1
|
Ngo L, Knothe Tate ML. A spike in circulating cytokines TNF-α and TGF-β alters barrier function between vascular and musculoskeletal tissues. Sci Rep 2023; 13:9119. [PMID: 37277369 DOI: 10.1038/s41598-023-30322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/21/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular transport between the circulatory and musculoskeletal systems regulates articular joint physiology in health and disease. Osteoarthritis (OA) is a degenerative joint disease linked to systemic and local inflammation. Inflammatory events involve cytokines, which are secreted by cells of the immune system and modulate molecular transport across tissue interfaces (referred to as tight junction [TJ] barrier function). In a previous study from our group, OA knee joint tissues were shown to exhibit size separation of different sized molecules delivered as a single bolus to the heart (Ngo et al. in Sci. Rep. 8:10254, 2018). Here, in a follow up study of parallel design, we test the hypothesis that two common cytokines, with multifaceted roles in the etiology of osteoarthritis as well as immune state in general, modulate the barrier function properties of joint tissue interfaces. Specifically, we probe the effect of an acute cytokine increase (spike) on molecular transport within tissues and across tissue interfaces of the circulatory and musculoskeletal systems. A single bolus of fluorescent-tagged 70 kDa dextran, was delivered intracardially, either alone, or with either the pro-inflammatory cytokine TNF-α or the anti-inflammatory cytokine TGF-β, to skeletally mature (11 to 13-month-old) guinea pigs (Dunkin-Hartley, a spontaneous OA animal model). After five minutes' circulation, whole knee joints were serial sectioned and fluorescent block face cryo-imaged at near-single-cell resolution. The 70 kDa fluorescent-tagged tracer is analogous in size to albumin, the most prevalent blood transporter protein, and quantification of tracer fluorescence intensity gave a measure of tracer concentration. Within five minutes, a spike (acute doubling) in circulating cytokines TNF-α or TGF-β significantly disrupted barrier function between the circulatory and musculoskeletal systems, with barrier function essentially abrogated in the TNF-α group. In the entire volume of the joint (including all tissue compartments and the bounding musculature), tracer concentration was significantly decreased in the TGF-β- and TNF-α- compared to the control-group. These studies implicate inflammatory cytokines as gatekeepers for molecular passage within and between tissue compartments of our joints and may open new means to delay the onset and mitigate the progression of degenerative joint diseases such as OA, using pharmaceutical and/or physical measures.
Collapse
Affiliation(s)
- Lucy Ngo
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute, New South Wales, Australia.
| |
Collapse
|
2
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Sivaraman K, Shanthi C. Purified fish skin collagen hydrolysate attenuates TNF-α induced barrier dysfunction in-vitro and DSS induced colitis in-vivo model. Int J Biol Macromol 2022; 222:448-461. [PMID: 36116587 DOI: 10.1016/j.ijbiomac.2022.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Inflammatory mediators are key components in establishing pathogenesis in inflammatory bowel disease. Balanced expression of anti-inflammatory and pro-inflammatory cytokines is an important cue in maintaining gut native and adaptive immunity. In the present study, purified hydrolysate fraction of fish skin collagen from Clarias batrachus and Pangasius pangasius was evaluated as a treatment agent against TNF-α induced barrier dysfunction in Caco-2 cell line model and DSS induced colitis in mice model. Cell adhesion on purified hydrolysate fraction coated surfaces was found to be enhanced with increasing concentration in both Clarias batrachus and Pangasius pangasius. Alkaline phosphatase activity was enhanced in a concentration-dependent manner. The paracellular permeability assay demonstrated that Pangasius pangasius purified hydrolysate fraction had countered TNF-α induced barrier dysfunction. Analysis of the tight junction proteins (occludin, zonulae occluden, and claudin) by RT PCR, immunofluorescence, and western blot, further confirmed the effectiveness of Pangasius pangasius purified hydrolysate fraction against TNF-α. The Pangasius pangasius purified hydrolysate fraction was further evaluated for efficacy in DSS-induced colitis mice model. Two concentration of Pangasius pangasius purified hydrolysate was chosen based on in-vitro experiments, 80 μg/kg and 200 μg/kg BW of Balb/C male mice administered through intra-rectal route along with fish skin collagen 80 μg/kg BW. Pangasius pangasius purified hydrolysate fraction treatment improved the clinical signs of colitis such as body weight, rectal bleeding, colon length, and stool consistency caused by DSS administration. Immunofluorescence of colon tissue section showed that Pangasius pangasius purified hydrolysate fraction enhanced the expression of occludin protein. This study hints at the use of Pangasius pangasius purified hydrolysate fraction as a potential nutraceutical or treatment agent in healing ulcers of the mucosa.
