1
|
Blazeski A, Floryan MA, Zhang Y, Fajardo Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. Biomaterials 2024; 311:122686. [PMID: 38971122 DOI: 10.1016/j.biomaterials.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell function and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The flow-dependent expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) that incorporate a KLF2-based endothelial cell flow sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that application of flow to MVNs for 48 h resulted in increased expression of the KLF2 reporter, larger vessel diameters, and decreased vascular branching and resistance. Notably, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. MVNs with KLF2-based flow sensors represent a novel, powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuzhi Zhang
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Oscar R Fajardo Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Liu W, Ding Y, Shen Z, Xu C, Yi W, Wang D, Zhou Y, Zon LI, Liu JX. BF170 hydrochloride enhances the emergence of hematopoietic stem and progenitor cells. Development 2024; 151:dev202476. [PMID: 38940293 DOI: 10.1242/dev.202476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - YuYan Ding
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Shen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cong Xu
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William Yi
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhou
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute/Children's Hospital, 300 Longwood Avenue, Karp 8, Boston, MA 02115, USA
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Alessandria M, Angilletta S, Pivetta I, Annone B, Cravanzola S, De Giorgio A. 4-week stretching program after submaximal strength exercise affects performance but not heart rate variability and lactate clearance. An exploratory study. Front Sports Act Living 2024; 6:1424756. [PMID: 38957877 PMCID: PMC11217188 DOI: 10.3389/fspor.2024.1424756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Previous research has demonstrated that stretching can enhance athletic performance and induce cardiovascular adaptations. This study aims to assess whether a 4-week preventative stretching routine can enhance heart rate variability and heart rate recovery, faster blood lactate clearance, and improve performance following submaximal strength exercises. Twenty-four healthy adults were recruited and randomly allocated to either the experimental group or the control group. Both groups engaged in submaximal strength exercises (5 sets to voluntary failure at 60% of 1RM) comprising bench press and back squat exercises under baseline conditions and after stretching protocol. The experimental group followed the Stretching Protocol, while the control group adhered to their regular training routine. ANOVA analysis revealed a significant pre-post interaction effect between groups in the variable of squat repetitions, although no notable pre- or post-differences were observed in heart rate variability, heart rate recovery, blood lactate concentration, or bench repetitions in either group. A 4-week preventative stretching program does not appear adequate to enhance lactate clearance and cardiovascular adaptation after submaximal strength exercises in resistance-trained individuals compared to the control group. However, it is plausible that such a stretching routine may mitigate muscle fatigue, though further investigation is warranted to substantiate this hypothesis.
Collapse
Affiliation(s)
- M. Alessandria
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - S. Angilletta
- A.S.D. “SportTiVà?”, Turin, Italy
- Faculty of Psychology, eCampus University, Novedrate, Italy
| | - I. Pivetta
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - B. Annone
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - S. Cravanzola
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - A. De Giorgio
- A.S.D. “SportTiVà?”, Turin, Italy
- Faculty of Psychology, eCampus University, Novedrate, Italy
| |
Collapse
|
4
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Krzesiak A, Enea C, Faivre JF, Bescond J, Vanderbrouck C, Cognard C, Sebille S, Bosquet L, Delpech N. Combined cardiovascular effects of ovariectomy and high-intensity interval training in female spontaneously hypertensive rats. J Appl Physiol (1985) 2024; 136:1195-1208. [PMID: 38572539 DOI: 10.1152/japplphysiol.00518.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Hypertensive postmenopausal women are more likely to develop adverse cardiac remodeling and respond less effectively to drug treatment than men. High-intensity interval exercise (HIIE) is a nonpharmacological strategy for the treatment of hypertension; however, the effectiveness in women remains uncertain. This study was designed to evaluate 1) the effects of HIIE training upon morphological and functional markers of cardiovascular health in female SHR and 2) to determine whether the hormonal shift induced by ovariectomy could influence cardiovascular responses to HIIE. Thirty-six SHR were randomly assigned to four groups: ovariectomized sedentary, ovariectomized trained, sham-operated sedentary, and sham-operated trained. The trained rats performed HIIE 5 days/wk for 8 wk. Blood pressure and echocardiographic measurements were performed before and after training in animals. Cardiac response to β-adrenergic stimulation and the expression of calcium regulatory proteins and estrogen receptors in heart samples were assessed. Endothelium-dependent vasorelaxation in response to acetylcholine was evaluated in aortic rings as well as the expression of nitric oxide synthase isoforms (eNOS and P-eNOS) by Western blotting. In both groups of trained SHR, HIIE induced eccentric cardiac remodeling with greater inotropic and chronotropic effects, as well as an increase in SERCA and β1AR expression. However, although the trained rats showed improved endothelial function and expression of eNOS and P-eNOS in the aorta, there was no demonstrated effect on blood pressure. In addition, the responses to HIIE training were not affected by ovariectomy. This work highlights the importance of assessing the cardiovascular efficacy and safety of different exercise modalities in women.NEW & NOTEWORTHY This study reports the effects of high-intensity interval exercise (HIIE) training on cardiac and endothelial function in female hypertensive rats. Despite a lack of effect on blood pressure (BP), HIIE training induces eccentric cardiac remodeling with greater functionals effects. Furthermore, training has beneficial effects on endothelial function. However, ovarian hormones do not seem to modulate cardiac and aortic adaptations to this training modality. All this underlines the need to consider training modalities on the cardiovascular system in women.
Collapse
Affiliation(s)
- Amandine Krzesiak
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Carina Enea
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | | | - Jocelyn Bescond
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | | | - Christian Cognard
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Stéphane Sebille
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Laurent Bosquet
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Nathalie Delpech
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| |
Collapse
|
6
|
Lav Madsen P, Sejersen C, Nyberg M, Sørensen MH, Hellsten Y, Gaede P, Bojer AS. The cardiovascular changes underlying a low cardiac output with exercise in patients with type 2 diabetes mellitus. Front Physiol 2024; 15:1294369. [PMID: 38571722 PMCID: PMC10987967 DOI: 10.3389/fphys.2024.1294369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
The significant morbidity and premature mortality of type 2 diabetes mellitus (T2DM) is largely associated with its cardiovascular consequences. Focus has long been on the arterial atheromatosis of DM giving rise to early stroke and myocardial infarctions, whereas less attention has been given to its non-ischemic cardiovascular consequences. Irrespective of ischemic changes, T2DM is associated with heart failure (HF) most commonly with preserved ejection fraction (HFpEF). Largely due to increasing population ages, hypertension, obesity and T2DM, HFpEF is becoming the most prevalent form of heart failure. Unfortunately, randomized controlled trials of HFpEF have largely been futile, and it now seems logical to address the important different phenotypes of HFpEF to understand their underlying pathophysiology. In the early phases, HFpEF is associated with a significantly impaired ability to increase cardiac output with exercise. The lowered cardiac output with exercise results from both cardiac and peripheral causes. T2DM is associated with left ventricular (LV) diastolic dysfunction based on LV hypertrophy with myocardial disperse fibrosis and significantly impaired ability for myocardial blood flow increments with exercise. T2DM is also associated with impaired ability for skeletal muscle vasodilation during exercise, and as is the case in the myocardium, such changes may be related to vascular rarefaction. The present review discusses the underlying phenotypical changes of the heart and peripheral vascular system and their importance for an adequate increase in cardiac output. Since many of the described cardiovascular changes with T2DM must be considered difficult to change if fully developed, it is suggested that patients with T2DM are early evaluated with respect to their cardiovascular compromise.
