1
|
Kittl M, Winklmayr M, Helm K, Lettner J, Gaisberger M, Ritter M, Jakab M. Acid- and Volume-Sensitive Chloride Currents in Human Chondrocytes. Front Cell Dev Biol 2020; 8:583131. [PMID: 33282866 PMCID: PMC7691427 DOI: 10.3389/fcell.2020.583131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Chondrocytes face extreme alterations of extracellular osmolarity and pH, which force them to appropriately regulate their cell volume (CV) and cellular pH. Perturbations of these mechanisms lead to chondrocyte death and ultimately to osteoarthritis (OA), the most common chronic joint diseases worldwide. OA hallmarks are altered cartilage hydration and severe fluid acidification. Impaired CV regulation and acidotoxicity contribute to disease progression and volume-sensitive anion channels are upregulated in OA. This study assessed the effect of hypotonicity and extracellular acidification on chondrocyte Cl– conductances and CV regulation. Cl– currents and membrane potentials were measured in human C28/I2 cells and primary human chondrocytes using the patch clamp technique. Intracellular pH was assessed by BCECF fluorescence, CV measurements were performed using the Coulter method, and cell viability/cell death by a resazurin assay. Hypotonic cell swelling caused activation of a volume-sensitive outwardly rectifying (VSOR) Cl– current followed by a regulatory volume decrease (RVD), which was attenuated by the Cl– channel blocker DCPIB. Extracellular, but not intracellular acidification to pH ≤ 5.0 elicited an acid-sensitive outwardly rectifying (ASOR) Cl– conductance. Activation of either current depolarized the cell membrane potential. Under simultaneous hypotonic and acidic stimulation, VSOR and ASOR currents transiently coactivated, giving rise to a mixed current phenotype. Over time the VSOR current gradually vanished and the residual conductance showed a pure ASOR current phenotype. Extracellular acidification caused an isotonic CV gain and a complete suppression of RVD under hypotonic conditions. The results suggest that deactivation of the VSOR current under acidic conditions impairs CV regulation in chondrocytes, which is likely to compromise chondrocyte viability.
Collapse
Affiliation(s)
- Michael Kittl
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Martina Winklmayr
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Helm
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Lettner
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Rios N, Piacenza L, Trujillo M, Martínez A, Demicheli V, Prolo C, Álvarez MN, López GV, Radi R. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate. Free Radic Biol Med 2016; 101:284-295. [PMID: 27641237 DOI: 10.1016/j.freeradbiomed.2016.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Gloria V López
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
3
|
Parrish D, Lindell SL, Reichstetter H, Aboutanos M, Mangino MJ. Cell Impermeant-based Low-volume Resuscitation in Hemorrhagic Shock: A Biological Basis for Injury Involving Cell Swelling. Ann Surg 2016; 263:565-72. [PMID: 25915911 DOI: 10.1097/sla.0000000000001049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the role of cell swelling in severe hemorrhagic shock and resuscitation injury. BACKGROUND Circulatory shock induces the loss of energy-dependent volume control mechanisms. As water enters ischemic cells, they swell, die, and compress nearby vascular structures, which further aggravates ischemia by reducing local microcirculatory flow and oxygenation. Loading the interstitial space with cell impermeant molecules prevents water movement into the cell by passive biophysical osmotic effects, which prevents swelling injury and no-reflow. METHODS Adult rats were hemorrhaged to a pressure of 30 to 35 mm Hg, held there until the plasma lactate reached 10 mM, and given a low-volume resuscitation (LVR) (10%-20% blood volume) with saline or various cell impermeants (sorbitol, raffinose, trehalose, gluconate, and polyethylene glycol-20k (PEG-20k). When lactate again reached 10 mM after LVR, full resuscitation was started with crystalloid and red cells. One hour after full resuscitation, the rats were euthanized. Capillary blood flow was measured by the colored microsphere technique. RESULTS Impermeants prevented ischemia-induced cell swelling in liver tissue and dramatically improved LVR outcomes in shocked rats. Small cell impermeants and PEG-20k in LVR solutions increased tolerance to the low flow state by two and fivefold, respectively, normalized arterial pressure during LVR, and lowered plasma lactate after full resuscitation, relative to saline. This was accompanied by higher capillary blood flow with cell impermeants. CONCLUSIONS Ischemia-induced lethal cell swelling during hemorrhagic shock is a key mediator of resuscitation injury, which can be prevented by cell impermeants in low-volume resuscitation solutions.