Collapse
Affiliation(s)
- K Sivaraman
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - C Shanthi
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
4
|
Haydar D, Gonzalez R, Garvy BA, Garneau-Tsodikova S, Thamban Chandrika N, Bocklage TJ, Feola DJ. Myeloid arginase-1 controls excessive inflammation and modulates T cell responses in Pseudomonas aeruginosa pneumonia. Immunobiology 2020; 226:152034. [PMID: 33278710 DOI: 10.1016/j.imbio.2020.152034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Regulatory properties of macrophages associated with alternative activation serve to limit the exaggerated inflammatory response during pneumonia caused by Pseudomonas aeruginosa infection. Arginase-1 is an important effector of these macrophages believed to play an essential role in decreasing injury and promoting repair. We investigated the role of arginase-1 in the control of inflammatory immune responses to P. aeruginosa pneumonia in mice that exhibit different immunologic phenotypes. C57BL/6 mice with conditional knockout of the arginase-1 (Arg1) gene from myeloid cells (Arg1ΔM) or BALB/c mice treated with small molecule inhibitors of arginase were infected intratracheally with P. aeruginosa. Weight loss, mortality, bacterial clearance, and lung injury were assessed and compared, as were the characterization of immune cell populations over time post-infection. Myeloid arginase-1 deletion resulted in greater morbidity along with more severe inflammatory responses compared to littermate control mice. Arg1ΔM mice had greater numbers of neutrophils, macrophages, and lymphocytes in their airways and lymph nodes compared to littermate controls. Additionally, Arg1ΔM mice recovered from inflammatory lung injury at a significantly slower rate. Conversely, treatment of BALB/c mice with the arginase inhibitor S-(2-boronoethyl)-l-cysteine hydrochloride (BEC) did not change morbidity as defined by weight loss, but mice at day 10 post-infection treated with BEC had gained significantly more weight back than controls. Neutrophil and macrophage infiltration were similar between groups in the lung parenchyma, and neutrophil migration into the airways was reduced by BEC treatment. Differences seem to lie in the impact on T cell subset disposition. Arg1ΔM mice had increased total CD4+ T cell expansion in the lymph nodes, and increased T cell activation, IFNγ production, and IL-17 production in the lymph nodes, lung interstitium, and airways, while treatment with BEC had no impact on T cell activation or IL-17 production, but reduced the number of T cells producing IFNγ in the lungs. Lung injury scores were increased in the Arg1ΔM mice, but no differences were observed in the mice treated with pharmacologic arginase inhibitors. Overall, myeloid arginase production was demonstrated to be essential for control of damaging inflammatory responses associated with P. aeruginosa pneumonia in C57BL/6 mice, in contrast to a protective effect in the Th2-dominant BALB/c mice when arginase activity is globally inhibited.
Collapse
Affiliation(s)
- Dalia Haydar
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Rene Gonzalez
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Beth A Garvy
- University of Kentucky, College of Medicine, Department of Microbiology, Immunology and Molecular Genetics, 800 Rose Street, Lexington, KY 40536, USA.
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Nishad Thamban Chandrika
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Therese J Bocklage
- University of Kentucky Healthcare, Pathology and Laboratory Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| | - David J Feola
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
5
|
van Duinen V, van den Heuvel A, Trietsch SJ, Lanz HL, van Gils JM, van Zonneveld AJ, Vulto P, Hankemeier T. 96 perfusable blood vessels to study vascular permeability in vitro. Sci Rep 2017; 7:18071. [PMID: 29273771 PMCID: PMC5741747 DOI: 10.1038/s41598-017-14716-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Current in vitro models to test the barrier function of vasculature are based on flat, two-dimensional monolayers. These monolayers do not have the tubular morphology of vasculature found in vivo and lack important environmental cues from the cellular microenvironment, such as interaction with an extracellular matrix (ECM) and exposure to flow. To increase the physiological relevance of in vitro models of the vasculature, it is crucial to implement these cues and better mimic the native three-dimensional vascular architecture. We established a robust, high-throughput method to culture endothelial cells as 96 three-dimensional and perfusable microvessels and developed a quantitative, real-time permeability assay to assess their barrier function. Culture conditions were optimized for microvessel formation in 7 days and were viable for over 60 days. The microvessels exhibited a permeability to 20 kDa dextran but not to 150 kDa dextran, which mimics the functionality of vasculature in vivo. Also, a dose-dependent effect of VEGF, TNFα and several cytokines confirmed a physiologically relevant response. The throughput and robustness of this method and assay will allow end-users in vascular biology to make the transition from two-dimensional to three-dimensional culture methods to study vasculature.
Collapse
Affiliation(s)
- V van Duinen
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands
| | | | | | - H L Lanz
- Mimetas BV, Leiden, The Netherlands
| | - J M van Gils
- Department of Internal Medicine, Einthoven laboratory for Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
| | - A J van Zonneveld
- Department of Internal Medicine, Einthoven laboratory for Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
| | - P Vulto
- Mimetas BV, Leiden, The Netherlands
| | - T Hankemeier
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
6
|
Urbano RL, Furia C, Basehore S, Clyne AM. Stiff Substrates Increase Inflammation-Induced Endothelial Monolayer Tension and Permeability. Biophys J 2017; 113:645-655. [PMID: 28793219 PMCID: PMC5550298 DOI: 10.1016/j.bpj.2017.06.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 01/22/2023] Open
Abstract
Arterial stiffness and inflammation are associated with atherosclerosis, and each have individually been shown to increase endothelial monolayer tension and permeability. The objective of this study was to determine if substrate stiffness enhanced endothelial monolayer tension and permeability in response to inflammatory cytokines. Porcine aortic endothelial cells were cultured at confluence on polyacrylamide gels of varying stiffness and treated with either tumor necrosis factor-α (TNFα) or thrombin. Monolayer tension was measured through vinculin localization at the cell membrane, traction force microscopy, and phosphorylated myosin light chain quantity and actin fiber colocalization. Cell permeability was measured by cell-cell junction confocal microscopy and a dextran permeability assay. When treated with TNFα or thrombin, endothelial monolayers on stiffer substrates showed increased traction forces, vinculin at the cell membrane, and vinculin phosphorylation, suggesting elevated monolayer tension. Interestingly, VE-cadherin shifted toward a smaller molecular weight in endothelial monolayers on softer substrates, which may relate to increased VE-cadherin endocytosis and degradation. Phosphorylated myosin light chain colocalization with actin stress fibers increased in endothelial monolayers treated with TNFα or thrombin on stiffer substrates, indicating elevated cell monolayer contractility. Endothelial monolayers also developed focal adherens intercellular junctions and became more permeable when cultured on stiffer substrates in the presence of the inflammatory cytokines. Whereas each of these effects was likely mitigated by Rho/ROCK, Rho/ROCK pathway inhibition via Y27632 disrupted cell-cell junction morphology, showing that cell contractility is required to maintain adherens junction integrity. These data suggest that stiff substrates change intercellular junction protein localization and degradation, which may counteract the inflammation-induced increase in endothelial monolayer tension and thereby moderate inflammation-induced junction loss and associated endothelial monolayer permeability on stiffer substrates.
