1
|
Bayraktar G, Yılmaz Göler AM, Aksu B, Öztürk Özener H. Efficacy of hypochlorous acid as an alternative oral antimicrobial agent on human gingival fibroblasts, Aggregatibacter actinomycetemcomitans, and Candida albicans biofilms in vitro. BIOFOULING 2023; 39:980-989. [PMID: 38018019 DOI: 10.1080/08927014.2023.2288071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
This study compared the cytotoxicity and antimicrobial activity of hypochlorous acid (HOCl) at 50 ppm and 200 ppm and 0.2% chlorhexidine (CHX) at various time intervals, in vitro. Cell viability and cytotoxicity of human gingival fibroblasts (HGF) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and the lactate dehydrogenase assay. Antimicrobial effects on Aggregatibacter actinomycetemcomitans and Candida albicans were determined using the time-kill method. All solutions exhibited a significant impact on HGFs in a dose- and time-dependent manner. 50 ppm HOCl demonstrated the highest cell viability, followed by 200 ppm HOCl. Both HOCl solutions were less cytotoxic to HGFs than 0.2% CHX. 50 ppm and 200 ppm HOCl demonstrated stronger efficiencies than CHX against A. actinomycetemcomitans and C. albicans. The data suggest that HOCl solutions have potential as an alternative antiseptic to CHX due to their lower cytotoxicity and superior antimicrobial activity, but optimal dosage of HOCl requires further investigations.
Collapse
Affiliation(s)
- Gözdem Bayraktar
- Department of Periodontology, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | | | - Burak Aksu
- Department of Medical Microbiology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Eastern Mediterranean University, Famagusta, Turkey
| | - Hafize Öztürk Özener
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
2
|
Harper A, Chapel M, Hodgson G, Malinowski K, Yates I, Garle M, Ralevic V. GYY4137, a hydrogen sulfide donor, protects against endothelial dysfunction in porcine coronary arteries exposed to myeloperoxidase and hypochlorous acid. Vascul Pharmacol 2023; 152:107199. [PMID: 37500030 DOI: 10.1016/j.vph.2023.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS Myeloperoxidase (MPO) and its principal reaction product hypochlorous acid (HOCl) are part of the innate immune response but are also associated with endothelial dysfunction, thought to involve a reduction in nitric oxide (NO) bioavailability. We aimed to investigate the effect of MPO and HOCl on vasorelaxation of coronary arteries and to assess directly the involvement of NO. In addition, we hypothesised that the slow release hydrogen sulfide (H2S) donor GYY4137 would salvage coronary artery endothelial function in the presence of MPO and HOCl. METHODS AND RESULTS Contractility of porcine coronary artery segments was measured using isometric tension recording. Incubation with MPO (50 ng/ml) plus hydrogen peroxide (H2O2) (30 μM; substrate for MPO) impaired endothelium-dependent vasorelaxation to bradykinin in coronary arteries. HOCl (10-500 μM) also impaired endothelium-dependent relaxations. There was no effect of MPO plus H2O2, or HOCl, on endothelium-independent relaxations to 5'-N-ethylcarboxamidoadenosine and sodium nitroprusside. L-NAME (300 μM), a NO synthase inhibitor, attenuated bradykinin relaxations, leaving L-NAME-resistant relaxations to bradykinin mediated by endothelium-dependent hyperpolarization. In the presence of L-NAME, MPO plus H2O2 largely failed to impair endothelium-dependent relaxations to bradykinin. Similarly, HOCl failed to inhibit endothelium-dependent relaxations to bradykinin in the presence of L-NAME. GYY4137 (1-100 μM) protected endothelium-dependent relaxations to bradykinin from dysfunction caused by MPO plus H2O2, and HOCl, with no effect alone on bradykinin relaxation responses. The specific MPO inhibitor aminobenzoic acid hydrazide (ABAH) (1 and 10 μM) also protected against MPO plus H2O2-induced endothelial dysfunction (at 10 μM ABAH), but was less potent than GYY4137. CONCLUSIONS MPO plus H2O2, and HOCl, impair coronary artery endothelium-dependent vasorelaxation via inhibition of NO. GYY4137 protects against endothelial dysfunction in arteries exposed to MPO plus H2O2, and HOCl. H2S donors such as GYY4137 are possible therapeutic options to control excessive MPO activity in cardiovascular diseases.