Collapse
Affiliation(s)
- Per Lav Madsen
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Casper Sejersen
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
- Department of Anaesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department Kidney and Vascular Biology, Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | | | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Peter Gaede
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| | - Annemie Stege Bojer
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| |
Collapse
|
7
|
Blazeski A, Floryan MA, Fajardo-Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565021. [PMID: 37961543 PMCID: PMC10635035 DOI: 10.1101/2023.10.31.565021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell phenotype and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems, but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) with a KLF2-based endothelial cell sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that culture of MVNs exposed to flow for 48 hours that resulted in increased expression of the KLF2-GFP-reporter display larger vessel diameters and decreased vascular branching and resistance. Additionally, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. The MVNs with KLF2-based flow sensors represent a powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A. Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oscar R. Fajardo-Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
8
|
Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C. The Pleiotropic Role of Extracellular ATP in Myocardial Remodelling. Molecules 2023; 28:molecules28052102. [PMID: 36903347 PMCID: PMC10004151 DOI: 10.3390/molecules28052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Suhaini Sudi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fiona Macniesia Thomas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siti Kadzirah Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Dayang Maryama Ag Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Health through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
9
|
Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez J, Weinstein BM. Anatomy and development of the pectoral fin vascular network in the zebrafish. Development 2022; 149:dev199676. [PMID: 35132436 PMCID: PMC8959142 DOI: 10.1242/dev.199676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.
Collapse
Affiliation(s)
- Scott M. Paulissen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel M. Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Shlomo M. Krispin
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Margaret C. Burns
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Javier Menéndez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Bhalla SR, Riu F, Machado MJC, Bates DO. Measurement of Revascularization in the Hind Limb After Experimental Ischemia in Mice. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:105-113. [PMID: 35099732 DOI: 10.1007/978-1-0716-2059-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Peripheral vascular disease is a major cause of morbidity and mortality, and is a consequence of impaired blood flow to the limbs. This arises due to the inability of the tissue to develop sufficiently functional collateral vessel circulation to overcome occluded arteries, or microvascular impairment. The mouse hind limb model of hind limb ischemia can be used to investigate the impact of different treatment modalities, behavioral changes, or genetic knockout. Here we described the model in detail, providing examples of adverse events, and details of ex vivo analysis of blood vessel density.
Collapse
Affiliation(s)
- Sohni Ria Bhalla
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Federica Riu
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Maria J C Machado
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - David O Bates
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
12
|
Reis LG, Morris T, Quilliam C, Rodrigues LA, Loewen ME, Weber LP. The Effects of Fermentation of Low or High Tannin Fava Bean-Based Diets on Glucose Response, Cardiovascular Function, and Fecal Bile Acid Excretion during a 28-Day Feeding Period in Dogs: Comparison with Commercial Diets with Normal vs. High Protein. Metabolites 2021; 11:metabo11120878. [PMID: 34940637 PMCID: PMC8705793 DOI: 10.3390/metabo11120878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
We have shown that feeding dogs fava bean (FB)-based diets for 7 days is safe and FB flour fermentation with Candida utilis has the potential to decrease FB anti-nutritional factors. In the present study, the effects of 28-day feeding of 4 different FB-based test dog foods containing moderate protein (~27% dry matter (DM)) were compared with two commercial diets with normal protein (NP, grain-containing, ~31% DM protein) or high protein (HP, grain-free, ~41% DM protein). Health parameters were investigated in beagles fed the NP or HP diets or using a randomized, crossover, 2 × 2 Latin square design of the FB diets: unfermented high-tannin (UF-HT), fermented high-tannin (FM-HT), unfermented low-tannin (UF-LT), and fermented low-tannin (FM-LT). The results showed that fermentation increased glucose tolerance, increased red blood cell numbers and increased systolic blood pressure, but decreased flow-mediated vasodilation. Taken together, the overall effect of fermentation appears to be beneficial and improved FB nutritional value. Most interesting, even though the HP diet was grain-free, the diet did contain added taurine, and no adverse effects on cardiac function were observed, while glucose tolerance was impaired compared to NP-fed dogs. In summary, this study did not find evidence of adverse cardiac effects of pulses in ‘grain-free’ diets, at least not in the relatively resistant beagle breed over a 28-day period. More importantly, fermentation with C. utilis shows promise to enhance health benefits of pulses such as FB in dog food.
Collapse
Affiliation(s)
- Luciana G. Reis
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (L.G.R.); (T.M.); (C.Q.); (M.E.L.)
| | - Tressa Morris
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (L.G.R.); (T.M.); (C.Q.); (M.E.L.)
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Chloe Quilliam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (L.G.R.); (T.M.); (C.Q.); (M.E.L.)
| | - Lucas A. Rodrigues
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Prairie Swine Center, Inc., Saskatoon, SK S7H 5N9, Canada
| | - Matthew E. Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (L.G.R.); (T.M.); (C.Q.); (M.E.L.)
| | - Lynn P. Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (L.G.R.); (T.M.); (C.Q.); (M.E.L.)
- Correspondence: ; Tel.: +1-(306)-966-8734
| |
Collapse
|
13
|
Kulkarni R, Andraska E, McEnaney R. Structural Remodeling of the Extracellular Matrix in Arteriogenesis: A Review. Front Cardiovasc Med 2021; 8:761007. [PMID: 34805316 PMCID: PMC8602576 DOI: 10.3389/fcvm.2021.761007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Lower extremity arterial occlusive disease (AOD) results in significant morbidity and mortality for the population, with up to 10% of patients ultimately requiring amputation. An alternative method for non-surgical revascularization which is yet to be fully understood is the optimization of the body's own natural collateral arterial network in a process known as arteriogenesis. Under conditions of conductance vessel stenosis or occlusion resulting in increased flow, shear forces, and pressure gradients within collaterals, positive remodeling occurs to increase the diameter and capacity of these vessels. The creation of a distal arteriovenous fistula (AVF) will drive increased arteriogenesis as compared to collateral formation with the occlusion of a conductance vessel alone by further increasing flow through these arterioles, demonstrating the capacity for arteriogenesis to form larger, more efficient collaterals beyond what is spontaneously achieved after arterial occlusion. Arteries rely on an extracellular matrix (ECM) composed of elastic fibers and collagens that provide stability under hemodynamic stress, and ECM remodeling is necessary to allow for increased diameter and flow conductance in mature arterial structures. When positive remodeling occurs, digestion of lamella and the internal elastic lamina (IEL) by matrix metalloproteinases (MMPs) and other elastases results in the rearrangement and thinning of elastic structures and may be replaced with disordered elastin synthesis without recovery of elastic function. This results in transmission of wall strain to collagen and potential for aneurysmal degeneration along collateral networks, as is seen in the pancreaticoduodenal artery (PDA) after celiac occlusion and inferior mesenteric artery (IMA) with concurrent celiac and superior mesenteric artery (SMA) occlusions. Further understanding into the development of collaterals is required to both better understand aneurysmal degeneration and optimize collateral formation in AOD.
Collapse
Affiliation(s)
- Rohan Kulkarni
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Andraska
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ryan McEnaney
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Veterans Affairs Hospitals Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
15
|
Primikiris P, Hadjigeorgiou G, Tsamopoulou M, Biondi A, Iosif C. Review on the current treatment status of vein of Galen malformations and future directions in research and treatment. Expert Rev Med Devices 2021; 18:933-954. [PMID: 34424109 DOI: 10.1080/17434440.2021.1970527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Vein of Galen malformations (VOGMs) represent a rare pathologic entity with often catastrophic natural history. The advances in endovascular treatment in recent years have allowed for a paradigm shift in the treatment and outcome of these high-flow shunts, even though their pathogenetic mechanisms and evolution remain in part obscure. AREAS COVERED The overall management of VOGMs requires a tailored case-to-case approach, starting with in utero detection and reserving endovascular treatment for indicated cases. Lately, the advances in translational research with whole-genome sequencing and the coupling with cellular-level hemodynamics attempt to shed more light in the pathogenesis and evolution of these lesions. At the same time the advances in endovascular techniques allow for more safety and tailored technical strategy planning. Furthermore, the advances in MRI techniques allow a better understanding of their vascular anatomy. In view of these recent advances and by performing a PUBMED literature review of the last 15 years, we attempt a review of the evolutions in the imaging, management, endovascular treatment and understanding of underlying mechanisms for VOGMs. EXPERT OPINION The progress in the fields detailed in this review appears very promising in better understanding VOGMs and expanding the available therapeutic arsenal.