Collapse
|
7
|
Gross CM, Rafikov R, Kumar S, Aggarwal S, Ham PB, Meadows ML, Cherian-Shaw M, Kangath A, Sridhar S, Lucas R, Black SM. Endothelial nitric oxide synthase deficient mice are protected from lipopolysaccharide induced acute lung injury. PLoS One 2015; 10:e0119918. [PMID: 25786132 PMCID: PMC4364989 DOI: 10.1371/journal.pone.0119918] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/18/2015] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria induces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflammation, diffuse alveolar damage, and severe respiratory insufficiency. We have previously reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instillation of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the LPS mediated increase in inflammatory cell infiltration, inflammatory cytokine production, and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation and improved lung mechanics. The protection in eNOS-/- mice was associated with an attenuated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive species play an important role in the development of LPS-mediated lung injury.
Collapse
Affiliation(s)
- Christine M Gross
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ruslan Rafikov
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Sanjiv Kumar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - P Benson Ham
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mary Louise Meadows
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mary Cherian-Shaw
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Archana Kangath
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Supriya Sridhar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Rudolf Lucas
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M Black
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
8
|
TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1871-1884. [PMID: 24121020 DOI: 10.1016/j.ajpath.2013.09.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF-α) is a proinflammatory cytokine that plays a critical role in the pathogenesis of inflammatory bowel disease. TNF-α causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of MAP kinase pathways (ERK1/2 and p38 kinase) and the molecular processes involved. An in vitro intestinal epithelial model system consisting of Caco-2 monolayers and an in vivo mouse model system were used to delineate the cellular and molecular mechanisms involved in TNF-α effects on tight junction barrier. The TNF-α-induced increase in Caco-2 tight junction permeability was mediated by activation of the ERK1/2 signaling pathway, but not the p38 kinase pathway. Activation of the ERK1/2 pathway led to phosphorylation and activation of the ETS domain-containing transcription factor Elk-1. The activated Elk-1 translocated to the nucleus, where it bound to its binding motif on the myosin light chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. In addition, in vivo intestinal perfusion studies also indicated that the TNF-α-induced increase in mouse intestinal permeability requires ERK1/2-dependent activation of Elk-1. These studies provide novel insight into the cellular and molecular processes that regulate the TNF-α-induced increase in intestinal epithelial tight junction permeability.
Collapse
|
9
|
Lucas R, Czikora I, Sridhar S, Zemskov EA, Oseghale A, Circo S, Cederbaum SD, Chakraborty T, Fulton DJ, Caldwell RW, Romero MJ. Arginase 1: an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury. Front Immunol 2013; 4:228. [PMID: 23966993 PMCID: PMC3736115 DOI: 10.3389/fimmu.2013.00228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022] Open
Abstract
The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Division of Pulmonary Medicine, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jia Z, Babu PVA, Si H, Nallasamy P, Zhu H, Zhen W, Misra HP, Li Y, Liu D. Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. Int J Cardiol 2013; 168:2637-45. [PMID: 23587398 DOI: 10.1016/j.ijcard.2013.03.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/07/2013] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
Abstract
Genistein, a soy isoflavone, has received wide attention for its potential to improve vascular function, but the mechanism of this effect is unclear. Here, we report that genistein at physiological concentrations (0.1 μM-5 μM) significantly inhibited TNF-α-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis. Genistein also significantly suppressed TNF-α-induced production of adhesion molecules and chemokines such as sICAM-1, sVCAM-1, sE-Selectin, MCP-1 and IL-8, which play key role in the firm adhesion of monocytes to activated endothelial cells (ECs). Genistein at physiologically relevant concentrations didn't significantly induce antioxidant enzyme activities or scavenge free radicals. Further, blocking the estrogen receptors (ERs) in ECs didn't alter the preventive effect of genistein on endothelial inflammation. However, inhibition of protein kinase A (PKA) significantly attenuated the inhibitory effects of genistein on TNF-α-induced monocyte adhesion to ECs as well as the production of MCP-1 and IL-8. In animal study, dietary genistein significantly suppressed TNF-α-induced increase in circulating chemokines and adhesion molecules in C57BL/6 mice. Genistein treatment also reduced VCAM-1 and monocytes-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, genistein protects against TNF-α-induced vascular endothelial inflammation both in vitro and in vivo models. This anti-inflammatory effect of genistein is independent of the ER-mediated signaling machinery or antioxidant activity, but mediated via the PKA signaling pathway.
