioprotective effect of RIPerc was abolished by L-NMMA. The protective effect of RIPerc and its associated changes in arginase and ROCK activity were abolished in diabetes. Conclusion Arginase is activated by peroxynitrite/ROCK signaling cascade in myocardial IR. RIPerc protects against IR injury via a mechanism involving inhibition of this pathway and enhanced eNOS activation. The beneficial effect and associated molecular changes of RIPerc is abolished in type 1 diabetes.
Collapse
Affiliation(s)
- Attila Kiss
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian T. Gonon
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Olga Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C. Andersson
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Yu ZY, Tan JC, McMahon AC, Iismaa SE, Xiao XH, Kesteven SH, Reichelt ME, Mohl MC, Smith NJ, Fatkin D, Allen D, Head SI, Graham RM, Feneley MP. RhoA/ROCK signaling and pleiotropic α1A-adrenergic receptor regulation of cardiac contractility. PLoS One 2014; 9:e99024. [PMID: 24919197 PMCID: PMC4053326 DOI: 10.1371/journal.pone.0099024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/09/2014] [Indexed: 11/18/2022] Open
Abstract
Aims To determine the mechanisms by which the α1A-adrenergic receptor (AR) regulates cardiac contractility. Background We reported previously that transgenic mice with cardiac-restricted α1A-AR overexpression (α1A-TG) exhibit enhanced contractility but not hypertrophy, despite evidence implicating this Gαq/11-coupled receptor in hypertrophy. Methods Contractility, calcium (Ca2+) kinetics and sensitivity, and contractile proteins were examined in cardiomyocytes, isolated hearts and skinned fibers from α1A-TG mice (170-fold overexpression) and their non-TG littermates (NTL) before and after α1A-AR agonist stimulation and blockade, angiotensin II (AngII), and Rho kinase (ROCK) inhibition. Results Hypercontractility without hypertrophy with α1A-AR overexpression is shown to result from increased intracellular Ca2+ release in response to agonist, augmenting the systolic amplitude of the intracellular Ca2+ concentration [Ca2+]i transient without changing resting [Ca2+]i. In the absence of agonist, however, α1A-AR overexpression reduced contractility despite unchanged [Ca2+]i. This hypocontractility is not due to heterologous desensitization: the contractile response to AngII, acting via its Gαq/11-coupled receptor, was unaltered. Rather, the hypocontractility is a pleiotropic signaling effect of the α1A-AR in the absence of agonist, inhibiting RhoA/ROCK activity, resulting in hypophosphorylation of both myosin phosphatase targeting subunit 1 (MYPT1) and cardiac myosin light chain 2 (cMLC2), reducing the Ca2+ sensitivity of the contractile machinery: all these effects were rapidly reversed by selective α1A-AR blockade. Critically, ROCK inhibition in normal hearts of NTLs without α1A-AR overexpression caused hypophosphorylation of both MYPT1 and cMLC2, and rapidly reduced basal contractility. Conclusions We report for the first time pleiotropic α1A-AR signaling and the physiological role of RhoA/ROCK signaling in maintaining contractility in the normal heart.
Collapse
Affiliation(s)
- Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ju-Chiat Tan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Aisling C. McMahon
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Xiao-Hui Xiao
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | | | - Marion C. Mohl
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Nicola J. Smith
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - David Allen
- Physiology Department, University of Sydney, Sydney, Australia
| | - Stewart I. Head
- Physiology Department, University of New South Wales, Sydney, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Michael P. Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
41
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
42
|
Monceau V, Llach A, Azria D, Bridier A, Petit B, Mazevet M, Strup-Perrot C, To THV, Calmels L, Germaini MM, Gourgou S, Fenoglietto P, Bourgier C, Gomez AM, Escoubet B, Dörr W, Haagen J, Deutsch E, Morel E, Vozenin MC. Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis. Radiother Oncol 2014; 111:63-71. [PMID: 24721545 DOI: 10.1016/j.radonc.2014.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/06/2014] [Accepted: 01/28/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. METHODS The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. RESULTS In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca(2+) transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. CONCLUSION Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart.