Collapse
Affiliation(s)
- Panagiotis Primikiris
- Department of Interventional Neuroradiology, Jean Minjoz University Hospital, Besancon, France
| | | | - Maria Tsamopoulou
- School of Medicine, National Kapodistrian University of Athens, Greece
| | - Alessandra Biondi
- Department of Interventional Neuroradiology, Jean Minjoz University Hospital, Besancon, France
| | - Christina Iosif
- School of Medicine, European University of Cyprus, Nicosia, Cyprus.,Department of Interventional Neuroradiology, Henry Dunant Hospital, Athens, Greece
| |
Collapse
|
16
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
17
|
Identification of intima-to-media signals for flow-induced vascular remodeling using correlative gene expression analysis. Sci Rep 2021; 11:16142. [PMID: 34373496 PMCID: PMC8352890 DOI: 10.1038/s41598-021-95403-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in blood flow can induce arterial remodeling. Intimal cells sense flow and send signals to the media to initiate remodeling. However, the nature of such intima-media signaling is not fully understood. To identify potential signals, New Zealand white rabbits underwent bilateral carotid ligation to increase flow in the basilar artery or sham surgery (n = 2 ligated, n = 2 sham). Flow was measured by transcranial Doppler ultrasonography, vessel geometry was determined by 3D angiography, and hemodynamics were quantified by computational fluid dynamics. 24 h post-surgery, the basilar artery and terminus were embedded for sectioning. Intima and media were separately microdissected from the sections, and whole transcriptomes were obtained by RNA-seq. Correlation analysis of expression across all possible intima-media gene pairs revealed potential remodeling signals. Carotid ligation increased flow in the basilar artery and terminus and caused differential expression of 194 intimal genes and 529 medial genes. 29,777 intima-media gene pairs exhibited correlated expression. 18 intimal genes had > 200 medial correlates and coded for extracellular products. Gene ontology of the medial correlates showed enrichment of organonitrogen metabolism, leukocyte activation/immune response, and secretion/exocytosis processes. This demonstrates correlative expression analysis of intimal and medial genes can reveal novel signals that may regulate flow-induced arterial remodeling.
Collapse
|
18
|
Gurovich AN, Rodriguez L, Morales-Acuna F. There are no differences in brachial artery endothelial shear stress and blood flow patterns between males and females during exercise. Clin Physiol Funct Imaging 2021; 41:471-479. [PMID: 34275183 DOI: 10.1111/cpf.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Premenopausal females have a lower cardiovascular risk than males. Sex differences on exercise-induced endothelial shear stress (ESS) and blood flow patterns may explain part of this risk reduction. The purpose of this cross-sectional study was to determine the differences in brachial artery exercise-induced ESS and blood flow patterns between males and females. Thirty subjects (13 females) were recruited to perform a three-workload steady-state exercise test based on blood lactate levels (i.e. <2.0, 2.0-4.0, >4.0 mmol/l). ESS and blood flow patterns were estimated at rest and during each workload using Womersley's approximation and Reynolds number, respectively. Both males and females showed an exercise intensity-dependent increase in antegrade and retrograde ESS. There was no significant sex effect or interaction for antegrade ESS (F(1, 30) = 0.715, p = 0.405 and F(1·672, 60) = 1.511, p = 0.232, respectively) or retrograde ESS (F(1, 30) = 0.794, p = 0.380 and F(1·810, 60) = 1.022, p = 0.361, respectively). Additionally, antegrade blood flow was turbulent during all bouts of exercise while retrograde blood flow became disturbed at moderate and high exercise intensities in both groups. There are no differences in exercise-induced ESS and blood flow patterns between males and females when the exercise load is equivalent. This suggests that the vascular benefits of exercise training are similar in both sexes from a haemodynamic standpoint.
Collapse
Affiliation(s)
- Alvaro N Gurovich
- Clinical Applied Physiology (CAPh) Laboratory, College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA.,Doctor of Physical Therapy Program, College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Lisa Rodriguez
- Clinical Applied Physiology (CAPh) Laboratory, College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Francisco Morales-Acuna
- Clinical Applied Physiology (CAPh) Laboratory, College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
19
|
Walther BK, Rajeeva Pandian NK, Gold KA, Kiliç ES, Sama V, Gu J, Gaharwar AK, Guiseppi-Elie A, Cooke JP, Jain A. Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response. LAB ON A CHIP 2021; 21:1738-1751. [PMID: 33949409 PMCID: PMC9761985 DOI: 10.1039/d0lc01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology.
Collapse
Affiliation(s)
- Brandon K Walther
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA.
| | | | - Karli A Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Ecem S Kiliç
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Vineeth Sama
- Department of Biomedical Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | - Jianhua Gu
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Materials Science, Texas A&M University, College Station, Texas 77843, USA
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA. and ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, USA and Department of Biomedical Engineering, Anderson University, Anderson, South Carolina 29621, USA.
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA. and Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
20
|
Lekavich CL, Allen JD, Bensimhon DR, Bateman LA, Slentz CA, Samsa GP, Kenjale AA, Duscha BD, Douglas PS, Kraus WE. Aerobic Versus Resistance Training Effects on Ventricular-Arterial Coupling and Vascular Function in the STRRIDE-AT/RT Trial. Front Cardiovasc Med 2021; 8:638929. [PMID: 33869303 PMCID: PMC8049562 DOI: 10.3389/fcvm.2021.638929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Background: The goal was studying the differential effects of aerobic training (AT) vs. resistance training (RT) on cardiac and peripheral arterial capacity on cardiopulmonary (CP) and peripheral vascular (PV) function in sedentary and obese adults. Methods: In a prospective randomized controlled trial, we studied the effects of 6 months of AT vs. RT in 21 subjects. Testing included cardiac and vascular ultrasoundography and serial CP for ventricular-arterial coupling (Ees/Ea), strain-based variables, brachial artery flow-mediated dilation (BAFMD), and peak VO2 (pVO2; mL/kg/min) and peak O2-pulse (O2p; mL/beat). Results: Within the AT group (n = 11), there were significant increases in rVO2 of 4.2 mL/kg/min (SD 0.93) (p = 0.001); O2p of 1.9 mL/beat (SD 1.3) (p = 0.008) and the brachial artery post-hyperemia peak diameter 0.18 mm (SD 0.08) (p = 0.05). Within the RT group (n = 10) there was a significant increase in left ventricular end diastolic volume 7.0 mL (SD 9.8; p = 0.05) and percent flow-mediated dilation (1.8%) (SD 0.47) (p = 0.004). Comparing the AT and RT groups, post exercise, rVO2 2.97, (SD 1.22), (p = 0.03), O2p 0.01 (SD 1.3), (p = 0.01), peak hyperemic blood flow volume (1.77 mL) (SD 140.69) (p = 0.009), were higher in AT, but LVEDP 115 mL (SD 7.0) (p = 0.05) and Ees/Ea 0.68 mmHg/ml (SD 0.60) p = 0.03 were higher in RT. Discussion: The differential effects of AT and RT in this hypothesis generating study have important implications for exercise modality and clinical endpoints.
Collapse
Affiliation(s)
- Carolyn L Lekavich
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Jason D Allen
- Division of Cardiovascular Medicine, Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| | | | - Lori A Bateman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cris A Slentz
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Gregory P Samsa
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Aarti A Kenjale
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Brian D Duscha
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Pamela S Douglas
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Duke Clinical Research Institute, Durham, NC, United States
| | - William E Kraus
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Durham, NC, United States
| |
Collapse
|
21
|
Effects of local coronary blood flow dynamics on the predictions of a model of in-stent restenosis. J Biomech 2021; 120:110361. [PMID: 33730561 DOI: 10.1016/j.jbiomech.2021.110361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Computational models are increasingly used to study cardiovascular disease. However, models of coronary vessel remodelling usually make some strong assumptions about the effects of a local narrowing on the flow through the narrowed vessel. Here, we test the effects of local flow dynamics on the predictions of an in-stent restenosis (ISR) model. A previously developed 2D model of ISR is coupled to a 1D model of coronary blood flow. Then, two different assumptions are tested. The first assumption is that the vasculature is always able to adapt, and the volumetric flow rate through the narrowed vessel is kept constant. The second, alternative, assumption is that the vasculature does not adapt at all, and the ratio of the pressure drop to the flow rate (hydrodynamic resistance) stays the same throughout the whole process for all vessels unaffected by the stenosis, and aortic or venous blood pressure does not change either. Then, the dynamics are compared for different locations in coronary tree for two different reendothelization scenarios. The assumptions of constant volumetric flow rate (absolute vascular adaptation) versus constant aortic pressure drop and no adaptation do not significantly affect the growth dynamics for most locations in the coronary tree, and the differences can only be observed at the locations where a strong alternative flow pathway is present. On the other hand, the difference between locations is significant, which is consistent with small vessel size being a risk factor for restenosis. These results suggest that the assumption of a constant flow is a good approximation for ISR models dealing with the typical progression of ISR in the most often stented locations such as the proximal parts of left anterior descending (LAD) and left circumflex (LCX) arteries.