Collapse
Affiliation(s)
- Andrew Harper
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Maike Chapel
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Grace Hodgson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Imogen Yates
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Michael Garle
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Vera Ralevic
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
3
|
Li J, Xu J, Zhang W, Li P, Zhang W, Wang H, Tang B. Detection and Imaging of Active Substances in Early Atherosclerotic Lesions Using Fluorescent Probes. Chembiochem 2023; 24:e202300105. [PMID: 36898970 DOI: 10.1002/cbic.202300105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Atherosclerosis (AS) is a vascular disease caused by chronic inflammation and lipids that is the main cause of myocardial infarction, stroke and other cardiovascular diseases. Atherosclerosis is often difficult to detect in its early stages due to the absence of clinically significant vascular stenosis. This is not conducive to early intervention or treatment of the disease. Over the past decade, researchers have developed various imaging methods for the detection and imaging of atherosclerosis. At the same time, more and more biomarkers are being found that can be used as targets for detecting atherosclerosis. Therefore, the development of a variety of imaging methods and a variety of targeted imaging probes is an important project to achieve early assessment and treatment of atherosclerosis. This paper provides a comprehensive review of the optical probes used to detect and target atherosclerosis imaging in recent years, and describes the current challenges and future development directions.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jiheng Xu
- School of Materials Science and Engineering, Shandong University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
4
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
5
|
Evaluation of Antioxidant Potential of Commercial Cinnamon Samples and Its Vasculature Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1992039. [PMID: 35368871 PMCID: PMC8967587 DOI: 10.1155/2022/1992039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 12/17/2022]
Abstract
Growing concerns on free radicals are the oxidative processes associated with physiological damage. The consumption of functional foods and use of plants with antioxidant capacity are widespread. Given the importance of determining antioxidant capacity in relation to the therapeutic effect, this study was aimed at evaluating cinnamon extract (Cinnamomum sp.) in commercial samples by spectrophotometric and voltammetric methods and assessing the vascular activity of some samples. The spectrophotometric methods performed were DPPH (1,1-diphenyl-2-picrihydrazine), ABTS (2,21-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)), and Folin-Ciocalteu radical sequestration assays. For the electrochemical experiments, a three-electrode system was used, consisting of carbon paste electrode, platinum wire, and Ag/AgCl/KClsat, representing the working, auxiliary, and reference electrodes, respectively. The electroanalytical methods used were differential pulse, square wave, and cyclic voltammetries. The extracts were prepared in hydroalcoholic solution. A calibration curve with gallic acid was calculated to quantify their equivalent amounts in the analyzed extract. The correlation between the electrochemical approach and the total phenols calculated by the ABTS, DPPH, and Folin-Ciocalteu methods was 0.63, 0.7, and 0.73, respectively, with 1 being an ideal directly proportional correlation. The correlation between spectrophotometric methods was 0.83. A biosensor was developed in a carbon paste electrode using the enzyme laccase, obtained by the fungus Marasmiellus colocasiae. It was observed that the antioxidant profile of the cinnamon samples had an analytical sign improvement of up to 4 times when compared with the electrode without the modification. The samples were analyzed by mass spectrometer, and the main chemical markers found were coumarin, cinnamaldehyde, and eugenol. Pharmacological trials showed that these samples also induce a significant vasorelaxant effect associated to antioxidant potential on vascular injury induced by oxidative stress. Thus, cinnamon showed a high antioxidant capacity, in agreement with the results obtained in other studies, emphasizing its importance as a functional food.