Collapse
Affiliation(s)
- Dan Parrish
- *From the Departments of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA †Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA ‡Physiology and Biophysics, Division of Acute Care Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | | | | | | | | |
Collapse
|
4
|
Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle 2015; 13:3059-75. [PMID: 25486565 DOI: 10.4161/15384101.2014.949091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Coordinated cell proliferation and ability to form intercellular seals are essential features of epithelial tissue function. Tight junctions (TJs) classically act as paracellular diffusion barriers. More recently, their role in regulating epithelial cell proliferation in conjunction with scaffolding zonula occludens (ZO) proteins has come to light. The kidney collecting duct (CD) is a model of tight epithelium that displays intense proliferation during embryogenesis followed by very low cell turnover in the adult kidney. Here, we examined the influence of each ZO protein (ZO-1, -2 and -3) on CD cell proliferation. We show that all 3 ZO proteins are strongly expressed in native CD and are present at both intercellular junctions and nuclei of cultured CD principal cells (mCCDcl1). Suppression of either ZO-1 or ZO-2 resulted in increased G0/G1 retention in mCCDcl1 cells. ZO-2 suppression decreased cyclin D1 abundance while ZO-1 suppression was accompanied by increased nuclear p21 localization, the depletion of which restored cell cycle progression. Contrary to ZO-1 and ZO-2, ZO-3 expression at intercellular junctions dramatically increased with cell density and relied on the presence of ZO-1. ZO-3 depletion did not affect cell cycle progression but increased cell detachment. This latter event partly relied on increased nuclear cyclin D1 abundance and was associated with altered β1-integrin subcellular distribution and decreased occludin expression at intercellular junctions. These data reveal diverging, but interconnected, roles for each ZO protein in mCCDcl1 proliferation. While ZO-1 and ZO-2 participate in cell cycle progression, ZO-3 is an important component of cell adhesion.
Collapse
Key Words
- CCD, cortical collecting duct
- CD, collecting duct
- CycD1, cyclin D1
- OMCD, outer medullary collecting duct
- PCNA, proliferating cell nuclear antigen
- PCT, proximal tubule
- TAL, thick ascending limb of Henle's loop
- TJ, tight junction
- ZO, zonula occludens
- ZONAB
- ZONAB, ZO-1-associated nucleic acid-binding protein
- adhesion
- cell cycle
- cyclin D1
- kidney collecting duct
- p21
- proliferation
- zonula occludens
Collapse
Affiliation(s)
- Xiaomu Qiao
- a Department of Cellular Physiology and Metabolism and Service of Nephrology ; University Medical Center; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
5
|
Blood-brain barrier Na transporters in ischemic stroke. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:113-46. [PMID: 25307215 DOI: 10.1016/bs.apha.2014.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood-brain barrier (BBB) endothelial cells form a barrier that is highly restrictive to passage of solutes between blood and brain. Many BBB transport mechanisms have been described that mediate transcellular movement of solutes across the barrier either into or out of the brain. One class of BBB transporters that is all too often overlooked is that of the ion transporters. The BBB has a rich array of ion transporters and channels that carry Na, K, Cl, HCO3, Ca, and other ions. Many of these are asymmetrically distributed between the luminal and abluminal membranes, giving BBB endothelial cells the ability to perform vectorial transport of ions across the barrier between blood and brain. In this manner, the BBB performs the important function of regulating the volume and composition of brain interstitial fluid. Through functional coupling of luminal and abluminal transporters and channels, the BBB carries Na, Cl, and other ions from blood into brain, producing up to 30% of brain interstitial fluid in healthy brain. During ischemic stroke cerebral edema forms by processes involving increased activity of BBB luminal Na transporters, resulting in "hypersecretion" of Na, Cl, and water into the brain interstitium. This review discusses the roles of luminal BBB Na transporters in edema formation in stroke, with an emphasis on Na-K-Cl cotransport and Na/H exchange. Evidence that these transporters provide effective therapeutic targets for reduction of edema in stroke is also discussed, as are recent findings regarding signaling pathways responsible for ischemia stimulation of the BBB Na transporters.