Collapse
|
22
|
Francisco MA, Colbert C, Larson EA, Sieck DC, Halliwill JR, Minson CT. Hemodynamics of post-exercise vs. post hot water immersion recovery. J Appl Physiol (1985) 2021; 130:1362-1372. [PMID: 33630675 PMCID: PMC8354820 DOI: 10.1152/japplphysiol.00260.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
This study sought to compare the hemodynamics of the recovery periods following exercise versus hot water immersion. Twelve subjects (6 F, 22.7 ± 0.8 y; BMI: 21.8 ± 2.1 kg·m-2) exercised for 60 minutes at 60% VO2peak or were immersed in 40.5oC water for 60 minutes on separate days, in random order. Measurements were made before, during, and for 60-minutes post-intervention (i.e., recovery) and included heart rate, arterial pressure, core temperature, and subjective measures. Brachial and superficial femoral artery blood flows were assessed using Doppler ultrasonography and cardiac output was measured using the acetylene wash-in method. Internal temperature increased to a similar extent during exercise and hot water immersion. Cardiac outputand mean arterial pressure were greater during exercise than during hot water immersion (both p<0.01). Sustained reductions in mean arterial pressure compared to baseline were observed in both conditions during recovery (p<0.001 vs before each intervention). Cardiac output was similar during recovery between the interventions. Stroke volume was reduced throughout recovery following exercise, but not following hot water immersion (p<0.01). Brachial artery retrograde shear was reduced following hot water immersion, but not following exercise (Interaction; p=0.035). Antegrade shear in the superficial femoral artery was elevated compared to baseline (p=0.027) for 60 minutes following exercise, whereas it returned near baseline values (p=0.564) by 40 minutes following hot water immersion. Many of the changes observed during the post-exercise recovery period that are thought to contribute to long-term beneficial cardiovascular adaptations were also observed during the post-hot water immersion recovery period.
Collapse
Affiliation(s)
| | - Cameron Colbert
- Department of Human Physiology, University of Oregon, United States
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, United States
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, United States
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, United States
| | | |
Collapse
|
23
|
Sarojadevi A, Venugopal V. Coronary collateral circulation in acute, subacute, and chronic total occlusions. JOURNAL OF CLINICAL AND PREVENTIVE CARDIOLOGY 2021. [DOI: 10.4103/jcpc.jcpc_5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Chehaitly A, Vessieres E, Guihot AL, Henrion D. Flow-mediated outward arterial remodeling in aging. Mech Ageing Dev 2020; 194:111416. [PMID: 33333130 DOI: 10.1016/j.mad.2020.111416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
The present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard.
Collapse
Affiliation(s)
- Ahmad Chehaitly
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Emilie Vessieres
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Anne-Laure Guihot
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Daniel Henrion
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France.
| |
Collapse
|
25
|
The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int J Mol Sci 2020; 21:ijms21093244. [PMID: 32375307 PMCID: PMC7247322 DOI: 10.3390/ijms21093244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.
Collapse
|
26
|
Kang M, Jin S, Lee D, Cho H. MRI Visualization of Whole Brain Macro- and Microvascular Remodeling in a Rat Model of Ischemic Stroke: A Pilot Study. Sci Rep 2020; 10:4989. [PMID: 32193454 PMCID: PMC7081185 DOI: 10.1038/s41598-020-61656-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/28/2020] [Indexed: 01/14/2023] Open
Abstract
Using superparamagnetic iron oxide nanoparticles (SPION) as a single contrast agent, we investigated dual contrast cerebrovascular magnetic resonance imaging (MRI) for simultaneously monitoring macro- and microvasculature and their association with ischemic edema status (via apparent diffusion coefficient [ADC]) in transient middle cerebral artery occlusion (tMCAO) rat models. High-resolution T1-contrast based ultra-short echo time MR angiography (UTE-MRA) visualized size remodeling of pial arteries and veins whose mutual association with cortical ischemic edema status is rarely reported. ΔR2-ΔR2*-MRI-derived vessel size index (VSI) and density indices (Q and MVD) mapped morphological changes of microvessels occurring in subcortical ischemic edema lesions. In cortical ischemic edema lesions, significantly dilated pial veins (p = 0.0051) and thinned pial arteries (p = 0.0096) of ipsilateral brains compared to those of contralateral brains were observed from UTE-MRAs. In subcortical regions, ischemic edema lesions had a significantly decreased Q and MVD values (p < 0.001), as well as increased VSI values (p < 0.001) than normal subcortical tissues in contralateral brains. This pilot study suggests that MR-based morphological vessel changes, including but not limited to venous blood vessels, are directly related to corresponding tissue edema status in ischemic stroke rat models.
Collapse
Affiliation(s)
- MungSoo Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - SeokHa Jin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - DongKyu Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
27
|
Ma T, Bai YP. The hydromechanics in arteriogenesis. Aging Med (Milton) 2020; 3:169-177. [PMID: 33103037 PMCID: PMC7574636 DOI: 10.1002/agm2.12101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022] Open
Abstract
Coronary heart diseases are tightly associated with aging. Although current revascularization therapies, such as percutaneous coronary interventions (PCI) and coronary artery bypass graft (CABG), improve the clinical outcomes of patients with coronary diseases, their application and therapeutic effects are limited in elderly patients. Thus, developing novel therapeutic strategies, like prompting collateral development or the process of arteriogenesis, is necessary for the treatment of the elderly with coronary diseases. Arteriogenesis (ie, the vascular remodeling from pre‐existent arterioles to collateral conductance networks) functions as an essential compensation for tissue hypoperfusion caused by artery occlusion or stenosis, and its mechanisms remain to be elucidated. In this review, we will summarize the roles of the major hydromechanical components in laminar conditions in arteriogenesis, and discuss the potential effects of disturbed flow components in non‐laminar conditions.