Collapse
Affiliation(s)
- Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, 27412, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu X, Chen Q, Shi S, Shi Z, Lin R, Tan L, Yu J, Shu Q, Fang X. Plasma sRAGE enables prediction of acute lung injury after cardiac surgery in children. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R91. [PMID: 22616947 PMCID: PMC3580637 DOI: 10.1186/cc11354] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/22/2012] [Indexed: 12/18/2022]
Abstract
Introduction Acute lung injury (ALI) after cardiac surgery is associated with a high postoperative morbidity and mortality, but few predictors are known for the occurrence of the complication. This study evaluated whether elevated plasma levels of soluble receptor for advanced glycation end products (sRAGE) and S100A12 reflected impaired lung function in infants and young children after cardiac surgery necessitating cardiopulmonary bypass (CPB). Methods Consecutive children younger than 3 years after cardiac surgery were prospectively enrolled and assigned to ALI and non-ALI groups, according to the American-European Consensus Criteria. Plasma concentrations of sRAGE and S100A12 were measured at baseline, before, and immediately after CPB, as well as 1 hour, 12 hours, and 24 hours after operation. Results Fifty-eight patients were enrolled and 16 (27.6%) developed postoperative ALI. Plasma sRAGE and S100A12 levels increased immediately after CPB and remained significantly higher in the ALI group even 24 hour after operation (P < 0.01). In addition, a one-way MANOVA revealed that the overall sRAGE and S100A12 levels were higher in the ALI group than in the non-ALI group immediately after CPB (P < 0.001). The multivariate logistic regression analysis showed that the plasma sRAGE level immediately after CPB was an independent predictor for postoperative ALI (OR, 1.088; 95% CI, 1.011 to 1.171; P = 0.025). Increased sRAGE and S100A12 levels immediately after CPB were significantly correlated with a lower PaO2/FiO2 ratio (P < 0.01) and higher radiographic lung-injury score (P < 0.01), as well as longer mechanical ventilation time (sRAGEN: r = 0.405; P = 0.002; S100A12N: r = 0.322; P = 0.014), longer surgical intensive care unit stay (sRAGEN: r = 0.421; P = 0.001; S100A12N: r = 0.365; P = 0.005) and hospital stay (sRAGEN: r = 0.329; P = 0.012; S100A12N: r = 0.471; P = 0.001). Conclusions Elevated sRAGE and S100A12 levels correlate with impaired lung function, and sRAGE is a useful early biomarker of ALI in infants and young children undergoing cardiac surgery.
Collapse
|
12
|
Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 2012; 9:71. [PMID: 22520439 PMCID: PMC3409032 DOI: 10.1186/1742-2094-9-71] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/20/2012] [Indexed: 12/05/2022] Open
Abstract
UNLABELLED BACKGROUND Stress during fetal life increases the risk of affective and immune disorders later in life. The altered peripheral immune response caused by prenatal stress may impact on brain function by the modification of local inflammation. In this study we have explored whether prenatal stress results in alterations in the immune response in the hippocampus of female mice during adult life. METHODS Pregnant C57BL/6 mice were subjected three times/day during 45 minutes to restraint stress from gestational Day 12 to delivery. Control non-stressed pregnant mice remained undisturbed. At four months of age, non-stressed and prenatally stressed females were ovariectomized. Fifteen days after surgery, mice received an i.p. injection of vehicle or of 5 mg/kg of lipopolysaccharide (LPS). Mice were sacrificed 20 hours later by decapitation and the brains were removed. Levels of interleukin-1β (IL1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), interferon γ-inducible protein 10 (IP10), and toll-like receptor 4 mRNA were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry. Statistical significance was determined by one-way or two-way analysis of variance. RESULTS Prenatal stress, per se, increased IL1β mRNA levels in the hippocampus, increased the total number of Iba1-immunoreactive microglial cells and increased the proportion of microglial cells with large somas and retracted cellular processes. In addition, prenatally stressed and non-stressed animals showed different responses to peripheral inflammation induced by systemic administration of LPS. LPS induced a significant increase in mRNA levels of IL-6, TNF-α and IP10 in the hippocampus of prenatally stressed mice but not of non-stressed animals. In addition, after LPS treatment, prenatally stressed animals showed a higher proportion of Iba1-immunoreactive cells in the hippocampus with morphological characteristics of activated microglia compared to non-stressed animals. In contrast, LPS induced similar increases in expression of IL1β and toll-like receptor 4 in both prenatally stressed and non-stressed animals. CONCLUSION These findings indicate that prenatal stress induces long-lasting modifications in the inflammatory status of the hippocampus of female mice under basal conditions and alters the immune response of the hippocampus to peripheral inflammation.
Collapse
Affiliation(s)
| | - Olga Pernía
- Instituto Cajal, CSIC, E-28002, Madrid, Spain
| | | | | |
Collapse
|
13
|
Santos-Galindo M, Acaz-Fonseca E, Bellini MJ, Garcia-Segura LM. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide. Biol Sex Differ 2011; 2:7. [PMID: 21745355 PMCID: PMC3143074 DOI: 10.1186/2042-6410-2-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/11/2011] [Indexed: 01/09/2023] Open
Abstract
Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth) male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS) or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10), TNFα, IL1β, Toll-like receptor 4 (TLR4), steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to differences in the expression of the LPS receptor TLR4. In contrast, the different inflammatory response was associated with increased mRNA levels of translocator protein, a key steroidogenic regulator, in female astrocytes that were treated with LPS. Conclusions Male and female cortical astrocytes respond differentially to an inflammatory challenge and this may be predetermined by perinatal testosterone exposure.
Collapse
|
14
|
Lee SY, Zaske AM, Novellino T, Danila D, Ferrari M, Conyers J, Decuzzi P. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy. Int J Nanomedicine 2011; 6:179-95. [PMID: 21499414 PMCID: PMC3075881 DOI: 10.2147/ijn.s12760] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.