Collapse
|
6
|
Hahn C, Breil M, Schewe JC, Messelken M, Rauch S, Gräsner JT, Wnent J, Seewald S, Bohn A, Fischer M. Hypertonic saline infusion during resuscitation from out-of-hospital cardiac arrest: A matched-pair study from the German Resuscitation Registry. Resuscitation 2014; 85:628-36. [DOI: 10.1016/j.resuscitation.2013.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/23/2022]
|
7
|
Panickar KS, Qin B, Anderson RA. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract, and resveratrolin vitro. Nutr Neurosci 2014; 18:297-306. [DOI: 10.1179/1476830514y.0000000127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Coronary flow reserve is associated with tissue ischemia and is an additive predictor of intensive care unit mortality to traditional risk scores in septic shock. Int J Cardiol 2014; 172:103-8. [PMID: 24447732 DOI: 10.1016/j.ijcard.2013.12.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/31/2013] [Accepted: 12/26/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reduced coronary velocity flow reserve (CFR) is associated with poor outcome in patients with cardiovascular disease. We investigated whether CFR is associated with tissue ischemia and acidosis, impaired myocardial deformation and adverse outcome in patients with septic shock. METHODS In 70 mechanically-ventilated patients with septic shock, we examined: a) S' and E' mitral annular velocities using tissue Doppler imaging (TDI), b) CFR of the left anterior descending artery after adenosine infusion using transesophageal Doppler echocardiography and c) lactate, pyruvate and glycerol in tissue by means of a microdialysis (MD) catheter inserted into the subcutaneous adipose tissue as markers of tissue ischemia and acidosis. SOFA and APACHE II prognostic scores and mortality in the intensive care unit (ICU) were recorded. RESULTS Reduced CFR, S' and E' as well as increased E/E' correlated with increased SOFA, APACHE II and MD lactate to pyruvate ratio (p<0.05 for all correlations). Impaired TDI markers also correlated with increased MD glycerol (p<0.05). Reduced CFR correlated with decreased E' (p<0.05). CFR was 1.8 ± 0.42 in non-survivors (n=34) versus 2.08 ± 0.44 in survivors (p=0.007). A CFR<1.90 predicted mortality with sensitivity of 70% and specificity of 69% (area under the curve 77%; p=0.003). CFR had an additive value to APACHE (chi-square change: 4.358, p=0.03) and SOFA (chi-square change: 3.692, p=0.04) for the prediction of mortality. CONCLUSION Tissue ischemia and acidosis is a common pathophysiological link between decreased CFR and impaired LV myocardial deformation in septic shock. CFR is an additive predictor of ICU mortality to traditional risk scores in septic shock.
Collapse
|
9
|
L-arginine infusion during resuscitation for hemorrhagic shock: impact and mechanism. J Trauma Acute Care Surg 2012; 72:397-402. [PMID: 22439203 DOI: 10.1097/ta.0b013e3181d039fd] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our previous work showed a survival advantage with L-arginine (L-Arg) pretreatment in a swine model of severe hemorrhagic shock. This study was designed to evaluating whether the benefit is sustained when L-Arg is given during resuscitation and whether the mechanism is mediated by enzymatic activation of nitric oxide (NO) synthesis. METHODS Adult rats (n = 30) underwent 40% blood volume loss and were resuscitated with saline (3 shed blood volume). Animals were divided into five treatment groups of six animals each: (1) Sham, (2) Control (resuscitation alone), (3) L-Arg (300 mg/kg)with resuscitation, (4) L-Arg + L-nitroarginine methyl ester pretreatment, and (5) D-arginine (300 mg/kg) with resuscitation.Animals were observed for 240 minutes postresuscitation or until death. Hemodynamic, metabolic, histologic, and survival outcomes were measured. RESULTS Administration of L-Arg after hemorrhage and before resuscitation significantly improved outcomes, relative to the control group.The L-Arg infusion improved terminal arterial pressures, lowered lactate, improved small bowel histologic signs of reperfusion injury, and increased survival (p < 0.05). Endpoints of the L-Arg group were similar to the Sham group. The benefits of L-Arg infusion were abolished or attenuated when animals were pretreated with L-nitro arginine methyl ester and potentiated with D-arginine, suggesting a NO-specific mechanism of L-Arg. Finally, severe shock and resuscitation injury significantly elevated circulating asymmetric dimethylarginine levels, which are potent competitive inhibitors of NO synthetase. CONCLUSION L-Arg infusion during resuscitation offers a significant functional, metabolic, and survival benefit after severe hemorrhagic shock.The mechanism seems to be by activation of NO synthesis with its attendant benefits to local perfusion and inflammation after global reperfusion.
Collapse
|
10
|
Kaba NK, Schultz J, Law FY, Lefort CT, Martel-Gallegos G, Kim M, Waugh RE, Arreola J, Knauf PA. Inhibition of Na+/H+ exchanger enhances low pH-induced L-selectin shedding and beta2-integrin surface expression in human neutrophils. Am J Physiol Cell Physiol 2008; 295:C1454-63. [PMID: 18829897 DOI: 10.1152/ajpcell.00535.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion injury is a common pathological occurrence causing tissue damage in heart attack and stroke. Entrapment of neutrophils in the vasculature during ischemic events has been implicated in this process. In this study, we examine the effects that lactacidosis and consequent reductions in intracellular pH (pH(i)) have on surface expression of adhesion molecules on neutrophils. When human neutrophils were exposed to pH 6 lactate, there was a marked decrease in surface L-selectin (CD62L) levels, and the decrease was significantly enhanced by inclusion of Na(+)/H(+) exchanger (NHE) inhibitor 5-(N,N-hexamethylene)amiloride (HMA). Similar effects were observed when pH(i) was reduced while maintaining normal extracellular pH, by using an NH(4)Cl prepulse followed by washes and incubation in pH 7.4 buffer containing NHE inhibitors [HMA, cariporide, or 5-(N,N-dimethyl)amiloride (DMA)]. The amount of L-selectin shedding induced by different concentrations of NH(4)Cl in the prepulse correlated with the level of intracellular acidification with an apparent pK of 6.3. In contrast, beta(2)-integrin (CD11b and CD18) was only slightly upregulated in the low-pH(i) condition and was enhanced by NHE inhibition to a much lesser extent. L-selectin shedding was prevented by treating human neutrophils with inhibitors of extracellular metalloproteases (RO-31-9790 and KD-IX-73-4) or with inhibitors of intracellular signaling via p38 MAP kinase (SB-203580 and SB-239063), implying a transmembrane effect of pH(i). Taken together, these data suggest that the ability of NHE inhibitors such as HMA to reduce ischemia-reperfusion injury may be related to the nearly complete removal of L-selectin from the neutrophil surface.