Collapse
Affiliation(s)
- Tianqi Ma
- Department of Geriatric Medicine Xiangya Hospital Central South University Changsha China
| | - Yong-Ping Bai
- Department of Geriatric Medicine Xiangya Hospital Central South University Changsha China
| |
Collapse
|
28
|
Heuslein JL, Gorick CM, Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. Cardiovasc Res 2020; 115:701-712. [PMID: 30629133 DOI: 10.1093/cvr/cvz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Peripheral arterial disease (PAD) is the leading cause of lower limb amputation and estimated to affect over 202 million people worldwide. PAD is caused by atherosclerotic lesions that occlude large arteries in the lower limbs, leading to insufficient blood perfusion of distal tissues. Given the severity of this clinical problem, there has been long-standing interest in both understanding how chronic arterial occlusions affect muscle tissue and vasculature and identifying therapeutic approaches capable of restoring tissue composition and vascular function to a healthy state. To date, the most widely utilized animal model for performing such studies has been the ischaemic mouse hindlimb. Despite not being a model of PAD per se, the ischaemic hindlimb model does recapitulate several key aspects of PAD. Further, it has served as a valuable platform upon which we have built much of our understanding of how chronic arterial occlusions affect muscle tissue composition, muscle regeneration and angiogenesis, and collateral arteriogenesis. Recently, there has been a global surge in research aimed at understanding how gene expression is regulated by epigenetic factors (i.e. non-coding RNAs, histone post-translational modifications, and DNA methylation). Thus, perhaps not unexpectedly, many recent studies have identified essential roles for epigenetic factors in regulating key responses to chronic arterial occlusion(s). In this review, we summarize the mechanisms of action of these epigenetic regulators and highlight several recent studies investigating the role of said regulators in the context of hindlimb ischaemia. In addition, we focus on how these recent advances in our understanding of the role of epigenetics in regulating responses to chronic arterial occlusion(s) can inform future therapeutic applications to promote revascularization and perfusion recovery in the setting of PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| |
Collapse
|
29
|
Looft-Wilson RC, Billig JE, Sessa WC. Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. J Vasc Res 2019; 56:284-295. [PMID: 31574503 PMCID: PMC6908748 DOI: 10.1159/000502690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Arteries chronically constricted in culture remodel to smaller diameters. Conversely, elevated luminal shear stress (SS) promotes outward remodeling of arteries in vivo and prevents inward remodeling in culture in a nitric oxide synthase (NOS)-dependent manner. OBJECTIVES To determine whether SS-induced prevention of inward remodeling in cultured arteries is specifically eNOS-dependent and requires dilation, and whether SS alters the expression of eNOS and other genes potentially involved in remodeling. METHODS Female mouse thoracodorsal arteries were cannulated, pressurized to 80 mm Hg, and cultured for 2 days with low SS (<7 dyn/cm2), high SS (≥15 dyn/cm2), high SS + L-NAME (NOS inhibitor, 10-4 M), or high SS in arteries from eNOS-/- mice. In separate arteries cultured 1 day with low or high SS, eNOS and connexin (Cx) 37, Cx40, and Cx43 mRNA were assessed with real-time PCR. RESULTS High SS caused little change in passive diameters after culture (-4.7 ± 2.0%), which was less than low SS (-18.9 ± 1.4%; p < 0.0001), high SS eNOS-/- (-18.0 ± 1.5; p < 0.001), or high SS + L-NAME (-12.0 ± 0.6%; nonsignificant) despite similar constriction during culture. Cx37 mRNA expression was increased (p < 0.05) with high SS, but other gene levels were not different. CONCLUSIONS eNOS is involved in SS-induced prevention of inward remodeling in cultured small arteries. This effect does not require NO-mediated dilation. SS increased Cx37.
Collapse
Affiliation(s)
- Robin C Looft-Wilson
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA,
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA,
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA,
- Department of Kinesiology and Health Sciences, College of William and Mary, Williamsburg, Virginia, USA,
| | - Janelle E Billig
- Department of Kinesiology and Health Sciences, College of William and Mary, Williamsburg, Virginia, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Impact of low-intensity resistance and whole-body vibration training on aortic hemodynamics and vascular function in postmenopausal women. Hypertens Res 2019; 42:1979-1988. [DOI: 10.1038/s41440-019-0328-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
|
31
|
Magalhães JP, Melo X, Correia IR, Ribeiro RT, Raposo J, Dores H, Bicho M, Sardinha LB. Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: a 1-year randomized controlled trial. Cardiovasc Diabetol 2019; 18:34. [PMID: 30885194 PMCID: PMC6423850 DOI: 10.1186/s12933-019-0840-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Exercise, when performed on a regular basis, is a well-accepted strategy to improve vascular function in patients with type 2 diabetes. However, the exercise intensity that yields maximal adaptations on structural and functional indices in patients with type 2 diabetes remains uncertain. Our objective was to analyze the impact of a 1-year randomized controlled trial of combined high-intensity interval training (HIIT) with resistance training (RT) vs. a combined moderate continuous training (MCT) with RT on structural and functional arterial indices in patients with type 2 diabetes. Methods Patients with type 2 diabetes (n = 80) were randomized into an exercise intervention with three groups: control, combined HIIT with RT and combined MCT with RT. The 1-year intervention had 3 weekly exercise sessions. High-resolution ultrasonography of the common carotid artery and central and peripheral applanation tonometry were used to assess the changes in structural and functional arterial indices. Generalized estimating equations were used to model the corresponding outcomes. Results After adjusting the models for sex, baseline moderate-to-vigorous physical activity, and mean arterial pressure changes, while using the intention-to-treat analysis, a significant interaction was observed on the carotid intima-media thickness (cIMT) for both the MCT (β = − 4.25, p < 0.01) and HIIT group (β = − 3.61, p < 0.01). However, only the HIIT observed favorable changes from baseline to 1-year on peripheral arterial stiffness indices such as carotid radial arterial pulse wave velocity (β = − 0.10, p = 0.044), carotid to distal posterior tibial artery pulse wave velocity (β = − 0.14, p < 0.01), and on the distensibility coefficient (β = − 0.00, p < 0.01). No effect was found for hemodynamic variables after the intervention. Conclusions Following a 1-year intervention in patients with type 2 diabetes, both the MCT and HIIT group reduced their cIMT, whereas only the HIIT group improved their peripheral arterial stiffness indices and distensibility coefficient. Taken together, HIIT may be a meaningful tool to improve long-term vascular complications in type 2 diabetes. Trial registration clinicaltrials.gov ID: NCT03144505
Collapse
Affiliation(s)
- João P Magalhães
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz-Quebrada, Portugal
| | - Xavier Melo
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz-Quebrada, Portugal.,GCP Lab, Ginásio Clube Português, Lisbon, Portugal
| | - Inês R Correia
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz-Quebrada, Portugal
| | - Rogério T Ribeiro
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), Lisbon, Portugal
| | - João Raposo
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), Lisbon, Portugal
| | - Hélder Dores
- Military Forces Hospital, Lisbon, Portugal.,Light Hospital, Lisbon, Portugal.,NOVA Medical School, Lisbon, Portugal
| | - Manuel Bicho
- Genetics Laboratory Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Institute of Scientific Research Bento da Rocha Cabral, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz-Quebrada, Portugal.
| |
Collapse
|
32
|
John L, Ko NL, Gokin A, Gokina N, Mandalà M, Osol G. The Piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy. Am J Physiol Heart Circ Physiol 2018; 315:H1019-H1026. [PMID: 30004235 DOI: 10.1152/ajpheart.00103.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mammalian pregnancy, the uterine circulation must undergo substantial vasodilation and growth to maintain sufficient uteroplacental perfusion. Although we and others have shown that nitric oxide (NO) is a key mediator of these processes, the mechanisms that augment uterine artery NO signaling during gestation have not been identified. We hypothesized that Piezo1, a recently discovered cation channel, may be involved in the process of shear stress mechanotransduction, as other studies have shown that it is both mechanosensitive and linked to NO production. Surprisingly, there are no studies on Piezo1 in the uterine circulation. Our aims in the present study were to determine whether this novel channel is 1) present in uterine arteries, 2) regulated by gestation, 3) functionally relevant (able to elicit rises in intracellular Ca2+ concentration and vasodilation), and 4) linked to NO. Immunohistochemistry confirmed that Piezo1 is present in uterine arteries, primarily but not exclusively in endothelial cells. Western blot analysis showed that its protein expression was elevated during gestation. In pressurized main uterine arteries, pharmacological activation of Piezo1 by Yoda1 produced near maximal vasodilation and was associated with significant increases in intracellular Ca2+ concentration in endothelial cell sheets. Shear stress induced by intraluminal flow produced reversible vasodilations that were inhibited >50% by GsMTx-4, a Piezo1 inhibitor, and by Nω-nitro-l-arginine methyl ester/ Nω-nitro-l-arginine, inhibitors of NO synthase. These findings are the first to implicate a functional role for Piezo1 in the uterine circulation as a mechanosensor of endothelial shear stress. Moreover, our data demonstrate that Piezo1 activation leads to vasodilation via NO and indicate that its molecular expression is upregulated during pregnancy. NEW & NOTEWORTHY This is the first study to highlight Piezo1 in the uterine circulation. As a potentially important endothelial mechanosensor of shear stress, Piezo1 may be linked to mechanisms that support increased uteroplacental perfusion during pregnancy. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/piezo1-mechanotransduction-in-the-uterine-circulation/ .