Collapse
|
6
|
Junior JB, Arantes DAC, Siqueira Leite KC, de Souza Gil E, Rocha ML. Protective Effects of Grape Juice on Vascular Damage Induced by Chlorine Free Radical in Rats. Prev Nutr Food Sci 2021; 26:417-424. [PMID: 35047438 PMCID: PMC8747961 DOI: 10.3746/pnf.2021.26.4.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/06/2022] Open
Abstract
Grapes and their derivatives have antioxidant and cardioprotective properties. Therefore, we hypothesized that grape juice (GJ) could improve vascular oxidative damage caused by chlorine radicals (OCl−), which are excessively produced in vascular tissue during cardiovascular diseases (mainly diabetes and hypertension). The antioxidant capacity of GJ was analyzed by an electrochemical method, followed by administration in rats (100 or 300 mg/kg/d, via the oral) for seven days. Then, rats were sacrificed, and their aortas were isolated and subjected to isometric recordings or immuno-histochemical analyses with or without exposure to OCl− (5, 20, or 100 μM, 60 min). Concentration-effect curves for acetylcholine (ACh) and sodium nitroprusside (SNP) were derived to analyze endothelium-dependent or independent vasore-laxation. The GJ presented with high antioxidant capacity, and treatment with GJ did not alter vascular relaxation induced by ACh or SNP. After exposure to OCl−, endothelium-denuded arteries showed preserved relaxation with SNP, whereas endothelium-intact arteries showed reduced relaxation with ACh. OCl− at various concentrations induced significantly decreased relaxation of arteries (80.6±4.2%, 55.4±4.7%, and 28.1±5.9%, respectively) vs. control arteries (96.8±2.4%). However, treatment with GJ prevented loss in relaxation caused by 5 and 20 μM OCl− and improved relaxation after exposure to 100 μM OCl−. Exposure to OCl− induced increased nitrotyrosine immunostaining of endothelial cell layers, which was improved by GJ treatment. Altogether, vascular damage caused by OCl− was prevented by treatment with GJ, and GJ prevented nitrosative stress in these vessels.
Collapse
Affiliation(s)
- Jose Britto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-220, Brazil
| | | | | | - Eric de Souza Gil
- Laboratory of Pharmaceutical Analysis, Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-220, Brazil
| | - Matheus Lavorenti Rocha
- Laboratory of Cardiovascular Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-220, Brazil
| |
Collapse
|
7
|
Rehring JF, Bui TM, Galán-Enríquez CS, Urbanczyk JM, Ren X, Wiesolek HL, Sullivan DP, Sumagin R. Released Myeloperoxidase Attenuates Neutrophil Migration and Accumulation in Inflamed Tissue. Front Immunol 2021; 12:654259. [PMID: 33959129 PMCID: PMC8093447 DOI: 10.3389/fimmu.2021.654259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (PMN) recruitment to sites of insult is critical for host defense, however excessive PMN activity and tissue accumulation can lead to exacerbated inflammation and injury. Myeloperoxidase (MPO) is a PMN azurophilic granule enzyme, which together with H2O2, forms a powerful antimicrobial system designed to kill ingested bacteria. Intriguingly, in addition to intracellular killing of invading microorganisms and extracellular tissue damage due generation of ROS, soluble MPO has been directly implicated in modulating cellular responses and tissue homeostasis. In the current work, we used several models of inflammation, murine and human PMNs and state-of-the-art intravital microscopy to examine the effect of MPO on PMN migration and tissue accumulation. We found that in the absence of functional MPO (MPO knockout, KO mice) inflammatory PMN tissue accumulation was significantly enhanced. We determined that the elevated numbers of PMNs in MPO knockout mice was not due to enhanced viability, but due to increased migratory ability. Acute PMN migration in models of zymosan-induced peritonitis or ligated intestinal loops induced by intraluminal administration of PMN-chemokine CXCL1 was increased over 2-fold in MPO KO compared to wild type (WT) mice. Using real-time intravital imaging of inflamed mouse cremaster muscle and ex vivo PMN co-culture with inflamed endothelial cells (ECs) we demonstrate that elevated migration of MPO KO mice was due to enhanced adhesive interactions. In contrast, addition of soluble recombinant MPO both in vivo and ex vivo diminished PMN adhesion and migration. Although MPO has been previously suggested to bind CD11b, we found no significant difference in CD11b expression in either resting or activated PMNs and further showed that the MPO binding to the PMN surface is not specific to CD11b. As such, our data identify MPO as a novel regulator of PMN trafficking in inflammation.