Collapse
Affiliation(s)
- Nubia K Kaba
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rivard AL, Hellmich C, Swingen CM, Kamdar FD, Cordova EJ, Holstad J, Baranowski TJ, Bianco RW, John R. Intermittent antegrade cardioplegia: isolated heart preservation with the Asporto heart preservation device. Prog Transplant 2008. [PMID: 18615978 DOI: 10.7182/prtr.18.2.044435h811qw0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. OBJECTIVE To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. MATERIALS AND METHODS Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n = 13) or 15.6 (0.6) hours (n = 11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n = 9) given a single antegrade dose, were compared with hearts (group 2, n = 8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. RESULTS Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P = .00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) (P = .0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. CONCLUSION Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.
Collapse
|
12
|
Rivard AL, Hellmich C, Swingen CM, Kamdar FD, Cordova EJ, Holstad J, Baranowski TJ, Bianco RW, John R. Intermittent Antegrade Cardioplegia: Isolated Heart Preservation with the Asporto Heart Preservation Device. Prog Transplant 2008; 18:127-33. [DOI: 10.1177/152692480801800210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. Objective To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. Materials and Methods Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n=13) or 15.6 (0.6) hours (n=11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n=9) given a single antegrade dose, were compared with hearts (group 2, n=8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. Results Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P=.00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) ( P=.0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. Conclusion Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.
Collapse
Affiliation(s)
- Andrew L. Rivard
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Christina Hellmich
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Cory M. Swingen
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Forum D. Kamdar
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Erin J. Cordova
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Jonathan Holstad
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Thomas J. Baranowski
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Richard W. Bianco
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Ranjit John
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| |
Collapse
|
13
|
Zhou RH, Long C, Liu J, Liu B. Inhibition of the Na+/H+ exchanger protects the immature rabbit myocardium from ischemia and reperfusion injury. Pediatr Cardiol 2008; 29:113-20. [PMID: 17874219 DOI: 10.1007/s00246-007-9072-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/25/2007] [Accepted: 06/27/2007] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study investigated the cardioprotective effects of pharmacologic pretreatment with HOE642, a selective Na(+)/H(+ )exchanger (NHE) isoform-1 inhibitor, in immature rabbit hearts, as compared with ischemic preconditioning (IPC). METHODS For this study, 36 isolated immature New Zealand white rabbit hearts were equilibrated on the Langendorff apparatus. They were randomly divided into three groups: control group, IPC group, and HOE642 group. The hearts in each group were subjected to 60 min of ischemia plus 60 min of reperfusion (I/R). In the IPC group, the hearts were preconditioned by 5 min of ischemia followed by 10 min of reperfusion before I/R. In the HOE642 group, the hearts were pretreated with HOE642 (5 mumol/l) for 15 min before I/R. Left ventricular performance (LVDP, +dp/dt(max), -dp/dt(max)), coronory artery flow (CF), myocardial water content, adenosine triphosphate (ATP), cardiac-specific enzymes (creatine kinase [CK], CK fraction MB [CK-MB], and lacate dehydrogenase [LDH]), and intracellular calcium content were measured. Myocardial ultrastructure was observed under transmission electron microscopy. RESULTS The recovery rates for left ventricular performance and CF in both the HOE642 and the IPC groups increased compared with those for the control subjects (p < 0.05). Moreover, the recovery rates for LVDP, +dp/dt(max), -dp/dt(max), and CF in the HOE642 group were markedly higher than in the IPC group at most time points of reperfusion (p < 0.05). Compared with the control group, CK, CK-MB, and LDH in the HOE642 group were decreased significantly (p < 0.05), whereas only LDH was reduced in the IPC group (p < 0.05). Water content was significantly reduced and ATP reserve was significantly increased in both the IPC and HOE642 groups (p < 0.05). However, compared with the IPC group, water content in the HOE642 group was significantly lower (81.26% +/- 1.26% vs 83.58% +/- 1.27%; p < 0.05) and ATP was significantly higher (21.46 +/- 2.40 vs 17.66 +/- 1.50 mug/g; p < 0.05). The HOE642 pretreatment exerted a better effect of reducing calcium overload than IPC (265.8 +/- 41.1 vs 408.5 +/- 56.8 mg/kg dry weight; p < 0.05). The blinded ultrastructural assessment under transmission electron microscopy showed that HOE642 brought about more myocyte salvage than IPC. CONCLUSION This study demonstrated that HOE642 pretreatment is superior to IPC against ischemia and reperfusion injury in isolated immature rabbit myocardium.