Collapse
Affiliation(s)
- Liam John
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Alexander Gokin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Natalia Gokina
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria , Cosenza , Italy
| | - George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
33
|
Ko NL, Mandalà M, John L, Gelinne A, Osol G. Venoarterial communication mediates arterial wall shear stress-induced maternal uterine vascular remodeling during pregnancy. Am J Physiol Heart Circ Physiol 2018; 315:H709-H717. [PMID: 29775414 DOI: 10.1152/ajpheart.00126.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although expansive remodeling of the maternal uterine circulation during pregnancy is essential for maintaining uteroplacental perfusion and normal fetal growth, the underlying physiological mechanisms are not well understood. Using a rat model, surgical approaches were used to alter uterine hemodynamics and wall shear stress (WSS) to evaluate the effects of WSS and venoarterial communication (e.g., transfer of placentally derived growth signals from postplacental veins to preplacental arteries) on gestational uterine vascular remodeling. Changes in WSS secondary to ligation of the cervical but not the ovarian end of the main uterine artery and vein provoked significant expansive remodeling at the opposite end of both vessels, but only in pregnant animals. The ≈50% increase in lumen diameter (relative to the contralateral horn) was associated with an upregulation of total endothelial nitric oxide (NO) synthase expression and was abolished by in vivo NO synthase inhibition with N-nitro-l-arginine methyl ester. Complete removal of a venous segment adjacent to the uterine artery to eliminate local venous influences significantly attenuated the WSS-induced remodeling by about one-half ( P < 0.05). These findings indicate that, during pregnancy, 1) increased WSS stimulates uterine artery growth via NO signaling and 2) the presence of an adjacent vein is required for arterial remodeling to fully occur. NEW & NOTEWORTHY This study provides the first in vivo evidence for the importance of venous influences on arterial growth within the uteroplacental circulation.
Collapse
Affiliation(s)
- Nga Ling Ko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Maurizio Mandalà
- Department of Biology, Ecology, and Earth Science, University of Calabria , Cosenza , Italy
| | - Liam John
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Aaron Gelinne
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
34
|
Green DJ, Smith KJ. Effects of Exercise on Vascular Function, Structure, and Health in Humans. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029819. [PMID: 28432115 DOI: 10.1101/cshperspect.a029819] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Physical activity has profound impacts on the vasculature in humans. Acute exercise induces immediate changes in artery function, whereas repeated episodic bouts of exercise induce chronic functional adaptation and, ultimately, structural arterial remodeling. The nature of these changes in function and structure are dependent on the characteristics of the training load and may be modulated by other factors such as exercise-induced inflammation and oxidative stress. The clinical implications of these physiological adaptations are profound. Exercise impacts on the development of atherosclerosis and on the incidence of primary and secondary cardiovascular events, including myocardial infarction and stroke. Exercise also plays a role in the amelioration of other chronic diseases that possess a vascular etiology, including diabetes and dementia. The mechanisms responsible for these effects of exercise on the vasculature are both primary and secondary in nature, in that the benefits conferred by changes in cardiovascular risk factors such as lipid profiles and blood pressure occur in concert with direct effects of arterial shear stress and mechanotransduction. From an evolutionary perspective, exercise is an essential stimulus for the maintenance of vascular health: exercise is vascular medicine.
Collapse
Affiliation(s)
- Daniel J Green
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L33AF, United Kingdom.,School of Human Sciences, The University of Western Australia, Crawley 6009, Australia.,Principal Research Fellow, National Health and Medical Research Council of Australia, Canberra 2601, Australia
| | - Kurt J Smith
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
35
|
Abou-Arab O, Martineau L, Bar S, Huette P, Amar AB, Caus T, Dupont H, Kamel S, Guinot PG, Lorne E. Postoperative Vasoplegic Syndrome Is Associated With Impaired Endothelial Vasomotor Response in Cardiac Surgery: A Prospective, Observational Study. J Cardiothorac Vasc Anesth 2018; 32:2218-2224. [PMID: 29548905 DOI: 10.1053/j.jvca.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Vasoplegic syndrome (VS) affects up to 30% of cardiac surgery patients. Onset of VS may be associated with overproduction of nitric oxide (NO). The response of the brachial artery to NO can be assessed using flow-mediated vasodilation (FMD). The aim of this study was to assess brachial artery diameter and FMD response immediately after cardiac surgery. DESIGN Prospective, observational study. SETTING Single-center study in a tertiary teaching hospital. PATIENTS Patients older than 18 years undergoing elective cardiac surgery with cardiopulmonary bypass who provided informed consent. INTERVENTIONS Brachial artery diameter and FMD response were measured before cardiac surgery and just after surgery on admission to the intensive care unit. Patients were screened for VS for the following 48 hours. RESULTS Eleven (39%) of the 28 patients included in the study developed VS. Brachial artery diameter and FMD differed between VS and non-VS patients. On intensive care unit admission, mean (± standard deviation) brachial artery diameter was greater in VS patients than in non-VS patients (3.9 ± 0.7 mm v 3.0 ± 0.8 mm, respectively; p = 0.002). Similarly, the FMD response after surgery was greater in VS patients than in non-VS patients (42% ± 8% v 31% ± 1%, respectively; p = 0.014). Brachial artery diameter and FMD response after surgery were both predictive of VS, with an area under the curve (95% confidence interval) of 0.850 (0.705-0.995) (p = 0.002) and 0.755 (0.56-0.95) (p = 0.047), respectively. CONCLUSION Cardiac surgery with cardiopulmonary bypass appears to alter the NO-mediated endothelial vasomotor response.
Collapse
Affiliation(s)
- Osama Abou-Arab
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France.
| | - Lucie Martineau
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France
| | - Stéphane Bar
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France
| | - Pierre Huette
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France
| | - Amar Ben Amar
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France
| | - Thierry Caus
- Department of Cardiac Surgery, Amiens Picardy University Hospital, Amiens, France
| | - Hervé Dupont
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France
| | - Said Kamel
- Jules Verne University of Picardy, Amiens, France
| | - Pierre-Grégoire Guinot
- Department of Anaesthesiology and Critical Care Medicine, Dijon University Hospital, Dijon, France
| | - Emmanuel Lorne
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardy University Hospital, Amiens, France
| |
Collapse
|
36
|
Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun Rev 2017; 17:53-72. [PMID: 29108826 DOI: 10.1016/j.autrev.2017.11.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022]
Abstract
Physical activity, by definition, is any skeletal muscle body movement that results in energy expenditure. In the last few decades, a plethora of scientific evidences have accumulated and confirmed the beneficial role of physical activity as a modifiable risk factor for a wide variety of chronic diseases including cardiovascular diseases (CVDs), diabetes mellitus and cancer, among others. Autoimmune diseases are a heterogeneous group of chronic diseases, which occur secondary to loss of self-antigen tolerance. With the advent of biological therapies, better outcomes have recently been noted in the management of autoimmune diseases. Nonetheless, recent research highlights the salient role of modifiable behaviors such as physical inactivity on various aspects of the immune system and autoimmune diseases. Physical activity leads to a significant elevation in T-regulatory cells, decreased immunoglobulin secretion and produces a shift in the Th1/Th2 balance to a decreased Th1 cell production. Moreover, physical activity has been proven to promote the release of IL-6 from muscles. IL-6 released from muscles functions as a myokine and has been shown to induce an anti-inflammatory response through IL-10 secretion and IL-1β inhibition. Physical activity has been shown to be safe in most of autoimmune diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), inflammatory bowel diseases (IBD), as well as others. Additionally, the incidence of RA, MS, IBD and psoriasis has been found to be higher in patients less engaged in physical activity. As a general trend, patients with autoimmune diseases tend to be less physically active as compared to the general population. Physically active RA patients were found to have a milder disease course, better cardiovascular disease (CVD) profile, and improved joint mobility. Physical activity decreases fatigue, enhances mood, cognitive abilities and mobility in patients with MS. In SLE patients, enhanced quality of life and better CVD profile were documented in more physically active patients. Physically active patients with type 1 diabetes mellitus have a decreased risk of autonomic neuropathy and CVD. Both fibromyalgia and systemic sclerosis patients report decreased disease severity, pain, as well as better quality of life with more physical activity. Further, SSc patients improve their grip strength, finger stretching and mouth opening with increased level of exercise. The purpose of this paper is to review the clinical evidence regarding the safety, barriers to engagement, and impact of physical activity on autoimmune diseases.