Collapse
Affiliation(s)
- Sei-Young Lee
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Early effect of hepatic artery TNF-alpha infusion on systemic hemodynamics and inflammation: a dose-response study in pigs. Int J Colorectal Dis 2010; 25:523-32. [PMID: 19888588 DOI: 10.1007/s00384-009-0827-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2009] [Indexed: 02/04/2023]
Abstract
PURPOSE Therapy of unresectable hepatic metastases may include tumor necrosis factor (TNF)-alpha treatment. Because of its serious systemic side effects, TNF-alpha is only used in isolated hepatic perfusion. This, however, is a technically demanding procedure with a substantial mortality rate. The infusion of TNF-alpha via the hepatic artery without hepatic isolation would be less invasive. Systemic side effects, however, have not been studied yet. Therefore, we evaluated in pigs the effects of TNF-alpha hepatic artery infusion (HAI) on systemic hemodynamics, inflammation, and organ injury. METHODS Animals were randomized in three groups. In group 1, HAI was performed with 0.9% NaCl (n = 6). In group 2, 20 microg/kg TNF-alpha (n = 6), and in group 3, 40 microg/kg TNF-alpha (n = 6) were added. HAI was performed over 15 min, followed by 120 min of observation. Finally, 250 ml hydroxyethylstarch (HAES; 6%) was administered for resuscitation and hemodynamics were analyzed for another 30 min. RESULTS Hepatic artery TNF-alpha infusion did not cause complications such as bleeding, cardiac depression, pulmonary dysfunction, or SIRS. TNF-alpha induced a 30% decrease of MAP and systemic vascular resistance, as well as a rise in heart rate and endexspiratory pCO(2). TNF-alpha also moderately (10-20%) lowered the cardiac preload and induced a metabolic acidosis, which, however, could easily be controlled. TNF-alpha HAI did not induce liver toxicity, and all hemodynamic changes normalized either spontaneously within the 120-min observation period, or, at least, after HAES resuscitation. CONCLUSIONS TNF-alpha-based HAI, which may represent a minimally invasive alternative to isolated hepatic perfusion, can be performed without early systemic hemodynamic complications.
Collapse
|
16
|
Chen X, Andresen1 BT, Hill M, Zhang J, Booth F, Zhang C. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Curr Hypertens Rev 2008; 4:245-255. [PMID: 20559453 DOI: 10.2174/157340208786241336] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as 'oxidative stress'. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
17
|
Banks WA, Dohgu S, Lynch JL, Fleegal-DeMotta MA, Erickson MA, Nakaoke R, Vo TQ. Nitric oxide isoenzymes regulate lipopolysaccharide-enhanced insulin transport across the blood-brain barrier. Endocrinology 2008; 149:1514-23. [PMID: 18187549 PMCID: PMC2276709 DOI: 10.1210/en.2007-1091] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin transported across the blood-brain barrier (BBB) has many effects within the central nervous system. Insulin transport is not static but altered by obesity and inflammation. Lipopolysaccharide (LPS), derived from the cell walls of Gram-negative bacteria, enhances insulin transport across the BBB but also releases nitric oxide (NO), which opposes LPS-enhanced insulin transport. Here we determined the role of NO synthase (NOS) in mediating the effects of LPS on insulin BBB transport. The activity of all three NOS isoenzymes was stimulated in vivo by LPS. Endothelial NOS and inducible NOS together mediated the LPS-enhanced transport of insulin, whereas neuronal NOS (nNOS) opposed LPS-enhanced insulin transport. This dual pattern of NOS action was found in most brain regions with the exception of the striatum, which did not respond to LPS, and the parietal cortex, hippocampus, and pons medulla, which did not respond to nNOS inhibition. In vitro studies of a brain endothelial cell (BEC) monolayer BBB model showed that LPS did not directly affect insulin transport, whereas NO inhibited insulin transport. This suggests that the stimulatory effect of LPS and NOS on insulin transport is mediated through cells of the neurovascular unit other than BECs. Protein and mRNA levels of the isoenzymes indicated that the effects of LPS are mainly posttranslational. In conclusion, LPS affects insulin transport across the BBB by modulating NOS isoenzyme activity. NO released by endothelial NOS and inducible NOS acts indirectly to stimulate insulin transport, whereas NO released by nNOS acts directly on BECs to inhibit insulin transport.
Collapse
Affiliation(s)
- William A Banks
- Division of Geriatrics, Department of Internal Medicine, Veterans Affairs Medical Center, 915 North Grand Boulevard, St. Louis, MO 63106, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Westerberg M, Gäbel J, Bengtsson A, Sellgren J, Eidem O, Jeppsson A. Hemodynamic effects of cardiotomy suction blood. J Thorac Cardiovasc Surg 2006; 131:1352-7. [PMID: 16733169 DOI: 10.1016/j.jtcvs.2005.12.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/23/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Cardiac surgery induces a systemic inflammatory activation, which in severe cases is associated with peripheral vasodilation and hypotension. Cardiotomy suction blood contains high levels of inflammatory mediators, but the effect of cardiotomy suction blood on the vasculture is unknown. We investigated the effect of cardiotomy suction blood on systemic vascular resistance in vivo and whether cell-saver processing of suction blood affects the vascular response. METHODS Twenty-five patients undergoing coronary surgery (mean age, 68 +/- 2 years; 80% men) were included in a prospective randomized study. The patients were randomized to retransfusion of cell-saver processed (n = 13) or cell-saver unprocessed (n = 12) suction blood during full cardiopulmonary bypass. Mean arterial blood pressure was continuously registered during retransfusion, and systemic vascular resistance was calculated. Plasma concentrations of tumor necrosis factor alpha, interleukin 6, and complement factor C3a were measured in suction blood. RESULTS Retransfusion of cardiotomy suction blood induced a transient reduction in systemic vascular resistance in all patients. The peak reduction was significantly less pronounced in the group receiving cell-saver processed blood (-12% +/- 2% vs -28% +/- 3%, P = .001). There was a significant correlation between tumor necrosis factor alpha concentration in retransfused cardiotomy suction blood and peak reduction of systemic vascular resistance (r = 0.60, P = .002). CONCLUSIONS The results suggest cardiotomy suction blood is vasoactive and might influence vascular resistance and blood pressure during cardiac surgery. The observed vasodilation is proportional to the inflammatory activation of suction blood and can be reduced by processing suction blood with a cell-saving device before retransfusion.