Collapse
Affiliation(s)
- R-H Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | |
Collapse
|
14
|
Sugimachi K, Roach KL, Rhoads DB, Tompkins RG, Toner M. Nonmetabolizable glucose compounds impart cryotolerance to primary rat hepatocytes. ACTA ACUST UNITED AC 2006; 12:579-88. [PMID: 16579691 DOI: 10.1089/ten.2006.12.579] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We herein report a novel method for the cryopreservation of hepatocytes using a non-metabolizable glucose derivative in an attempt to mimic the natural cryoprotective adaptations observed in freeze-tolerant frogs. Primary rat hepatocytes were loaded with 3-O-methyl glucose (3OMG) through endogenous glucose transporters without evident toxicity. The 3OMG-loaded hepatocytes were then frozen in a controlled rate freezer down to -80 degrees C and stored in liquid nitrogen at -196 degrees C. Hepatocytes cryopreserved with a relatively small amount of intracellular 3OMG (<0.2 M) showed high post-thaw viability and maintained long-term hepatospecific functions, including synthesis, metabolism, and detoxification. Metabolite uptake and secretion rates were also largely preserved in the cryopreserved hepatocytes. This is the first study to demonstrate the use of the non-metabolizable glucose derivative 3OMG in hepatocyte cryopreservation.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Harvard-MIT Division of Health Sciences and Technology, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
15
|
Pedersen SF, O'Donnell ME, Anderson SE, Cala PM. Physiology and pathophysiology of Na+/H+ exchange and Na+ -K+ -2Cl- cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1-25. [PMID: 16484438 DOI: 10.1152/ajpregu.00782.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arguably, two of the most important ion transporters involved in these processes are the Na+/H+ exchanger isoform 1 (NHE1) and Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1). Both NHE1 and NKCC1 are stimulated by cell shrinkage and by numerous other stimuli, including a wide range of hormones and growth factors, and for NHE1, intracellular acidification. Both transporters can be important regulators of cell volume, yet their activity also, directly or indirectly, affects the intracellular concentrations of Na+, Ca2+, Cl-, K+, and H+. Conversely, when either transporter responds to a stimulus other than cell shrinkage and when the driving force is directed to promote Na+ entry, one consequence may be cell swelling. Thus stimulation of NHE1 and/or NKCC1 by a deviation from homeostasis of a given parameter may regulate that parameter at the expense of compromising others, a coupling that may contribute to irreversible cell damage in a number of pathophysiological conditions. This review addresses the roles of NHE1 and NKCC1 in the cellular responses to physiological and pathophysiological stress. The aim is to provide a comprehensive overview of the mechanisms and consequences of stress-induced stimulation of these transporters with focus on the heart, brain, and blood. The physiological stressors reviewed are metabolic/exercise stress, osmotic stress, and mechanical stress, conditions in which NHE1 and NKCC1 play important physiological roles. With respect to pathophysiology, the focus is on ischemia and severe hypoxia where the roles of NHE1 and NKCC1 have been widely studied yet remain controversial and incompletely elucidated.
Collapse
Affiliation(s)
- S F Pedersen
- Department of Biochemistry, Institute of Molecular Biology and Physiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
16
|
Zakaria ER, Garrison RN, Kawabe T, Harris PD. Direct peritoneal resuscitation from hemorrhagic shock: effect of time delay in therapy initiation. ACTA ACUST UNITED AC 2005; 58:499-506; discussion 506-8. [PMID: 15761343 PMCID: PMC1775035 DOI: 10.1097/01.ta.0000152892.24841.54] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND After conventional resuscitation from hemorrhagic shock, splanchnic microvessels progressively constrict, leading to impairment of blood flow. This occurs despite restoration and maintenance of central hemodynamics. The authors' recent studies have demonstrated that topical and continuous ex vivo exposure of the gut microvasculature to a glucose-based clinical peritoneal dialysis solution (Delflex), as a technique of direct peritoneal resuscitation (DPR), can prevent these postresuscitation events when initiated simultaneously with conventional resuscitation. This study aimed to determine whether DPR applied after conventional resuscitation reverses the established postresuscitation intestinal vasoconstriction and hypoperfusion. METHODS Male Sprague-Dawley rats were