1
|
Tomczyk M, Braczko A, Mierzejewska P, Podlacha M, Krol O, Jablonska P, Jedrzejewska A, Pierzynowska K, Wegrzyn G, Slominska EM, Smolenski RT. Rosiglitazone Ameliorates Cardiac and Skeletal Muscle Dysfunction by Correction of Energetics in Huntington’s Disease. Cells 2022; 11:cells11172662. [PMID: 36078070 PMCID: PMC9454785 DOI: 10.3390/cells11172662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare neurodegenerative disease that is accompanied by skeletal muscle atrophy and cardiomyopathy. Tissues affected by HD (central nervous system [CNS], skeletal muscle, and heart) are known to suffer from deteriorated cellular energy metabolism that manifests already at presymptomatic stages. This work aimed to test the effects of peroxisome proliferator-activated receptor (PPAR)-γ agonist—rosiglitazone on grip strength and heart function in an experimental HD model—on R6/1 mice and to address the mechanisms. We noted that rosiglitazone treatment lead to improvement of R6/1 mice grip strength and cardiac mechanical function. It was accompanied by an enhancement of the total adenine nucleotides pool, increased glucose oxidation, changes in mitochondrial number (indicated as increased citric synthase activity), and reduction in mitochondrial complex I activity. These metabolic changes were supported by increased total antioxidant status in HD mice injected with rosiglitazone. Correction of energy deficits with rosiglitazone was further indicated by decreased accumulation of nucleotide catabolites in HD mice serum. Thus, rosiglitazone treatment may not only delay neurodegeneration but also may ameliorate cardio- and myopathy linked to HD by improvement of cellular energetics.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| |
Collapse
|
2
|
High Throughput Procedure for Comparative Analysis of In Vivo Cardiac Glucose or Amino Acids Use in Cardiovascular Pathologies and Pharmacological Treatments. Metabolites 2021; 11:metabo11080497. [PMID: 34436438 PMCID: PMC8398927 DOI: 10.3390/metabo11080497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
The heart is characterized by the prominent flexibility of its energy metabolism and is able to use diverse carbon substrates, including carbohydrates and amino acids. Cardiac substrate preference could have a major impact on the progress of cardiac pathologies. However, the majority of methods to investigate changes in substrates’ use in cardiac metabolism in vivo are complex and not suitable for high throughput testing necessary to understand and reverse these pathologies. Thus, this study aimed to develop a simple method that would allow for the analysis of cardiac metabolic substrate use. The developed methods involved the subcutaneous injection of stable 13C isotopomers of glucose, valine, or leucine with mass spectrometric analysis for the investigation of its entry into cardiac metabolic pathways that were deducted from 13C alanine and glutamate enrichments in heart extracts. The procedures were validated by confirming the known effects of treatments that modify glucose, free fatty acids, and amino acid metabolism. Furthermore, we studied changes in the energy metabolism of CD73 knock-out mice to demonstrate the potential of our methods in experimental research. The methods created allowed for fast estimation of cardiac glucose and amino acid use in mice and had the potential for high-throughput analysis of changes in pathology and after pharmacological treatments.