Collapse
Affiliation(s)
- Jacob F Rehring
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Jessica M Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020; 76:1055-1068. [PMID: 32829664 DOI: 10.1161/hypertensionaha.120.15856] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Keivan Golshiri
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Annika Jüttner
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Guido Krenning
- Sulfateq B.V., Groningen, the Netherlands (G.K.).,Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands (G.K.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| |
Collapse
|
9
|
He P, Talukder MAH, Gao F. Oxidative Stress and Microvessel Barrier Dysfunction. Front Physiol 2020; 11:472. [PMID: 32536875 PMCID: PMC7268512 DOI: 10.3389/fphys.2020.00472] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical and experimental evidence indicate that increased vascular permeability contributes to many disease-associated vascular complications. Oxidative stress with increased production of reactive oxygen species (ROS) has been implicated in a wide variety of pathological conditions, including inflammation and many cardiovascular diseases. It is thus important to identify the role of ROS and their mechanistic significance in microvessel barrier dysfunction under pathological conditions. The role of specific ROS and their cross talk in pathological processes is complex. The mechanisms of ROS-induced increases in vascular permeability remain poorly understood. The sources of ROS in diseases have been extensively reviewed at enzyme levels. This review will instead focus on the underlying mechanisms of ROS release by leukocytes, the differentiate effects and signaling mechanisms of individual ROS on endothelial cells, pericytes and microvessel barrier function, as well as the interplay of reactive oxygen species, nitric oxide, and nitrogen species in ROS-mediated vascular barrier dysfunction. As a counter balance of excessive ROS, nuclear factor erythroid 2 related factor 2 (Nrf2), a redox-sensitive cell-protective transcription factor, will be highlighted as a potential therapeutic target for antioxidant defenses. The advantages and limitations of different experimental approaches used for the study of ROS-induced endothelial barrier function are also discussed. This article will outline the advances emerged mainly from in vivo and ex vivo studies and attempt to consolidate some of the opposing views in the field, and hence provide a better understanding of ROS-mediated microvessel barrier dysfunction and benefit the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - M A Hassan Talukder
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Feng Gao
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
10
|
Rayner BS, Zhang Y, Brown BE, Reyes L, Cogger VC, Hawkins CL. Role of hypochlorous acid (HOCl) and other inflammatory mediators in the induction of macrophage extracellular trap formation. Free Radic Biol Med 2018; 129:25-34. [PMID: 30189264 DOI: 10.1016/j.freeradbiomed.2018.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
Abstract
The infiltration of activated leukocytes, including macrophages, at sites of inflammation and the formation and presence of hypochlorous acid (HOCl) are interlinked hallmarks of many debilitating disease processes, including atherosclerosis, arthritis, neurological and renal disease, diabetes and obesity. The production of extracellular traps by activated leukocytes in response to a range of inflammatory stimuli is increasingly recognised as an important process within a range of disease settings. We show that exposure of human monocyte-derived macrophages to pathophysiological levels of HOCl results in the dose-dependent extrusion of DNA and histones into the cellular supernatant, consistent with extracellular trap formation. Concurrent with, but independent of these findings, macrophage exposure to HOCl also resulted in an immediate and sustained cytosolic accumulation of Ca2+, culminating in the increased production of cytokines and chemokines. Polarisation of the macrophages prior to HOCl exposure revealed a greater propensity for inflammatory M1 macrophages to produce extracellular traps, whereas alternatively-activated M2 macrophages were less susceptible to HOCl insult. M1 macrophages also produced extracellular traps on exposure to phorbol myristate acetate (PMA), interleukin-8 (IL-8) and tumour necrosis factor α (TNFα). Taken together, these data indicate a potential role for macrophages in mediating extracellular trap formation, which may be relevant in pathological conditions characterised by chronic inflammation or excessive HOCl formation.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Yunjia Zhang
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Bronwyn E Brown
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Leila Reyes
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Victoria C Cogger
- Sydney Medical School, University of Sydney, NSW 2006, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3, Copenhagen N DK-2200, Denmark.