bled to 50% of baseline mean arterial pressure and resuscitated intravenously over 30 minutes with the shed blood returned plus two times the shed blood volume of saline. Initiation of ex vivo, topical DPR was delayed to 2 hours (group 1, n = 8), or to 4 hours (group 2, n = 8), respectively, after conventional resuscitation. Intravital microscopy and Doppler velocimetry were used to measure terminal ileal microvascular diameters of inflow A1 and premucosal A3 (proximal pA3, distal dA3) arterioles and blood flow in the A1 arteriole, respectively. Maximum arteriolar dilation capacity was obtained from the topical application, in the tissue bath, of the endothelium-independent nitric oxide-donor sodium nitroprusside (10M). RESULTS Hemorrhagic shock caused a selective vasoconstriction of A1 (-24.1% +/- 2.15%) arterioles from baseline, which was not seen in A3 vessels. This caused A1 blood flow to drop by -68.6% of the prehemorrhage value. Conventional resuscitation restored and maintained hemodynamics in all the animals without additional fluid therapy. In contrast, there was a generalized and progressive postresuscitation vasoconstriction of A1 (-21.7%), pA3 (-18.5%), and dA3 (-18.7%) vessels. The average postresuscitation A1 blood flow was -49.5% of the prehemorrhage value, indicating a persistent postresuscitation hypoperfusion. Direct peritoneal resuscitation reversed the postresuscitation vasoconstriction by 40.9% and enhanced A1 blood flow by 112.9% of the respective postresuscitation values. CONCLUSIONS Delayed DPR reverses the gut postresuscitation vasoconstriction and hypoperfusion regardless of the initiation time. This occurs without adverse effects on hemodynamics. Direct peritoneal resuscitation-mediated enhancement of tissue perfusion results from the local effects from the vasoactive components of the Delflex solution, which are hyperosmolality, lactate buffer anion, and, to a lesser extent, low pH. The molecular mechanism of this vasodilation effect needs further investigation.
Collapse
Affiliation(s)
- El Rasheid Zakaria
- Department of Physiology and Biophysics, University of Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
17
|
Zani BG, Bohlen HG. Sodium channels are required during in vivo sodium chloride hyperosmolarity to stimulate increase in intestinal endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 2004; 288:H89-95. [PMID: 15331363 DOI: 10.1152/ajpheart.00644.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.
Collapse
Affiliation(s)
- Brett G Zani
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., MS 426, Indianapolis, IN 46202, USA
| | | |
Collapse
|
18
|
Oberleithner H, Ludwig T, Riethmüller C, Hillebrand U, Albermann L, Schäfer C, Shahin V, Schillers H. Human Endothelium: Target for Aldosterone. Hypertension 2004; 43:952-6. [PMID: 14993200 DOI: 10.1161/01.hyp.0000123572.45556.a5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone has long been known to control water and electrolyte balance by acting on mineralocorticoid receptors in kidney. However, recent studies demonstrated the presence of these receptors in nonclassical locations, including the cardiovascular system. We tested the hypothesis whether endothelial cells respond to aldosterone with changes in cell volume, a measure for ion-mediated water movement across the cell membrane. By means of atomic force microscopy in fluid, we measured volume of adherent human umbilical venous endothelial cells exposed for 72 hours to 10 nmol/L aldosterone. Over this period of time, cells swell by ≈18%. Aldosterone-induced swelling is prevented by 100 nmol/L of the mineralocorticoid receptor antagonist spironolactone, added to the primary endothelial cell culture. Aldosterone-treated cells dramatically shrink when 1 μmol/L of the diuretic amiloride is applied. Cells deprived of aldosterone do not respond to amiloride. Our conclusions are: (1) aldosterone leads to sustained cell swelling inhibited by administration of spironolactone or the sodium channel blocker amiloride; (2) cells respond to amiloride after aldosterone exposure; (3) renal diuretics act on endothelial cells; and (4) both amiloride and spironolactone could be useful for medical applications to prevent aldosterone-mediated endothelial dysfunction.
Collapse
|
19
|
Abstract
Aldosterone controls electrolyte balance by acting on the renal epithelium. However, there is strong evidence that vascular endothelium is another target for mineralocorticoids. Endothelial cells gain sensitivity to diuretics when exposed to aldosterone. Atomic force microscopy detects such phenomena. It is speculated that endothelium and kidney join forces in the regulation of body fluids.