Collapse
|
3
|
Olkowicz M, Tomczyk M, Debski J, Tyrankiewicz U, Przyborowski K, Borkowski T, Zabielska-Kaczorowska M, Szupryczynska N, Kochan Z, Smeda M, Dadlez M, Chlopicki S, Smolenski RT. Enhanced cardiac hypoxic injury in atherogenic dyslipidaemia results from alterations in the energy metabolism pattern. Metabolism 2021; 114:154400. [PMID: 33058853 DOI: 10.1016/j.metabol.2020.154400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Dyslipidaemia is a major risk factor for myocardial infarction that is known to correlate with atherosclerosis in the coronary arteries. We sought to clarify whether metabolic alterations induced by dyslipidaemia in cardiomyocytes collectively constitute an alternative pathway that escalates myocardial injury. METHODS Dyslipidaemic apolipoprotein E and low-density lipoprotein receptor (ApoE/LDLR) double knockout (ApoE-/-/LDLR-/-) and wild-type C57BL/6 (WT) mice aged six months old were studied. Cardiac injury under reduced oxygen supply was evaluated by 5 min exposure to 5% oxygen in the breathing air under electrocardiogram (ECG) recording and with the assessment of troponin I release. To address the mechanisms LC/MS was used to analyse the cardiac proteome pattern or in vivo metabolism of stable isotope-labelled substrates and HPLC was applied to measure concentrations of cardiac high-energy phosphates. Furthermore, the effect of blocking fatty acid use with ranolazine on the substrate preference and cardiac hypoxic damage was studied in ApoE-/-/LDLR-/- mice. RESULTS Hypoxia induced profound changes in ECG ST-segment and troponin I leakage in ApoE-/-/LDLR-/- mice but not in WT mice. The evaluation of the cardiac proteomic pattern revealed that ApoE-/-/LDLR-/- as compared with WT mice were characterised by coordinated increased expression of mitochondrial proteins, including enzymes of fatty acids' and branched-chain amino acids' oxidation, accompanied by decreased expression levels of glycolytic enzymes. These findings correlated with in vivo analysis, revealing a reduction in the entry of glucose and enhanced entry of leucine into the cardiac Krebs cycle, with the cardiac high-energy phosphates pool maintained. These changes were accompanied by the activation of molecular targets controlling mitochondrial metabolism. Ranolazine reversed the oxidative metabolic shift in ApoE-/-/LDLR-/- mice and reduced cardiac damage induced by hypoxia. CONCLUSIONS We suggest a novel mechanism for myocardial injury in dyslipidaemia that is consequent to an increased reliance on oxidative metabolism in the heart. The alterations in the metabolic pattern that we identified constitute an adaptive mechanism that facilitates maintenance of metabolic equilibrium and cardiac function under normoxia. However, this adaptation could account for myocardial injury even in a mild reduction of oxygen supply.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Marta Tomczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Tomasz Borkowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531 Krakow, Poland.
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland.
| |
Collapse
|
4
|
Schnelle M, Chong M, Zoccarato A, Elkenani M, Sawyer GJ, Hasenfuss G, Ludwig C, Shah AM. In vivo [U- 13C]glucose labeling to assess heart metabolism in murine models of pressure and volume overload. Am J Physiol Heart Circ Physiol 2020; 319:H422-H431. [PMID: 32648823 PMCID: PMC7473922 DOI: 10.1152/ajpheart.00219.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations in the metabolism of substrates such as glucose are integrally linked to the structural and functional changes that occur in the remodeling heart. Assessment of such metabolic changes under in vivo conditions would provide important insights into this interrelationship. We aimed to investigate glucose carbon metabolism in pressure-overload and volume-overload cardiac hypertrophy by using an in vivo [U-13C]glucose labeling strategy to enable analyses of the metabolic fates of glucose carbons in the mouse heart. Therefore, [U-13C]glucose was administered in anesthetized mice by tail vein infusion, and the optimal duration of infusion was established. Hearts were then excised for 13C metabolite isotopomer analysis by NMR spectroscopy. [U-13C]glucose infusions were performed in mice 2 wk following transverse aortic constriction (TAC) or aortocaval fistula (Shunt) surgery. At this time point, there were similar increases in left ventricular (LV) mass in both groups, but TAC resulted in concentric hypertrophy with impaired LV function, whereas Shunt caused eccentric hypertrophy with preserved LV function. TAC was accompanied by significant changes in glycolysis, mitochondrial oxidative metabolism, glucose metabolism to anaplerotic substrates, and de novo glutamine synthesis. In contrast to TAC, hardly any metabolic changes could be observed in the Shunt group. Taken together, in vivo [U-13C]glucose labeling is a valuable method to investigate the fate of nutrients such as glucose in the remodeling heart. We find that concentric and eccentric cardiac remodeling are accompanied by distinct differences in glucose carbon metabolism. NEW & NOTEWORTHY This study implemented a method for assessing the fate of glucose carbons in the heart in vivo and used this to demonstrate that pressure and volume overload are associated with distinct changes. In contrast to volume overload, pressure overload-induced changes affect the tricarboxylic acid cycle, glycolytic pathways, and glutamine synthesis. A better understanding of cardiac glucose metabolism under pathological conditions in vivo may provide new therapeutic strategies specific for different types of hemodynamic overload. Listen to this article’s corresponding podcast at: https://ajpheart.podbean.com/e/u-13c-glucose-and-in-vivo-heart-metabolism/.