Collapse
Affiliation(s)
- Virginie Monceau
- INSERM U1030, LabEx LERMIT, Villejuif, France; Faculté de Médecine Paris-Sud, Université Paris-Sud 11, Le Kremlin-Bicêtre, France
| | - Anna Llach
- INSERM U769, IFR141, LabEx LERMIT, Faculté de Pharmacie, Châtenay-Malabry, France
| | - David Azria
- Department of Radiation Oncology, CRLC Val d'Aurelle, Montpellier, France
| | - André Bridier
- Département de radiothérapie, Institut Gustave Roussy, Villejuif, France
| | - Benoît Petit
- INSERM U1030, LabEx LERMIT, Villejuif, France; Faculté de Médecine Paris-Sud, Université Paris-Sud 11, Le Kremlin-Bicêtre, France
| | - Marianne Mazevet
- INSERM U769, IFR141, LabEx LERMIT, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | - Thi-Hong-Van To
- INSERM U1030, LabEx LERMIT, Villejuif, France; Faculté de Médecine Paris-Sud, Université Paris-Sud 11, Le Kremlin-Bicêtre, France
| | - Lucie Calmels
- Département de radiothérapie, Institut Gustave Roussy, Villejuif, France
| | | | - Sophie Gourgou
- Department of Radiation Oncology, CRLC Val d'Aurelle, Montpellier, France
| | - Pascal Fenoglietto
- Department of Radiation Oncology, CRLC Val d'Aurelle, Montpellier, France
| | - Céline Bourgier
- INSERM U1030, LabEx LERMIT, Villejuif, France; Department of Radiation Oncology, CRLC Val d'Aurelle, Montpellier, France; Département de radiothérapie, Institut Gustave Roussy, Villejuif, France
| | - Ana-Maria Gomez
- INSERM U769, IFR141, LabEx LERMIT, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Brigitte Escoubet
- Département de Physiologie, Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France; Université Paris Diderot, France; INSERM U872, Paris, France
| | - Wolfgang Dörr
- Department of Radiotherapy and Radiation Oncology, Technical University, Dresden, Germany; Department of Radiation Oncology & Christian Doppler Laboratory for Medical Radiation Research in Radiooncology Medical University, Vienna, Austria
| | - Julia Haagen
- Department of Radiotherapy and Radiation Oncology, Technical University, Dresden, Germany
| | - Eric Deutsch
- INSERM U1030, LabEx LERMIT, Villejuif, France; Faculté de Médecine Paris-Sud, Université Paris-Sud 11, Le Kremlin-Bicêtre, France; Département de radiothérapie, Institut Gustave Roussy, Villejuif, France
| | - Eric Morel
- INSERM U769, IFR141, LabEx LERMIT, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Marie Catherine Vozenin
- INSERM U1030, LabEx LERMIT, Villejuif, France; Faculté de Médecine Paris-Sud, Université Paris-Sud 11, Le Kremlin-Bicêtre, France; Laboratoire de Radio-oncologie, CHUV, Lausanne, Switzerland.
| |
Collapse
|
43
|
Rho-kinase activation in leukocytes plays a pivotal role in myocardial ischemia/reperfusion injury. PLoS One 2014; 9:e92242. [PMID: 24638037 PMCID: PMC3956925 DOI: 10.1371/journal.pone.0092242] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/19/2014] [Indexed: 01/28/2023] Open
Abstract
The Rho/Rho-kinase pathway plays an important role in many cardiovascular diseases such as hypertension, atherosclerosis, heart failure, and myocardial infarction. Although previous studies have shown that Rho-kinase inhibitors reduce ischemia/reperfusion (I/R) injury and cytokine production, the role of Rho-kinase in leukocytes during I/R injury is not well understood. Mice were subjected to 30-min ischemia and reperfusion. Rho-kinase activity was significantly greater in leukocytes subjected to myocardial I/R compared to the sham-operated mice. Administration of fasudil, a Rho-kinase inhibitor, significantly reduced the I/R-induced expression of the proinflammatory cytokines interleukin (IL)-6, C-C motif chemoattractant ligand 2 (CCL2), and tumor necrosis factor (TNF)-α, in leukocytes, compared with saline as the vehicle. Furthermore, fasudil decreased I/R-induced myocardial infarction/area at risk (IA) and I/R-induced leukocyte infiltration in the myocardium. Interestingly, IA in fasudil-administered mice with leukocyte depletion was similar to that in fasudil-administered mice. I/R also resulted in remarkable increases in the mRNA expression levels of the proinflammatory cytokines TNF-α, IL-6, and CCL2 in the heart. Inhibition of Rho-kinase activation in leukocytes has an important role in fasudil-induced cardioprotective effects. Hence, inhibition of Rho-kinase may be an additional therapeutic intervention for the treatment of acute coronary syndrome.