Collapse
Affiliation(s)
- Hans Oberleithner
- Nanolab, Institute of Physiology II, University of Münster, 48149 Muenster, Germany
| |
Collapse
|
20
|
Heijnen BHM, Straatsburg IH, Kager LM, van der Kleij AJ, Gouma DJ, van Gulik TM. Effect of in situ hypothermic perfusion on intrahepatic pO2 and reactive oxygen species formation after partial hepatectomy under total hepatic vascular exclusion in pigs. Liver Int 2003; 23:19-27. [PMID: 12640723 DOI: 10.1034/j.1600-0676.2003.01769.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
AIM This study examined attenuation of ischemia and reperfusion (I/R) induced liver injury during liver resections by hypothermic perfusion of the liver under total hepatic vascular exclusion (THVE). METHOD Reactive oxygen species (ROS) formation, microcirculatory integrity and endothelial cell damage were investigated. Left hemihepatectomy (LHX) was performed without in situ perfusion (control-LHX, n = 5) or with concomitant in situ perfusion with hypothermic (4 degrees C) Ringer-glucose (cold-LHX, n = 5) or normothermic (38 degrees C) Ringer-glucose (warm-LHX, n = 5). Glutathione (GSH) and malondialdehyde (MDA) concentrations, tissue pO2 levels and hyaluronic acid (HA) uptake capacity were determined. RESULTS After cold, warm and control-LHX, 24 h survival was 5/5, 0/5 and 3/5, respectively. GSH levels were best preserved after cold-LHX during reperfusion. MDA levels increased in all groups without significant differences between the groups during reperfusion. Tissue pO2 levels increased after cold-LHX whereas after warm-LHX and control-LHX, pO2 levels decreased during reperfusion. HA uptake capacity remained normal after cold-LHX. After warm-LHX and control-LHX, HA uptake capacity decreased after 6 h of reperfusion but recovered after 24 h of reperfusion in the control-LHX group. CONCLUSION Moderate hypothermic perfusion protects the liver from I/R injury during LHX under THVE. This protective effect depended on maintenance of liver microcirculation rather than a reduction in ROS formation.
Collapse
Affiliation(s)
- Bob H M Heijnen
- Department of Surgery, Surgical Laboratory, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Molnár Z, Petheo GL, Fülöp C, Spät A. Effects of osmotic changes on the chemoreceptor cell of rat carotid body. J Physiol 2003; 546:471-81. [PMID: 12527733 PMCID: PMC2342532 DOI: 10.1113/jphysiol.2002.024125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The carotid body plays a crucial role in cardiorespiratory regulation. In the present study we investigated the effect of osmotic changes on cytoplasmic calcium concentration ([Ca(2+)](c)) and pH (pH(i)) of isolated chemoreceptor cells of the rat carotid body. In CO(2)/HCO(3)(-)-buffered medium, reduction of osmolality from the control level of 300 mosmol kg(-1) to 250-285 mosmol kg(-1) resulted in a rise in [Ca(2+)](c), as measured with Indo-1, whereas elevation of osmolality to 350 mosmol kg(-1) had no effect. The Ca(2+) response required extracellular Ca(2+) and was reduced by application of the L-type Ca(2+) channel antagonist nifedipine (10 microM). The hyposmosis-induced Ca(2+) response could be prevented by application of niflumic acid (300 microM), an inhibitor of the swelling-activated Cl(-) channel. In whole-cell patch-clamp experiments niflumic acid abolished the swelling-activated Cl(-) current but only slightly depressed the Ca(2+) current. The inhibition of Ca(2+) current by niflumic acid does not account for its action in preventing of hyposmosis-induced Ca(2+) response, which seems to be initiated by Cl(-)-mediated depolarisation. Withdrawal of CO(2)/HCO(3)(-) also prevented the Ca(2+) response. Reduction of the osmotic concentration by 50 mosmol kg(-1) induced a small but sustained decrease in pH(i), while elevation by 50 mosmol kg(-1) had an inverse effect, as measured fluorimetrically with carboxy SNARF-1. Our conclusion is that in the rat chemoreceptor cell the activation of Cl(-) channels, e.g. by hyposmotic challenge, induces depolarisation, which, in turn, activates voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
22
|
Terminella C, Tollefson K, Kroczynski J, Pelli J, Cutaia M. Inhibition of apoptosis in pulmonary endothelial cells by altered pH, mitochondrial function, and ATP supply. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1291-302. [PMID: 12424147 DOI: 10.1152/ajplung.00246.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of altered extracellular pH, mitochondrial function, and ATP content on development of apoptosis in human pulmonary artery endothelial cells after treatment with staurosporine (STS). STS produced a concentration- and time-dependent increase in caspase-3 activity in pH 7.4 medium that reached a peak at 6 h. The increase in caspase activity was associated with significant DNA fragmentation. Fluorescent imaging of treated monolayers in pH 7.4 medium with Hoechst-33342-propidium iodide demonstrated a large percentage of apoptotic cells ( approximately 40%) with no evidence of necrosis. Caspase activity, DNA fragmentation, and percentage of apoptotic cells were reduced after STS treatment in acidic media (pH 7.0 and 6.6). The Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM inhibited STS-induced apoptosis, whereas the rise in intracellular Ca2+concentration in STS-treated cells in pH 7.4 medium was reduced in pH 7.0 medium. These results suggest that one mechanism for inhibitory effects of acidosis may be a pH-induced alteration in Ca2+ signaling. Treatment with STS in the presence of oligomycin (10 microM), an inhibitor of the mitochondrial F(0)F(1)-ATPase, in glucose-free media abolished caspase activation and DNA fragmentation in association with severe ATP depletion ( approximately 2% of control cells). Imaging demonstrated a change in the mode of cell death from apoptosis to necrosis under these conditions. This change was linked to the level of ATP depletion, because STS treatment in the absence of glucose or the presence of oligomycin in media with glucose still leads to apoptosis in the presence of only moderate ATP depletion. These results demonstrate that pH, mitochondrial function, and ATP supply are important variables that regulate STS-induced apoptosis in human pulmonary artery endothelial cells.