Collapse
|
37
|
Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol 2017; 19:653-665. [PMID: 28530658 PMCID: PMC5455977 DOI: 10.1038/ncb3528] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
The hierarchical organization of properly sized blood vessels ensures the correct distribution of blood to all organs of the body, and is controlled via haemodynamic cues. In current concepts, an endothelium-dependent shear stress set point causes blood vessel enlargement in response to higher flow rates, while lower flow would lead to blood vessel narrowing, thereby establishing homeostasis. We show that during zebrafish embryonic development increases in flow, after an initial expansion of blood vessel diameters, eventually lead to vessel contraction. This is mediated via endothelial cell shape changes. We identify the transforming growth factor beta co-receptor endoglin as an important player in this process. Endoglin mutant cells and blood vessels continue to enlarge in response to flow increases, thus exacerbating pre-existing embryonic arterial-venous shunts. Together, our data suggest that cell shape changes in response to biophysical cues act as an underlying principle allowing for the ordered patterning of tubular organs.
Collapse
|
38
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 443] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
39
|
Abstract
The endothelin (ET) system includes 3 small peptide hormones and a pair of G-protein-coupled receptors. This review first outlines the ET signaling pathway and ET metabolism. Next, it summarizes the role of ET1 signaling in craniofacial development. Then, it discusses observations relating ET signaling to osteoblastic and other osteosclerotic processes in cancer. Finally, it describes recent work in our laboratory that points to endothelin signaling as an upstream mediator of WNT signaling, promoting bone matrix synthesis and mineralization. It concludes with a statement of some remaining gaps in knowledge and proposals for future research.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Michael G Johnson
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Stadium Road, Karachi 74800, Pakistan
| | - Robert D Blank
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Medical Service, Clement J. Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA.
| |
Collapse
|
40
|
Kristianto J, Johnson MG, Afzal R, Blank RD. WITHDRAWN: Endothelin signaling in bone. Transl Res 2016:S1931-5244(16)30366-8. [PMID: 27893988 DOI: 10.1016/j.trsl.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Jasmin Kristianto
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis
| | - Michael G Johnson
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Robert D Blank
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Medical Service, Clement J. Zablocki VAMC, Milwaukee, Wis
| |
Collapse
|
41
|
Abstract
Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine Department of Cell Biology, Yale University, New Haven, CT 06511 Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| |
Collapse
|
42
|
Rueckschloss U, Kuerten S, Ergün S. The role of CEA-related cell adhesion molecule-1 (CEACAM1) in vascular homeostasis. Histochem Cell Biol 2016; 146:657-671. [PMID: 27695943 DOI: 10.1007/s00418-016-1505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen (CEA)-related cell adhesion molecules belong to the immunoglobulin superfamily, are expressed in a broad spectrum of tissues and cell types and exert context-dependent activating as well as inhibitory effects. Among these molecules, the CEA-related cell adhesion molecule-1 (CEACAM1) is a transmembrane molecule with an extracellular, a transmembrane and a cytoplasmic domain. The latter contains immunoreceptor tyrosine-based inhibitory motifs and functions as a signaling molecule. CEACAM1 can form homo- and heterodimers which is relevant for its signaling activities. CEACAM1 acts as co-receptor that modulates the activity of different receptor types including VEGFR-2, and B and T cell receptors. CEACAM1 is expressed in endothelial cells, in pericytes of developing and newly formed immature blood vessels and in angiogenically activated adult vessels, e.g., tumor blood vessels. However, it is either undetectable or only weakly expressed in quiescent blood vessels. Recent studies indicated that CEACAM1 is involved in the regulation of the endothelial barrier function. In CEACAM1 -/- mice, increased vascular permeability and development of small atherosclerotic lesions was observed in the aortae. CEACAM1 is also detectable in activated lymphatic endothelial cells and plays a role in tumor lymphangiogenesis. This review summarizes the vascular effects of CEACAM1 and focuses on its role in vascular morphogenesis and endothelial barrier regulation.
Collapse
Affiliation(s)
- Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany.
| |
Collapse
|
43
|
MISÁRKOVÁ E, BEHULIAK M, BENCZE M, ZICHA J. Excitation-Contraction Coupling and Excitation-Transcription Coupling in Blood Vessels: Their Possible Interactions in Hypertensive Vascular Remodeling. Physiol Res 2016; 65:173-91. [DOI: 10.33549/physiolres.933317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) display considerable phenotype plasticity which can be studied in vivo on vascular remodeling which occurs during acute or chronic vascular injury. In differentiated cells, which represent contractile phenotype, there are characteristic rapid transient changes of intracellular Ca2+ concentration ([Ca2+]i), while the resting cytosolic [Ca2+]i concentration is low. It is mainly caused by two components of the Ca2+ signaling pathways: Ca2+ entry via L-type voltage-dependent Ca2+ channels and dynamic involvement of intracellular stores. Proliferative VSMC phenotype is characterized by long-lasting [Ca2+]i oscillations accompanied by sustained elevation of basal [Ca2+]i. During the switch from contractile to proliferative phenotype there is a general transition from voltage-dependent Ca2+ entry to voltage-independent Ca2+ entry into the cell. These changes are due to the altered gene expression which is dependent on specific transcription factors activated by various stimuli. It is an open question whether abnormal VSMC phenotype reported in rats with genetic hypertension (such as spontaneously hypertensive rats) might be partially caused by a shift from contractile to proliferative VSMC phenotype.
Collapse
Affiliation(s)
| | | | | | - J. ZICHA
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
44
|
Möbius-Winkler S, Uhlemann M, Adams V, Sandri M, Erbs S, Lenk K, Mangner N, Mueller U, Adam J, Grunze M, Brunner S, Hilberg T, Mende M, Linke AP, Schuler G. Coronary Collateral Growth Induced by Physical Exercise: Results of the Impact of Intensive Exercise Training on Coronary Collateral Circulation in Patients With Stable Coronary Artery Disease (EXCITE) Trial. Circulation 2016; 133:1438-48; discussion 1448. [PMID: 26979085 DOI: 10.1161/circulationaha.115.016442] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND A well-developed coronary collateral circulation provides a potential source of blood supply in coronary artery disease. However, the prognostic importance and functional relevance of coronary collaterals is controversial with the association between exercise training and collateral growth still unclear. METHODS AND RESULTS This prospective, open-label study randomly assigned 60 patients with significant coronary artery disease (fractional flow reserve ≤0.75) to high-intensity exercise (group A, 20 patients) or moderate-intensity exercise (group B, 20 patients) for 4 weeks or to a control group (group C, 20 patients). The primary end point was the change of the coronary collateral flow index (CFI) after 4 weeks. Analysis was based on the intention to treat. After 4 weeks, baseline CFI increased significantly by 39.4% in group A (from 0.142±0.07 at beginning to 0.198±0.09 at 4 weeks) in comparison with 41.3% in group B (from 0.143±0.06 to 0.202±0.09), whereas CFI in the control group remained unchanged (0.7%, from 0.149±0.09 to 0.150±0.08). High-intensity exercise did not lead to a greater CFI than moderate-intensity training. After 4 weeks, exercise capacity, Vo2 peak and ischemic threshold increased significantly in group A and group B in comparison with group C with no difference between group A and group B. CONCLUSIONS A significant improvement in CFI was demonstrated in response to moderate- and high-intensity exercise performed for 10 hours per week. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01209637.