Collapse
Affiliation(s)
- Martin Westerberg
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Matsuda N, Hattori Y, Takahashi Y, Nishihira J, Jesmin S, Kobayashi M, Gando S. Therapeutic effect of in vivo transfection of transcription factor decoy to NF-kappaB on septic lung in mice. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1248-55. [PMID: 15298852 DOI: 10.1152/ajplung.00164.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) plays a key role in regulating expression of several genes involved in the pathophysiology of endotoxic shock. We investigated whether in vivo introduction of synthetic double-stranded DNA with high affinity for the NF-kappaB binding site could block expression of genes mediating pulmonary vascular permeation and thereby provide effective therapy for septic lung failure. Endotoxic shock was induced by an intravenous injection of 10 mg/kg Escherichia coli endotoxin in mice. We introduced NF-kappaB decoy oligodeoxynucleotide (ODN) in vivo 1 h after endotoxic shock by using a gene transfer kit. At 10 h, blood samples were collected for measurement of histamine and for blood-gas analysis. Gene and protein expression levels of target molecules were determined by means of Northern and Western blot analyses, respectively. The transpulmonary flux of (125)I-labeled albumin was used as an index of lung vascular permeability. Administration of endotoxin caused marked increases in plasma histamine and gene and protein expressions of histidine decarboxylase, histamine H(1) receptors, and inducible nitric oxide synthase in lung tissues. Elevated lung vascular permeability was also found. Blood-gas analysis showed concurrent decreases in arterial Po(2), Pco(2), and pH. All of these events induced by endotoxin were significantly inhibited by transfection of NF-kappaB decoy ODN but not by its mutated (scrambled) form (used as a control). Our results indicate for the first time the potential usefulness of NF-kappaB decoy ODN for gene therapy of endotoxic shock.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Heckel K, Kiefmann R, Dörger M, Stoeckelhuber M, Goetz AE. Colloidal gold particles as a new in vivo marker of early acute lung injury. Am J Physiol Lung Cell Mol Physiol 2004; 287:L867-78. [PMID: 15194564 DOI: 10.1152/ajplung.00078.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Permeability of the endothelial barrier to large molecules plays a pivotal role in the manifestation of early acute lung injury. We present a novel and sensitive technique that brings microanatomical visualization and quantification of microvascular permeability in line. White New Zealand rabbits were anesthetized and ventilated mechanically. Rabbit serum albumin (RSA) was labeled with colloidal gold particles. We quantified macromolecular leakage of gold-labeled RSA and thickening of the gas exchange distance by electron microscopy, taking into account morphology of microvessels. The control group receiving a saline solution represented a normal gas exchange barrier without extravasation of gold-labeled albumin. Infusion of lipopolysaccharide (LPS) resulted in a significant displacement of gold-labeled albumin into pulmonary cells, the lung interstitium, and even the alveolar space. Correspondingly, intravital fluorescence microscopy and digital image analysis indicated thickening of width of alveolar septa. The findings were accompanied by a deterioration of alveolo-arterial oxygen difference, whereas wet/dry ratio and albumin concentration in the bronchoalveolar lavage fluid failed to detect that early stage of pulmonary edema. Inhibition of the nuclear enzyme poly(ADP-ribose) synthetase by 3-aminobenzamide prevented LPS-induced microvascular injury. To summarize: colloidal gold particles visualized by standard electron microscopy are a new and very sensitive in vivo marker of microvascular permeability in early acute lung injury. This technique enabling detailed microanatomical and quantitative pathophysiological characterization of edema formation can form the basis for evaluating novel treatment strategies against acute lung injury.
Collapse
Affiliation(s)
- Kai Heckel
- Department of Anesthesiology, University of Munich, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
21
|
Sarady JK, Zuckerbraun BS, Bilban M, Wagner O, Usheva A, Liu F, Ifedigbo E, Zamora R, Choi AMK, Otterbein LE. Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver. FASEB J 2004; 18:854-6. [PMID: 15001560 DOI: 10.1096/fj.03-0643fje] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO) has recently emerged as having potent cytoprotective properties; the mechanisms underlying these effects, however, are just beginning to be elucidated. In a rat model of lipopolysaccharide (LPS)-induced multiorgan failure, we demonstrate that exposure to a low concentration of CO for only 1 h imparts a potent defense against lethal endotoxemia and effectively abrogates the inflammatory response. Exposure to CO leads to long-term survival of >80% of animals vs. 20% in controls. In the lung, CO suppressed LPS-induced lung alveolitis and associated edema formation, while in the liver, it reduced expression of serum alanine aminotransferase, a marker of liver injury. This protection appears to be based in part on different mechanisms in the lung and liver in that CO had reciprocal effects on LPS-induced expression of iNOS and NO production, important mediators in the response to LPS. CO prevented the up-regulation of iNOS and NO in the lung while augmenting expression of iNOS and NO in the liver. Studies of primary lung macrophages and hepatocytes in vitro revealed a similar effect; CO inhibited LPS-induced cytokine production in lung macrophages while reducing LPS-induced iNOS expression and nitrite accumulation and protected hepatocytes from apoptosis while augmenting iNOS expression. Although it is unclear to which extent these changes in iNOS contribute to the cytoprotection conferred by CO, it is fascinating that in each organ CO influences iNOS in a manner known to be protective in that organ: NO is therapeutic in the liver while it is damaging in the lung.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bronchoalveolar Lavage Fluid
- Carbon Monoxide/pharmacology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Chemotaxis, Leukocyte/drug effects
- Cytokines/blood
- Cytokines/metabolism
- Enzyme Induction/drug effects
- Heme Oxygenase (Decyclizing)/biosynthesis
- Heme Oxygenase-1
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Lipopolysaccharides/pharmacology
- Lipopolysaccharides/toxicity
- Liver/enzymology
- Lung/enzymology
- Macrophage Activation/drug effects
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/metabolism
- Male
- Multiple Organ Failure/enzymology