Collapse
|
44
|
Fan Y, Yang S, Cao Y, Huang Y. Effects of acute and chronic atorvastatin on cardioprotection of ischemic postconditioning in isolated rat hearts. Cardiovasc Ther 2014; 31:187-92. [PMID: 22954178 DOI: 10.1111/j.1755-5922.2012.00318.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Myocardial reperfusion therapy remains the most effective strategy to limit infarct size and improve clinical outcome. However, reperfusion injury is still inevitable, and a number of strategies have been developed to ameliorate its lethal outcome. The beneficial roles of ischemic postconditioning (Ipost) have regained more interest in targeting myocardial reperfusion phase to improve cardioprotection. AIMS This study was to determine whether acute or chronic treatment with atorvastatin affects cardioprotection when it was combined with Ipost. RESULTS Acute or chronic atorvastatin treatment significantly reduced infarct size and recovered contractile dysfunction during reperfusion. When Ipost was combined with atorvastatin treatment, chronic, but not acute, atorvastatin therapy attenuated the cardioprotective effects of Ipost. Chronic, but not acute, atorvastatin treatment also abolished Ipost-induced phosphorylation level of Akt and endothelial nitric oxide synthase (eNOS). CONCLUSIONS Chronic atorvastatin treatment could interfere with cardioprotective effects of Ipost on limiting infarct size and contractile dysfunction, possibly via inhibition of Akt and eNOS activity. This study suggests that Ipost should be used carefully when atorvastatin is taken by patients with AMI.
Collapse
Affiliation(s)
- Ying Fan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | | | | | | |
Collapse
|
45
|
Bice JS, Burley DS, Baxter GF. Novel approaches and opportunities for cardioprotective signaling through 3',5'-cyclic guanosine monophosphate manipulation. J Cardiovasc Pharmacol Ther 2014; 19:269-82. [PMID: 24572031 DOI: 10.1177/1074248413518971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Limiting the injurious effects of myocardial ischemia-reperfusion is a desirable therapeutic target, which has been investigated extensively over the last three decades. Here we provide an up to date review of the literature documenting the experimental and clinical research demonstrating the effects of manipulating cGMP for the therapeutic targeting of the injurious effects of ischemic heart disease. Augmentation of the cyclic nucleotide cGMP plays a crucial role in many cardioprotective signaling pathways. There is an extensive body of literature which supports pharmacological targeting of cGMP or upstream activators in models of ischemia-reperfusion to limit injury. NO donors have long been utilised to manipulate cGMP, and more recently non-NO synthase derived NOx species have been investigated, resulting in their evaluation in clinical trials for the treatment of ischemic heart disease. Encouraging results demonstrate that natriuretic peptides are worthy candidates in manipulating cGMP and its downstream effectors to afford cytoprotection. Synthetic ligands have been designed which co-activate natriuretic peptide receptors to improve targeting this pathway. Advances have been made in targeting the soluble guanylyl cyclase which catalyzes the production of cGMP independently of the endogenous ligand NO using NO-independent stimulators and activators of sGC. These novel compounds show promise as a new class of drugs that target this signaling cascade specifically under pathological conditions when endogenous NO production may be compromised. Regulating the degradation of cGMP via phosphodiesterase inhibition also shows therapeutic potential. It is clear that production and regulation of cGMP is complex, indeed its spatial production and cellular distribution are only just emerging.