Collapse
Affiliation(s)
- Moritz Schnelle
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Manar Elkenani
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Greta Jane Sawyer
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| |
Collapse
|
5
|
O h-Ici D, Wespi P, Busch J, Wissmann L, Krajewski M, Weiss K, Sigfridsson A, Messroghli D, Kozerke S. Hyperpolarized Metabolic MR Imaging of Acute Myocardial Changes and Recovery after Ischemia-Reperfusion in a Small-Animal Model. Radiology 2016; 278:742-51. [DOI: 10.1148/radiol.2015151332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Priddy CMO, Kajimoto M, Ledee DR, Bouchard B, Isern N, Olson AK, Des Rosiers C, Portman MA. Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203964 DOI: 10.1152/ajpheart.00672.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative metabolism and protein synthesis. We focused on the amino acid leucine and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart 1) the fractional contribution of leucine (FcLeucine) and pyruvate to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and 2) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 h of normal circulation or ECMO) and intracoronary infusion [(13)C(6),(15)N]-L-leucine (3.7 mM) alone or with [2-(13)C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (∼40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining 1) metabolic flexibility indicated by ability to respond to pyruvate and 2) a normal or increased capacity for global protein synthesis.
Collapse
|
7
|
Jain D, He ZX, Ghanbarinia A, Baron J, Gavriluke A. Direct Imaging of Myocardial Ischemia With 18FDG: A New Potentially Paradigm-Shifting Molecular Cardiovascular Imaging Technique. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-010-9022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Costa VM, Silva R, Tavares LC, Vitorino R, Amado F, Carvalho F, Bastos MDL, Carvalho M, Carvalho RA, Remião F. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes. Toxicology 2009; 260:84-96. [DOI: 10.1016/j.tox.2009.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/15/2009] [Indexed: 01/13/2023]
|
9
|
Swiatecka-Urban A, Moreau-Marquis S, Maceachran DP, Connolly JP, Stanton CR, Su JR, Barnaby R, O'toole GA, Stanton BA. Pseudomonas aeruginosa inhibits endocytic recycling of CFTR in polarized human airway epithelial cells. Am J Physiol Cell Physiol 2005; 290:C862-72. [PMID: 16236828 DOI: 10.1152/ajpcell.00108.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most common mutation in the CFTR gene in individuals with cystic fibrosis (CF), DeltaF508, leads to the absence of CFTR Cl(-) channels in the apical plasma membrane, which in turn results in impairment of mucociliary clearance, the first line of defense against inhaled bacteria. Pseudomonas aeruginosa is particularly successful at colonizing and chronically infecting the lungs and is responsible for the majority of morbidity and mortality in patients with CF. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the protein is at least partially functional as a Cl(-) channel. Thus current research efforts have focused on identification of drugs that restore the presence of CFTR in the apical membrane to alleviate the symptoms of CF. Because little is known about the effects of P. aeruginosa on CFTR in the apical membrane, whether P. aeruginosa will affect the efficacy of new drugs designed to restore the plasma membrane expression of CFTR is unknown. Accordingly, the objective of the present study was to determine whether P. aeruginosa affects CFTR-mediated Cl(-) secretion in polarized human airway epithelial cells. We report herein that a cell-free filtrate of P. aeruginosa reduced CFTR-mediated transepithelial Cl(-) secretion by inhibiting the endocytic recycling of CFTR and thus the number of WT-CFTR and DeltaF508-CFTR Cl(-) channels in the apical membrane in polarized human airway epithelial cells. These data suggest that chronic infection with P. aeruginosa may interfere with therapeutic strategies aimed at increasing the apical membrane expression of DeltaF508-CFTR.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Physiology, Dartmouth Medical School, 1 Rope Ferry Road, HB 7701, Hanover, NH 03755, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
There is compelling evidence that alterations in myocardial substrate use play a key role in a variety of normal and abnormal cardiac conditions such as aging, left ventricular hypertrophy, and diabetic heart disease. However, it is unclear whether the metabolic changes are adaptive or maladaptive. Development of transgenic models targeting key aspects of myocardial substrate use, such as uptake, oxidation, and storage, is accelerating our understanding of the metabolic perturbations of cardiac disease. However, whether the metabolic phenotype in these models is relevant to the human condition is frequently unknown. The importance of altered myocardial metabolism in the pathogenesis of cardiac disease is underscored by the current robust development of novel therapeutics that target myocardial substrate use. Currently, magnetic resonance spectroscopy, single photon emission computed tomography, and positron emission tomography are the 3 methods available to image myocardial substrate metabolism. In this review the role of metabolic imaging in the study of specific cardiac disease processes will be discussed. Both the current and future capabilities of metabolic imaging to furthering our understanding of cardiac disease are highlighted.