- Multiple Organ Failure/etiology
- Multiple Organ Failure/prevention & control
- NF-kappa B/physiology
- Nitric Oxide/physiology
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Organ Specificity
- Rats
- Rats, Sprague-Dawley
- Shock, Septic/complications
- Shock, Septic/enzymology
- Shock, Septic/prevention & control
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Judit K Sarady
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T, Kagan E, Hensley LE. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2371-82. [PMID: 14633609 PMCID: PMC1892396 DOI: 10.1016/s0002-9440(10)63592-4] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ebola virus (EBOV) infection causes a severe and often fatal hemorrhagic disease in humans and nonhuman primates. Whether infection of endothelial cells is central to the pathogenesis of EBOV hemorrhagic fever (HF) remains unknown. To clarify the role of endothelial cells in EBOV HF, we examined tissues of 21 EBOV-infected cynomolgus monkeys throughout time, and also evaluated EBOV infection of primary human umbilical vein endothelial cells and primary human lung-derived microvascular endothelial cells in vitro. Results showed that endothelial cells were not early cellular targets of EBOV in vivo, as viral replication was not consistently observed until day 5 after infection, a full day after the onset of disseminated intravascular coagulation. Moreover, the endothelium remained relatively intact even at terminal stages of disease. Although human umbilical vein endothelial cells and human lung-derived microvascular endothelial cells were highly permissive to EBOV replication, significant cytopathic effects were not observed. Analysis of host cell gene response at 24 to 144 hours after infection showed some evidence of endothelial cell activation, but changes were unremarkable considering the extent of viral replication. Together, these data suggest that coagulation abnormalities associated with EBOV HF are not the direct result of EBOV-induced cytolysis of endothelial cells, and are likely triggered by immune-mediated mechanisms.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chello M, Mastroroberto P, Patti G, D'Ambrosio A, Morichetti MC, Di Sciascio G, Covino E. Simvastatin attenuates leucocyte-endothelial interactions after coronary revascularisation with cardiopulmonary bypass. Heart 2003; 89:538-43. [PMID: 12695460 PMCID: PMC1767656 DOI: 10.1136/heart.89.5.538] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2003] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To investigate the effects of preoperative simvastatin treatment on leucocyte-endothelial interactions following coronary artery bypass surgery with cardiopulmonary bypass. DESIGN Double blind crossover study. Experiments on polymorphonuclear cells (neutrophils) were done at the end of cardiopulmonary bypass and one hour postoperatively. Endothelial P-selectin expression and neutrophil/endothelial adhesion were evaluated under either normoxic or hypoxic conditions. SETTING University hospital (tertiary referral centre). PATIENTS Three groups of patients undergoing coronary bypass surgery: 20 patients taking simvastatin for cholesterol control, 16 patients not responsive to simvastatin, and 20 controls. MAIN OUTCOME MEASURES Expression of neutrophil CD11b and endothelial P-selectin; adhesion of neutrophils to endothelium. RESULTS Cardiopulmonary bypass resulted in a significant increase in neutrophil CD11b expression in all groups. Similarly, the exposure of saphenous vein to hypoxia/reoxygenation induced an augmentation of endothelial P-selectin. However, both neutrophil CD11b expression and endothelial P-selectin exocytosis were less in the simvastatin groups than in the controls. Cardiopulmonary bypass and controlled hypoxia/reoxygenation stimulated neutrophil/endothelial adhesion, but the number of adhering cells was less in the simvastatin groups than in the controls, irrespective of the cholesterol concentration. Treatment of endothelial cells with L-NAME completely reversed the effects of simvastatin. CONCLUSIONS Pretreatment with simvastatin reduces neutrophil adhesion to the venous endothelium in patients undergoing coronary surgery, irrespective of its efficacy at lowering cholesterol concentration.
Collapse
Affiliation(s)
- M Chello
- Interdisciplinary Centre for Biomedical Research (CIR), Department of Cardiovascular Sciences, University Campus Bio-Medico di Roma, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Matheson JM, Lemus R, Lange RW, Karol MH, Luster MI. Role of tumor necrosis factor in toluene diisocyanate asthma. Am J Respir Cell Mol Biol 2002; 27:396-405. [PMID: 12356572 DOI: 10.1165/rcmb.4614] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nearly 9 million workers are exposed to chemical agents associated with occupational asthma, with isocyanates representing the chemical class most responsible. Isocyanate-induced asthma has been difficult to diagnose and control, in part because the biologic mechanisms responsible for the disease and the determinants of exposure have not been well defined. Isocyanate-induced asthma is characterized by airway inflammation, and we hypothesized that inflammation is a prerequisite of isocyanate-induced asthma, with tumor necrosis factor (TNF)-alpha being critical to this process. To explore this hypothesis, wild-type mice, athymic mice, TNF-alpha receptor knockout (TNFR), and anti-TNF-alpha antibody-treated mice were sensitized by subcutaneous injection (20 micro l on Day 1; 5 micro l, Days 4 and 11), and challenged 7 d later by inhalation (100 ppb; Days 20, 22, and 24) with toluene diisocyanate (TDI). Airway inflammation, goblet cell metaplasia, epithelial cell damage, and nonspecific airway reactivity to methacholine challenge, measured 24 h following the last challenge, were reduced to baseline levels in TNF-alpha null mice and athymic mice. TNF-alpha deficiency also markedly abrogated TDI-induced Th2 cytokines in airway tissues, indicating a role in the development of Th2 responses. Despite abrogation of all indicators of asthma pathology, TNF-alpha neutralization had no effect on serum IgE levels or IgG-specific TDI antibodies, suggesting the lack of importance of a humoral response in the manifestation of TDI-induced asthma. Instillation studies with fluorescein-conjugated isothiocyanate and TDI suggested that TNF-alpha deficiency also resulted in a significant reduction in the migration of airway dendritic cells to the draining lymph nodes. Taken together, these results suggest that, unlike protein antigens, TNF-alpha has multiple and central roles in TDI-induced asthma, influencing both nonspecific inflammatory processes and specific immune events.