Collapse
Affiliation(s)
- Justin S Bice
- 1School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
46
|
Hadi NR, Al-amran F, Yousif M, Zamil ST. Antiapoptotic effect of simvastatin ameliorates myocardial ischemia/reperfusion injury. ISRN PHARMACOLOGY 2013; 2013:815094. [PMID: 24455299 PMCID: PMC3880747 DOI: 10.1155/2013/815094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/18/2013] [Indexed: 06/03/2023]
Abstract
Background. Myocardial ischemial reperfusion represents a clinically relevant problem associated with thrombolysis, angioplasty, and coronary bypass surgery. Injury of myocardium due to ischemial reperfusion includes cardiac contractile dysfunction, arrhythmias, and irreversible myocytes damage. These changes are considered to be the consequence of imbalance between the formation of oxidants and the availability of endogenous antioxidants in the heart. Objective. This study was undertaken to investigate the potential role of Simvastatin in the amelioration of myocardial I/R injury induced by ligation of coronary artery in a rat model. Materials and Methods. Adult male Swiss Albino rats were randomized into 4 equal groups. Group (1): sham group: rats underwent the same anesthetic and surgical procedures as those in the control group except ligation of LAD coronary artery, group (2): control group: rats were subjected to regional ischemia for 25 min and reperfusion for 2 hours by ligation of LAD coronary artery, group (3): control vehicle group: rats received vehicle of Simvastatin (normal saline) via IP injection and were subjected to regional ischemia for 25 min and reperfusion for 2 hours by ligation of LAD coronary artery, group (4): Simvastatin treated group: rats were pretreated with Simvastatin 1 mg/kg i.p. 1 hr before ligation of LAD coronary artery. At the end of experiment (2 hr of reperfusion), blood samples were collected from the heart for the measurement of plasma level of cardiac troponin I (cTnI). After that the heart was harvested and divided into 3 parts; one part was used for measurement of apoptosis, another part was homogenized for the measurement of tissue tumor necrosis factor- α (TNF- α ), interleukin-1 β (IL-1 β ), interleukin-6, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1 α , and the last part for histopathology study. Results. Compared with the sham group, levels of myocardial TNF- α and IL-1 β , IL-6, MCP-1, and MIP-1 α and plasma cTnI were increased (P < 0.05). Histologically, all rats in control group showed significant (P < 0.05) cardiac injury. Furthermore, all rats in control group showed significant (P < 0.05) apoptosis. Simvastatin significantly counteracted the increase in myocardium level of TNF- α , IL-1B, IL-6, MCP-1 and MIP-1 α , plasma cTnI, and apoptosis (P < 0.05). Histological analysis revealed that Simvastatin markedly reduced (P < 0.05) the severity of heart injury in the rats that underwent LAD ligation procedure. Conclusions. The results of the present study reveal that Simvastatin may ameliorate myocardial I/R injury in rats via interfering with inflammatory reactions and apoptosis which were induced by I/R injury.
Collapse
Affiliation(s)
- Najah R. Hadi
- Pharmacological Department, Medical College, Kufa University, Iraq
| | - Fadhil Al-amran
- Cardiothoracic Surgical Department, College of Medicine, Kufa University, Iraq
| | - Maitham Yousif
- Biology Department, College of Science, Al-Qadisiyah University, Al-Qadisiyyah, Iraq
| | - Suhaad T. Zamil
- Pharmacological Department, Medical College, Kufa University, Iraq
| |
Collapse
|
47
|
Sari AN, Kacan M, Unsal D, Sahan Firat S, Kemal Buharalioglu C, Vezir O, Korkmaz B, Cuez T, Canacankatan N, Sucu N, Ayaz L, Tamer Gumus L, Gorur A, Tunctan B. Contribution of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway to ischemia/reperfusion-induced oxidative/nitrosative stress and inflammation leading to distant and target organ injury in rats. Eur J Pharmacol 2013; 723:234-45. [PMID: 24296316 DOI: 10.1016/j.ejphar.2013.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/26/2022]
Abstract
The small G protein RhoA and its downstream effector Rho-kinase play an important role in various physiopathological processes including ischemia/reperfusion (I/R) injury. Reactive oxygen and nitrogen species produced by iNOS and NADPH oxidase are important mediators of inflammation and organ injury following an initial localized I/R event. The aim of this study was to determine whether RhoA/Rho-kinase signaling pathway increases the expression and activity of MEK1, ERK1/2, iNOS, gp91(phox), and p47(phox), and peroxynitrite formation which result in oxidative/nitrosative stress and inflammation leading to hindlimb I/R-induced injury in kidney as a distant organ and gastrocnemius muscle as a target organ. I/R-induced distant and target organ injury was performed by using the rat hindlimb tourniquet model. I/R caused an increase in the expression and/or activity of RhoA, MEK1, ERK1/2, iNOS, gp91(phox), p47(phox), and 3-nitrotyrosine and nitrotyrosine levels in the tissues. Although Rho-kinase activity was increased by I/R in the kidney, its activity was decreased in the muscle. Serum and tissue MDA levels and MPO activity were increased following I/R. I/R also caused an increase in SOD and catalase activities associated with decreased GSH levels in the tissues. Y-27632, a selective Rho-kinase inhibitor, (100µg/kg, i.p.; 1h before reperfusion) prevented the I/R-induced changes except Rho-kinase activity in the muscle. These results suggest that activation of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway associated with oxidative/nitrosative stress and inflammation contributes to hindlimb I/R-induced distant organ injury in rats. It also seems that hindlimb I/R induces target organ injury via upregulation of RhoA/MEK1/ERK1/2/iNOS pathway associated with decreased Rho-kinase activity.