Collapse
Affiliation(s)
- Pilar Herrero
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St Louis, MO 63110, USA
| | | |
Collapse
|
11
|
Soppa GKR, Smolenski RT, Latif N, Yuen AHY, Malik A, Karbowska J, Kochan Z, Terracciano CMN, Yacoub MH. Effects of chronic administration of clenbuterol on function and metabolism of adult rat cardiac muscle. Am J Physiol Heart Circ Physiol 2005; 288:H1468-76. [PMID: 15528231 DOI: 10.1152/ajpheart.00624.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Clenbuterol (Clen), a β2-agonist, is known to produce skeletal and myocardial hypertrophy. This compound has recently been used in combination with left ventricular assist devices for the treatment of end-stage heart failure to reverse or prevent the adverse effects of unloading-induced myocardial atrophy. However, the mechanisms of action of Clen on myocardial cells have not been fully elucidated. In an attempt to clarify this issue, we examined the effects of chronic administration of Clen on Ca2+ handling and substrate preference in cardiac muscle. Rats were treated with either 2 mg·kg−1·day−1 Clen or saline (Sal) for 4 wk with the use of osmotic minipumps. Ventricular myocytes were enzymatically dissociated. Cells were field stimulated at 0.5, 1, and 2 Hz, and cytoplasmic Ca2+ transients were monitored with the use of the fluorescent indicator indo-1 acetoxymethyl ester. Two-dimensional surface area and action potentials in current clamp were also measured. We found that in the Clen group there was significant hypertrophy at the organ and cellular levels compared with Sal. In Clen myocytes, the amplitude of the indo-1 ratio transients was significantly increased. Sarcoplasmic reticulum Ca2+ content, estimated by rapid application of 20 mM caffeine, was significantly increased in the Clen group. The action potential was prolonged in the Clen group compared with Sal. Carbohydrate contribution to the tricarboxylic cycle (Krebs cycle) flux was increased several times in the Clen group. This increase was associated with decreased expression of peroxisome proliferator-activated receptor-α. This study shows that chronic administration of Clen induces cellular hypertrophy and increases oxidative carbohydrate utilization together with an increase in sarcoplasmic reticulum Ca2+ content, which results in increased amplitude of the Ca2+ transients. These effects could be important when Clen is used in conjunction with left ventricular assist devices treatment.
Collapse
Affiliation(s)
- Gopal K R Soppa
- Imperial College London, National Heart and Lung Institute, Harefield Heart Science Centre, Harefield, Middlesex UB9 6JH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Amino acids contained in proteins can be transformed either in glucose precursors or in acetate, the end product of free fatty acid (FFA) oxidation. The dynamics of glucose, FFA, and amino acid competition for entry into the citric acid cycle (tricarboxylic acid [TCA] cycle) are very complex and not fully understood. Conditions where glucose is insufficiently driven to full oxidation are characterized by lowest efficiency in energy production per mole of oxygen consumed. Moreover, acetate provided by oxidation of FFA increases consumption of amino acids as precursors of the oxaloacetate required for condensation with acetate and for maintenance of citrate synthesis. Increased consumption of amino acids in the TCA cycle, if not matched by adequate intake, leads to muscular wasting and cachexia. Therefore, amino acid needs are very complex, and their intake must provide a balanced ratio of glucogenic and ketogenic precursors suitable to trigger entry of glucose to full oxidation and blunt the level of FFA utilization. Optimization of substrate entry into energy production must also be coupled with sufficient availability of amino acids in ratios suitable for maintaining protein synthesis, inhibiting the catabolic drive, and promoting integrity of cellular proteic structures. Alimentary proteins have a content of amino acids that is far from the stoichiometric ratios of essential amino acids required by humans. An amino acid formulation suitable to match energy needs, control carbohydrate and lipid flow into the TCA cycle, and promote protein synthesis in contracting cells is detailed in this article.