Collapse
Affiliation(s)
- C Terminella
- Pulmonary Disease Division, Department of Medicine, State University of New York/Downstate Health Sciences Center; and Department of Veterans Affairs Medical Center, Brooklyn, New York 11209, USA
| | | | | | | | | |
Collapse
|
23
|
Németh ZH, Deitch EA, Lu Q, Szabó C, Haskó G. NHE blockade inhibits chemokine production and NF-kappaB activation in immunostimulated endothelial cells. Am J Physiol Cell Physiol 2002; 283:C396-403. [PMID: 12107048 DOI: 10.1152/ajpcell.00491.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Na(+)/H(+) exchanger (NHE) activation has been documented to contribute to endothelial cell injury caused by inflammatory states. However, the role of NHEs in regulation of the endothelial cell inflammatory response has not been investigated. The present study tested the hypothesis that NHEs contribute to endothelial cell inflammation induced by endotoxin or interleukin (IL)-1beta. NHE inhibition using amiloride, 5-(N-ethyl-N-isopropyl)-amiloride, and 5-(N-methyl-N-isobutyl)amiloride as well as the non-amiloride NHE inhibitors cimetidine, clonidine, and harmaline suppressed endotoxin-induced IL-8 and monocyte chemoattractant protein (MCP)-1 production by human umbilical endothelial vein cells (HUVECs). The suppressive effect of amiloride on endotoxin-induced IL-8 production was associated with a decreased accumulation of IL-8 mRNA. NHE inhibitors suppressed both inhibitory (I)kappaB degradation and nuclear factor (NF)-kappaB DNA binding, suggesting that a decrease in activation of the IkappaB-NF-kappaB system contributed to the suppression of HUVEC inflammatory response by NHE blockade. NHE inhibition decreased also the IL-1beta-induced HUVEC inflammatory response, because amiloride suppressed IL-1beta-induced E-selectin expression on HUVECs. These results demonstrate that maximal activation of the HUVEC inflammatory response requires a functional NHE.
Collapse
Affiliation(s)
- Zoltán H Németh
- Department of Surgery, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
24
|
Rastaldo R, Paolocci N, Chiribiri A, Penna C, Gattullo D, Pagliaro P. Cytochrome P-450 metabolite of arachidonic acid mediates bradykinin-induced negative inotropic effect. Am J Physiol Heart Circ Physiol 2001; 280:H2823-32. [PMID: 11356641 DOI: 10.1152/ajpheart.2001.280.6.h2823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study focused on the mechanisms of the negative inotropic response to bradykinin (BK) in isolated rat hearts perfused at constant flow. BK (100 nM) significantly reduced developed left ventricular pressure (LVP) and the maximal derivative of systolic LVP by 20-22%. The cytochrome P-450 (CYP) inhibitors 1-aminobenzotriazole (1 mM and 100 microM) or proadifen (5 microM) abolished the cardiodepression by BK, which was not affected by nitric oxide and cyclooxygenase inhibitors (35 microM NG-nitro-L-arginine methyl ester and 10 microM indomethacin, respectively). The CYP metabolite 14,15-epoxyeicosatrienoic acid (14,15-EET; 50 ng/ml) produced effects similar to those of BK in terms of the reduction in contractility. After the coronary endothelium was made dysfunctional by Triton X-100 (0.5 microl), the BK-induced negative inotropic effect was completely abolished, whereas the 14,15-EET-induced cardiodepression was not affected. In hearts with normal endothelium, after recovery from 14,15-EET effects, BK reduced developed LVP to a 35% greater extent than BK in the control. In conclusion, CYP inhibition or endothelial dysfunction prevents BK from causing cardiodepression, suggesting that, in the rat heart, endothelial CYP products mediate the negative inotropic effect of BK. One of these mediators appears to be 14,15-EET.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Arachidonic Acid/metabolism
- Blood Pressure/drug effects
- Bradykinin/metabolism
- Bradykinin/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/physiology
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Heart/drug effects
- Heart/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- In Vitro Techniques
- Indomethacin/pharmacology
- Male
- Myocardium/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Octoxynol/pharmacology
- Proadifen/pharmacology
- Rats
- Rats, Wistar
- Tachyphylaxis/physiology
- Triazoles/pharmacology
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- R Rastaldo
- Dipartimento di Neuroscienze, Sezione di Fisiologia, dell'Università di Torino, 10043 Orbassano, TO, Italy
| | | | | | | | | | | |
Collapse
|