Collapse
Affiliation(s)
- Sven Möbius-Winkler
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Madlen Uhlemann
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.).
| | - Volker Adams
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Marcus Sandri
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Sandra Erbs
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Karsten Lenk
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Norman Mangner
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Ulrike Mueller
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Jennifer Adam
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Martin Grunze
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Susanne Brunner
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Thomas Hilberg
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Meinhard Mende
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Axel P Linke
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| | - Gerhard Schuler
- From University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany (A.M.-W., M.U., V.A., M.S., S.E., K.L., N.M., U.M., J.A., A.P.L., G.S.); Asklepios Clinic Weißenfels, Germany (S.M.-W., K.L.); MediClin Dünenwald Klinik Trassenheide, Germany (M.G., S.B.); Department of Sports Medicine, University Wuppertal, Germany (T.H.); and Coordination Centre for Clinical Trials, University of Leipzig, Germany (M.M.)
| |
Collapse
|
45
|
Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest 2016; 126:821-8. [PMID: 26928035 DOI: 10.1172/jci83083] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cells transduce the frictional force from blood flow (fluid shear stress) into biochemical signals that regulate gene expression and cell behavior via specialized mechanisms and pathways. These pathways shape the vascular system during development and during postnatal and adult life to optimize flow to tissues. The same pathways also contribute to atherosclerosis and vascular malformations. This Review covers recent advances in basic mechanisms of flow signaling and the involvement of these mechanisms in vascular physiology, remodeling, and these diseases. We propose that flow sensing pathways that govern normal morphogenesis can contribute to disease under pathological conditions or can be altered to induce disease. Viewing atherosclerosis and vascular malformations as instances of pathological morphogenesis provides a unifying perspective that may aid in developing new therapies.
Collapse
|
46
|
Paiva FM, Vianna LC, Fernandes IA, Nóbrega AC, Lima RM. Effects of disturbed blood flow during exercise on endothelial function: a time course analysis. Braz J Med Biol Res 2016; 49:e5100. [PMID: 26909789 PMCID: PMC4792509 DOI: 10.1590/1414-431x20155100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023] Open
Abstract
This study aimed to examine the time course of endothelial function after a single handgrip exercise session combined with blood flow restriction in healthy young men. Nine participants (28 ± 5.8 years) completed a single session of bilateral dynamic handgrip exercise (20 min with 60% of the maximum voluntary contraction). To induce blood flow restriction, a cuff was placed 2 cm below the antecubital fossa in the experimental arm. This cuff was inflated to 80 mmHg before initiation of exercise and maintained through the duration of the protocol. The experimental arm and control arm were randomly selected for all subjects. Brachial artery flow-mediated dilation (FMD) and blood flow velocity profiles were assessed using Doppler ultrasonography before initiation of the exercise, and at 15 and 60 min after its cessation. Blood flow velocity profiles were also assessed during exercise. There was a significant increase in FMD 15 min after exercise in the control arm compared with before exercise (64.09% ± 16.59%, P=0.001), but there was no change in the experimental arm (-12.48% ± 12.64%, P=0.252). FMD values at 15 min post-exercise were significantly higher for the control arm in comparison to the experimental arm (P=0.004). FMD returned to near baseline values at 60 min after exercise, with no significant difference between arms (P=0.424). A single handgrip exercise bout provoked an acute increase in FMD 15 min after exercise, returning to near baseline values at 60 min. This response was blunted by the addition of an inflated pneumatic cuff to the exercising arm.
Collapse
Affiliation(s)
- F M Paiva
- Faculdade de Educação Física, Universidade de Brasília, Brasília, DF, Brasil
| | - L C Vianna
- Faculdade de Educação Física, Universidade de Brasília, Brasília, DF, Brasil
| | - I A Fernandes
- Laboratório de Ciências do Exercício, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - A C Nóbrega
- Laboratório de Ciências do Exercício, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - R M Lima
- Faculdade de Educação Física, Universidade de Brasília, Brasília, DF, Brasil
| |
Collapse
|
47
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
48
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Thijssen DHJ, Schreuder THA, Newcomer SW, Laughlin MH, Hopman MTE, Green DJ. Impact of 2-Weeks Continuous Increase in Retrograde Shear Stress on Brachial Artery Vasomotor Function in Young and Older Men. J Am Heart Assoc 2015; 4:e001968. [PMID: 26416875 PMCID: PMC4845130 DOI: 10.1161/jaha.115.001968] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although acute elevation in retrograde shear rate (SR) impairs endothelial function, no previous study has explored the effect of prolonged elevation of retrograde SR on conduit artery vascular function. We examined the effect of 2-weeks elevation of retrograde SR on brachial artery endothelial function in young and in older men. METHODS AND RESULTS Thirteen healthy young (23±2 years) and 13 older men (61±5 years) were instructed to continuously wear a compression sleeve around the right forearm to chronically (2 weeks) elevate brachial artery retrograde SR in 1 arm. We assessed SR, diameter, and flow-mediated dilation in both the sleeve and contralateral control arms at baseline and after 30 minutes and 2 weeks of continuous sleeve application. The sleeve intervention increased retrograde SR after 30 minutes and 2 weeks in both young and older men (P=0.03 and 0.001, respectively). In young men, brachial artery flow-mediated dilation % was lower after 30 minutes and 2 weeks (P=0.004), while resting artery diameter was reduced after 2 weeks (P=0.005). The contralateral arm showed no change in retrograde SR or flow-mediated dilation % (P=0.32 and 0.26, respectively), but a decrease in diameter (P=0.035). In older men, flow-mediated dilation % and diameter did not change in either arm (all P>0.05). CONCLUSIONS Thirty-minute elevation in retrograde SR in young men caused impaired endothelial function, while 2-week exposure to elevated levels of retrograde SR was associated with a comparable decrease in endothelial function. Interestingly, these vascular changes were not present in older men, suggesting age-related vascular changes to elevation in retrograde SR.
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Research Institute for Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Tim H. A. Schreuder
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | | | - Maria T. E. Hopman
- Department of PhysiologyRadboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Daniel J. Green
- Research Institute for Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUnited Kingdom
- School of Sport Science, Exercise and HealthThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
50
|
Atkinson CL, Carter HH, Naylor LH, Dawson EA, Marusic P, Hering D, Schlaich MP, Thijssen DHJ, Green DJ. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans. J Appl Physiol (1985) 2015; 119:858-64. [PMID: 26294751 DOI: 10.1152/japplphysiol.01086.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 08/01/2015] [Indexed: 11/22/2022] Open
Abstract
While the impact of changes in blood flow and shear stress on artery function are well documented, the acute effects of increases in arterial pressure are less well described in humans. The aim of this study was to assess the effect of 30 min of elevated blood pressure, in the absence of changes in shear stress or sympathetic nervous system (SNS) activation, on conduit artery diameter. Ten healthy male subjects undertook three sessions of 30 min unilateral handgrip exercise at 5, 10, and 15% of maximal voluntary contractile (MVC) strength. Brachial artery shear rate and blood flow profiles were measured simultaneously during exercise in the active and contralateral resting arms. Bilateral brachial artery diameter was simultaneously assessed before and immediately postexercise. In a second experiment, six subjects repeated the 15% MVC condition while continuous vascular measurements were collected during muscle sympathetic nerve activity (MSNA) assessment using peroneal microneurography. We found that unilateral handgrip exercise at 5, 10, and 15% MVC strength induced stepwise elevations in blood pressure (P < 0.01, Δmean arterial pressure: 7.06 ± 2.44, 8.50 ± 2.80, and 18.35 ± 3.52 mmHg, P < 0.01). Whereas stepwise increases were evident in shear rate in the exercising arm (P < 0.001), no changes were apparent in the nonexercising limb (P = 0.42). Brachial artery diameter increased in the exercising arm (P = 0.02), but significantly decreased in the nonexercising arm (P = 0.03). At 15% MVC, changes in diameter were significantly different between arms (interaction effect: P = 0.01), whereas this level of exertion produced no significant changes in MSNA. We conclude that acute increases in transmural pressure, independent of shear rate and changes in SNS activation, reduce arterial caliber in normotensive humans in vivo. These changes in diameter were mitigated by exercise-induced elevations in shear rate in the active limb.
Collapse
Affiliation(s)
- Ceri L Atkinson
- School of Sports Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia
| | - Howard H Carter
- School of Sports Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia
| | - Louise H Naylor
- School of Sports Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia
| | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Petra Marusic
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia; and
| | - Dagmara Hering
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia; and
| | - Markus P Schlaich
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia; and
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom; Department of Physiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Daniel J Green
- School of Sports Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom;
| |
Collapse
|