Collapse
|
13
|
Walker J, Jijon HB, Churchill T, Kulka M, Madsen KL. Activation of AMP-activated protein kinase reduces cAMP-mediated epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 2003; 285:G850-60. [PMID: 12869384 DOI: 10.1152/ajpgi.00077.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AMP-activated protein kinase (AMPK) is activated in response to fluctuations in cellular energy status caused by oxidative stress. One of its targets is the cystic fibrosis transmembrane conductance regulator (CFTR), which is the predominant Cl- secretory channel in colonic tissue. The aim of this study was to determine the role of AMPK in the modulation of colonic chloride secretion under conditions of oxidative stress and chronic inflammation. Chloride secretion and AMPK activity were examined in colonic tissue from adult IL-10-deficient and wild-type 129 Sv/Ev mice in the presence and absence of pharmacological AMPK inhibitors and activators, respectively. Apical levels of CFTR were measured in brush-border membrane vesicles. Cell culture studies in human colonic T84 monolayers examined the effect of hydrogen peroxide and pharmacological activation of AMPK on forskolin-stimulated chloride secretion. Inflamed colons from IL-10-deficient mice exhibited hyporesponsiveness to forskolin stimulation in association with reductions in surface CFTR expression and increased AMPK activity. Inhibition of AMPK restored tissue responsiveness to forskolin, whereas stimulation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) induced tissue hyporesponsivness in wild-type mice. T84 cells exposed to hydrogen peroxide demonstrated a time-dependent increase in AMPK activity and reduction of forskolin-stimulated chloride secretion. Inhibition of AMPK prevented the reduction in chloride secretion. Treatment of cells with the AMPK activator, AICAR, resulted in a decreased chloride secretion. In conclusion, AMPK activation is linked with reductions in cAMP-mediated epithelial chloride flux and may be a contributing factor to the hyporesponsiveness seen under conditions of chronic inflammation.
Collapse
Affiliation(s)
- John Walker
- Univ. of Alberta, 6146 Dentistry Pharmacy Bldg., Edmonton, AB, Canada T6G 2C2
| | | | | | | | | |
Collapse
|
14
|
Abstract
The focus of this review is the regulated trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in distal compartments of the protein secretory pathway and the question of how changes in CFTR cellular distribution may impact on the functions of polarized epithelial cells. We summarize data concerning the cellular localization and activity of CFTR and attempt to synthesize often conflicting results from functional studies of regulated endocytosis and exocytosis in CFTR-expressing cells. In some instances, findings that are inconsistent with regulated CFTR trafficking may result from the use of overexpression systems or nonphysiological experimental conditions. Nevertheless, judging from data on other transporters, an appropriate cellular context is necessary to support regulated CFTR trafficking, even in epithelial cells. The discovery that disease mutations can influence CFTR trafficking in distal secretory and recycling compartments provides support for the concept that regulated CFTR recycling contributes to normal epithelial function, including the control of apical CFTR channel density and epithelial protein secretion. Finally, we propose molecular mechanisms for regulated CFTR endocytosis and exocytosis that are based on CFTR interactions with other proteins, particularly those whose primary function is membrane trafficking. These models provide testable hypotheses that may lead to elucidation of CFTR trafficking mechanisms and permit their experimental manipulation in polarized epithelial cells.
Collapse
Affiliation(s)
- Carol A Bertrand
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S362 BST, 3500 Terrace St, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
15
|
Lewandowski ED. Cardiac carbon 13 magnetic resonance spectroscopy: on the horizon or over the rainbow? J Nucl Cardiol 2002; 9:419-28. [PMID: 12161719 DOI: 10.1067/mnc.2002.125811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E Douglas Lewandowski
- Program in Integrative Cardiac Metabolism, Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|