Collapse
Affiliation(s)
- Joanna M Matheson
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | |
Collapse
|
25
|
Thomas JB, Holtsberg FW, Ensor CM, Bomalaski JS, Clark MA. Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor alpha and endotoxin. Biochem J 2002; 363:581-7. [PMID: 11964159 PMCID: PMC1222511 DOI: 10.1042/0264-6021:3630581] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Septic shock is mediated in part by nitric oxide (NO) and tumour necrosis factor alpha (TNFalpha). NO is synthesized primarily from extracellular arginine. We tested the ability of an arginine-degrading enzyme to inhibit NO production in mice and to protect mice from the hypotension and lethality that occur after the administration of TNFalpha or endotoxin. Treatment of BALB/c mice with arginine deiminase (ADI) formulated with succinimidyl succinimide polyethylene glycol of M(r) 20000 (ADI-SS PEG(20000)) eliminated all measurable plasma arginine (from normal levels of approximately 155 microM arginine to 2 microM). In addition, ADI-SS PEG(20000) also inhibited the production of NO, as quantified by plasma nitrate+nitrite. Treatment of mice with TNFalpha or endotoxin resulted in a dose-dependent increase in NO production and lethality. Pretreatment of mice with ADI-SS PEG(20000) resulted in increased resistance to the lethal effects of TNFalpha and endotoxin. These observations are consistent with NO production resulting, to some extent, from the metabolism of extracellular arginine. The toxic effects of TNFalpha and endotoxin may be partially inhibited by enzymic degradation of plasma arginine by ADI-SS PEG(20000). Interestingly, pretreatment with ADI-SS PEG(20000) did not inhibit the anti-tumour activity of TNFalpha in vitro or in vivo. This treatment may allow greater amounts of TNFalpha, as well as other cytokines, to be administered while abrogating side effects such as hypotension and death.
Collapse
Affiliation(s)
- J Brandon Thomas
- Department of Biology, T.H. Morgan Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
26
|
Dias AAM, Goodman AR, Dos Santos JL, Gomes RN, Altmeyer A, Bozza PT, de Fátima Horta M, Vilcek J, Reis LFL. TSG‐14 transgenic mice have improved survival to endotoxemia and to CLP‐induced sepsis. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Adriana A. M. Dias
- Ludwig Institute for Cancer Research, São Paulo, Brazil;
- Department of Microbiology, and Minas Gerais, Brazil
| | - Adam R. Goodman
- Department of Microbiology, New York University School of Medicine, New York, New York; and
| | | | - Rachel Novaes Gomes
- Department of Physiology and Pharmacodynamics, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Anne Altmeyer
- Department of Microbiology, New York University School of Medicine, New York, New York; and
| | - Patrícia T. Bozza
- Department of Physiology and Pharmacodynamics, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Jan Vilcek
- Department of Microbiology, New York University School of Medicine, New York, New York; and
| | | |
Collapse
|
27
|
Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax 1999; 54:707-10. [PMID: 10413724 PMCID: PMC1745540 DOI: 10.1136/thx.54.8.707] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Investigation and management of pleural effusions is an important clinical problem yet the pathogenesis of pleural fluid accumulation is poorly understood. Vascular endothelial growth factor (VEGF) is a potent inducer of capillary permeability that is produced by both malignant and inflammatory cells. A study was undertaken to determine whether VEGF has a potential pathogenic role in the development of pleural effusions and whether VEGF receptors are present on human pleural mesothelial cells. METHODS Normal and inflamed pleura were examined immunohistochemically for the presence of FLT-1 (the fms-like tyrosine kinase receptor of VEGF). VEGF levels were measured by ELISA in 78 consecutive patients presenting with undiagnosed unilateral pleural effusions and the levels were correlated with the aetiology of the effusions. RESULTS Immunohistochemical staining of normal and diseased pleura demonstrated the presence of the FLT-1 VEGF receptor on human mesothelial cells. Median VEGF levels were 2500 pg/ml in the malignant group and 305 pg/ml in the non-malignant group (median difference 1397.5 pg/ml (95% CI 851 to 2693), p<0.005). Median VEGF levels varied according to tumour histology. VEGF levels were also significantly raised compared with transudates (median 36.5 pg/ml) in empyema (4651 pg/ml (95% CI 833 to 10 000), p<0.001) and parainfectious effusions (360 pg/ml (95% CI 46 to 597), p<0.005). CONCLUSIONS This first report of VEGF receptors on pleural mesothelial cells has indicated a potential mechanism for the biological activity of VEGF on pleural tissue. VEGF levels are raised in the majority of exudative effusions, implying a pathogenic role for this molecule in the development of pleural effusions.
Collapse
Affiliation(s)
- D R Thickett
- Lung Research Group, Medical School Unit, Southmead Hospital, Bristol BS10 5NB, UK
| | | | | |
Collapse
|