Collapse
Affiliation(s)
- A Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Meltem Kacan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Demet Unsal
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Seyhan Sahan Firat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - C Kemal Buharalioglu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Ozden Vezir
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Belma Korkmaz
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Tuba Cuez
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Necmiye Canacankatan
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lokman Ayaz
- Department of Medicinal Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lulufer Tamer Gumus
- Department of Medicinal Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Aysegul Gorur
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey.
| |
Collapse
|
48
|
Wu N, Zhang X, Jia D. High‑dose fasudil preconditioning and postconditioning attenuate myocardial ischemia‑reperfusion injury in hypercholesterolemic rats. Mol Med Rep 2013; 9:560-6. [PMID: 24271017 DOI: 10.3892/mmr.2013.1818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/15/2013] [Indexed: 11/06/2022] Open
Abstract
Fasudil may induce preconditioning and postconditioning against myocardial ischemia‑reperfusion injury in normal rats, however, their effectivenesses in hypercholesterolemia remains to be determined. The study aimed to investigate whether fasudil induces preconditioning and postconditioning in hypercholesterolemic rats and to determine the roles of the phosphoinositol 3‑kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) pathway and mitochondrial KATP (m‑KATP) channels in this process. Isolated rat hearts underwent 30 min global ischemia and 120 min reperfusion. Low‑ (1 mg/kg) or high‑dose (10 mg/kg) fasudil was administered 15 min prior to ischemia and at the initial onset of reperfusion. 5‑Hydroxydecanoic acid (5HD), an m‑KATP channel blocker, at 10 mg/kg was administered 5 min prior to reperfusion. Myocardial infarct size was estimated by 2,3,5‑triphenyltetrazolium chloride (TTC) staining and lactate dehydrogenase (LDH) and creatine kinase‑MB (CK‑MB) were analyzed from coronary effluents. Phosphorylation of Akt and eNOS was measured by immunoblotting. High‑dose fasudil‑induced preconditioning and postconditioning significantly reduced infarct size and the release of LDH and CK‑MB and increased the phosphorylation of Akt and eNOS compared with the control group, whereas low‑dose fasudil did not exert these beneficial effects. In addition, the cardioprotection of high‑dose fasudil‑induced preconditioning and postconditioning are blocked by 5HD. Low‑dose fasudil‑induced preconditioning and postconditioning are abrogated by hypercholesterolemia, while high‑dose fasudil restores the cardioprotection, which is involved in upregulation of the PI3K/Akt/eNOS pathway and inducing the opening of the m‑KATP channel.
Collapse
Affiliation(s)
- Nan Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaowen Zhang
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
49
|
Guo J, Wang SB, Yuan TY, Wu YJ, Yan Y, Li L, Xu XN, Gong LL, Qin HL, Fang LH, Du GH. Coptisine protects rat heart against myocardial ischemia/reperfusion injury by suppressing myocardial apoptosis and inflammation. Atherosclerosis 2013; 231:384-91. [PMID: 24267256 DOI: 10.1016/j.atherosclerosis.2013.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 09/12/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Protecting the heart from myocardial ischemia and reperfusion (I/R) damage is the focus of intense research. Coptisine is an isoquinoline alkaloid isolated from Coptidis Rhizoma. The present study investigated the potential effect of coptisine on myocardial I/R damage in rats and the underlying mechanisms. METHODS AND RESULTS Electrocardiogram examination showed that the administration of coptisine 10 min before ischemia significantly decreased I/R-induced arrhythmia after 30 min ischemia followed by 3 h reperfusion. The release of cardiac markers was also limited. Echocardiography was performed before ischemia and 24 h post-I/R, separately. The M-mode records showed that the reductions of ejection fraction (EF) and fractional shortening (FS) were attenuated in coptisine-treated rats compared with the I/R rats. Similar results were obtained with Evans Blue/triphenyl tetrazolium chloride (TTC) staining, in which coptisine notably reduced infarct size. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated coptisine suppressed myocardial apoptosis, which may be related to the upregulation of Bcl-2 protein and inhibition of caspase-3 activation. Coptisine treatment also attenuated the proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in heart tissue. Additionally, Western blot and immunohistochemical analysis showed that coptisine markedly reduced Rho, Rho-kinase 1 (ROCK1), and ROCK2 expression and attenuated the phosphorylation of myosin phosphatase targeting subunit-1, a downstream target of ROCK. CONCLUSIONS Coptisine exerts pronounced cardioprotection in rats subjected to myocardial I/R likely through suppressing myocardial apoptosis and inflammation by inhibiting the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|