| |
Collapse
|
11
|
Marro ML, Patterson AW, Lee L, Deng L, Reynolds A, Ren X, Axford L, Patnaik A, Hollis-Symynkywicz M, Casson N, Custeau D, Ames L, Loi S, Zhang L, Honda T, Blank J, Harrison TJ, Papillon JPN, Hamann LG, Marcinkeviciene J, Regard JB. Discovery of 1-((6-Aminopyridin-3-yl)Methyl)-3-(4-Bromophenyl)Urea as a Potent, Irreversible Myeloperoxidase Inhibitor. J Pharmacol Exp Ther 2018; 367:147-154. [DOI: 10.1124/jpet.118.248435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
|
12
|
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C. The other myeloperoxidase: Emerging functions. Arch Biochem Biophys 2018; 649:1-14. [PMID: 29614255 DOI: 10.1016/j.abb.2018.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a member of the mammalian peroxidase family. It is mainly expressed in neutrophils, monocytes and macrophages. As a catalyzer of reactive oxidative species and radical species formation, it contributes to neutrophil bactericidal activity. Nevertheless MPO invalidation does not seem to have major health consequences in affected individuals. This suggests that MPO might have alternative functions supporting its conservation during evolution. We will review the available data supporting these non-canonical functions in terms of tissue specific expression, function and enzymatic activity. Thus, we discuss its cell type specific expression. We review in between others its roles in angiogenesis, endothelial (dys-) function, immune reaction, and inflammation. We summarize its pathological actions in clinical conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium; Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
13
|
Casciaro M, Di Salvo E, Pace E, Ventura-Spagnolo E, Navarra M, Gangemi S. Chlorinative stress in age-related diseases: a literature review. IMMUNITY & AGEING 2017; 14:21. [PMID: 29163665 PMCID: PMC5686828 DOI: 10.1186/s12979-017-0104-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.
Collapse
Affiliation(s)
- Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Policlinico "G. Martino", University of Messina, Messina, Italy
| | - Eleonora Di Salvo
- IBIM-CNR Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy
| | - Elisabetta Pace
- IBIM-CNR Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy
| | - Elvira Ventura-Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Policlinico "G. Martino", University of Messina, Messina, Italy
| |
Collapse
|
14
|
Stamboul K, Zeller M, Rochette L, Cottin Y, Cochet A, Leclercq T, Porot G, Guenancia C, Fichot M, Maillot N, Vergely C, Lorgis L. Relation between high levels of myeloperoxidase in the culprit artery and microvascular obstruction, infarct size and reverse remodeling in ST-elevation myocardial infarction. PLoS One 2017; 12:e0179929. [PMID: 28704420 PMCID: PMC5509133 DOI: 10.1371/journal.pone.0179929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/06/2017] [Indexed: 11/19/2022] Open
Abstract
MAIN OBJECTIVE To better understand the role of myeloperoxidases (MPO) in microvascular obstruction (MO) phenomenon and infarct size (IS) using cardiac magnetic resonance (CMR) data in patients with acute myocardial infarction (AMI). METHOD 40 consecutive patients classified according to the median level of MPO in the culprit artery. A CMR study was performed during the week following AMI and at 6 months, with late gadolinium enhancement sequences. RESULTS Persistent MO was observed in the same proportion (50 vs. 65%, p = 0.728) between the low vs. high MPO group levels. However, the extent of the microvascular obstruction was significantly greater in the high-MPO group (6 (0-9) vs.16.5 (0-31), p = 0.027), together with a greater infarct size, and a trend towards a lower left ventricular ejection fraction (LVEF) (p = 0.054) at one week. CMR data at 6 months showed that reverse systolic remodeling was two fold more present in the low-MPO group (p = 0.058). Interestingly, the extent of MO (8.5 (6.5-31) vs. 4.1 (3-11.55), p = 0.042) and IS remained significantly greater (24.5 (9.75-35) vs. 7.5 (2.5-18.75), p = 0.022) in the high-MPO group. Moreover, MPO in the culprit artery appeared to correlate positively with MPO in non-culprit arteries and serum, and with troponin levels and peak CK. CONCLUSION This patient-based study revealed in patients after AMI that high MPO levels in the culprit artery were associated with more severe microvascular obstruction and greater IS. These findings may provide new insights pathophysiology explanation for the adverse prognostic impact of MO.
Collapse
Affiliation(s)
- Karim Stamboul
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
- MRI Unit and LE2I UMR CNRS 6306, University Hospital, Dijon, France
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| | - Marianne Zeller
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| | - Luc Rochette
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| | - Yves Cottin
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
- MRI Unit and LE2I UMR CNRS 6306, University Hospital, Dijon, France
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| | - Alexandre Cochet
- MRI Unit and LE2I UMR CNRS 6306, University Hospital, Dijon, France
| | - Thibault Leclercq
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
| | - Guillaume Porot
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
| | - Charles Guenancia
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
- MRI Unit and LE2I UMR CNRS 6306, University Hospital, Dijon, France
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| | - Marie Fichot
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
| | - Nicolas Maillot
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
| | - Catherine Vergely
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| | - Luc Lorgis
- Department of Cardiology, University Hospital, Bd de Lattre de Tassigny, Dijon Cedex, France
- MRI Unit and LE2I UMR CNRS 6306, University Hospital, Dijon, France
- Laboratory of Cerebro-Vascular Pathophysiology and epidemiology (PEC2), University of Burgundy, Dijon, France.University of Burgundy, Dijon, France
| |
Collapse
|
15
|
Kacprzak M, Zielinska M. Prognostic value of myeloperoxidase concentration in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Int J Cardiol 2016; 223:452-457. [PMID: 27544604 DOI: 10.1016/j.ijcard.2016.07.258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/08/2016] [Accepted: 07/30/2016] [Indexed: 11/19/2022]
Abstract
Inflammation plays an important role on every stage of atherosclerosis. Myeloperoxidase (MPO), a leukocyte-derived enzyme that participates in the innate immunity, probably is involved in many stages of atherothrombosis. According to the recent studies, MPO is related with unfavorable outcome in patients with chest pain and acute coronary syndromes. Its role in prediction of outcomes after ST-segment elevation myocardial infarction (STEMI) remains unclear. The aim of the study was to assess if elevated MPO level is a predictor of long-term adverse cardiac events in patients with STEMI treated with primary percutaneous coronary intervention (pPCI). MATERIAL AND METHODS We evaluated data of 127 patients with STEMI. Plasma levels of MPO collected on admission and the 3rd-4th day of hospitalization were measured by ELISA method. C-reactive protein (CRP) and N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) were also determined. All patients were followed-up prospectively for the occurrence of major adverse cardiovascular events (MACE) defined as unscheduled coronary revascularization procedure, stroke, reinfarction or all-cause death. RESULTS After 14months of follow-up 20% of patients developed MACE. Elevated MPO levels collected on the 3rd-4th day of STEMI were the predictor of death, reinfarction, the need for coronary revascularization and all adverse events taken together. In multivariate analysis, MPO and CRP levels assessed on the 3rd-4th day of hospitalization revealed to be significant predictors of MACE. MPO demonstrated to be significantly better predictor of MACE than NT-proBNP level. CONCLUSIONS Myeloperoxidase is a prognostic marker in patients with STEMI treated with pPCI.
Collapse
Affiliation(s)
- Michal Kacprzak
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Poland.
| | | |
Collapse
|
16
|
Bushueva O, Solodilova M, Ivanov V, Polonikov A. Gender-specific protective effect of the −463G>A polymorphism of myeloperoxidase gene against the risk of essential hypertension in Russians. ACTA ACUST UNITED AC 2015; 9:902-6. [PMID: 26431910 DOI: 10.1016/j.jash.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/10/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
|
17
|
Kalász J, Pásztor ET, Fagyas M, Balogh Á, Tóth A, Csató V, Édes I, Papp Z, Borbély A. Myeloperoxidase impairs the contractile function in isolated human cardiomyocytes. Free Radic Biol Med 2015; 84:116-127. [PMID: 25770662 DOI: 10.1016/j.freeradbiomed.2015.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
Abstract
We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.
Collapse
Affiliation(s)
- Judit Kalász
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Enikő T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Balogh
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Viktória Csató
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Borbély
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
18
|
Csató V, Pető A, Fülöp GÁ, Rutkai I, Pásztor ET, Fagyas M, Kalász J, Édes I, Tóth A, Papp Z. Myeloperoxidase evokes substantial vasomotor responses in isolated skeletal muscle arterioles of the rat. Acta Physiol (Oxf) 2015; 214:109-23. [PMID: 25760778 PMCID: PMC4654238 DOI: 10.1111/apha.12488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/19/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
Abstract
Aims Myeloperoxidase (MPO) catalyses the formation of a wide variety of oxidants, including hypochlorous acid (HOCl), and contributes to cardiovascular disease progression. We hypothesized that during its action MPO evokes substantial vasomotor responses. Methods Following exposure to MPO (1.92 mU mL−1) in the presence of increasing concentrations of hydrogen peroxide (H2O2), changes in arteriolar diameter of isolated gracilis skeletal muscle arterioles (SMAs) and coronary arterioles (CAs) and in the isometric force in basilar arteries (BAs) of the rat were monitored. Results Myeloperoxidase increased vascular tone to different degrees in CAs, SMAs and BAs. The mechanism of increased vasoconstriction was studied in detail in SMAs. MPO-evoked vasoconstrictions were prevented by the MPO inhibitor 4-aminobenzhydrazide (50 μm), by endothelium removal in the SMAs. Surprisingly, the HOCl scavenger L-methionine (100 μm), the thromboxane A2 (TXA2) antagonist SQ-29548 (1 μm) or the non-specific cyclooxygenase (COX) antagonist indomethacin (1 μm) converted the MPO-evoked vasoconstrictions to pronounced vasodilations in SMAs, not seen in the presence of H2O2. In contrast to noradrenaline-induced vasoconstrictions, the MPO-evoked vasoconstrictions were not accompanied by significant increases in arteriolar [Ca2+] levels in SMAs. Conclusion These data showed that H2O2-derived HOCl to be a potent vasoconstrictor upon MPO application. HOCl activated the COX pathway, causing the synthesis and release of a TXA2-like substance to increase the Ca2+ sensitivity of the contractile apparatus in vascular smooth muscle cells and thereby to augment H2O2-evoked vasoconstrictions. Nevertheless, inhibition of the HOCl–COX–TXA2 pathway unmasked the effects of additional MPO-derived radicals with a marked vasodilatory potential in SMAs.
Collapse
Affiliation(s)
- V. Csató
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - A. Pető
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - G. Á. Fülöp
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - I. Rutkai
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - E. T. Pásztor
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - M. Fagyas
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - J. Kalász
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - I. Édes
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - A. Tóth
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| | - Z. Papp
- Division of Clinical Physiology Institute of Cardiology Research Center for Molecular Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
| |
Collapse
|
19
|
Konradi J, Mollenhauer M, Baldus S, Klinke A. Redox-sensitive mechanisms underlying vascular dysfunction in heart failure. Free Radic Res 2015; 49:721-42. [DOI: 10.3109/10715762.2015.1027200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Sadowska-Bartosz I, Ott C, Grune T, Bartosz G. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Free Radic Res 2014; 48:1267-84. [PMID: 25119970 DOI: 10.3109/10715762.2014.953494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are subject to various posttranslational modifications, some of them being undesired from the point of view of metabolic efficiency. Prevention of such modifications is expected to provide new means of therapy of diseases and decelerate the process of aging. In this review, modifications of proteins by reactive nitrogen species and reactive halogen species, is briefly presented and means of prevention of these modifications and their sequelae are discussed, including the denitrase activity and inhibitors of myeloperoxidase.
Collapse
Affiliation(s)
- I Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów , Rzeszów , Poland
| | | | | | | |
Collapse
|
21
|
G-CSF induces membrane expression of a myeloperoxidase glycovariant that operates as an E-selectin ligand on human myeloid cells. Proc Natl Acad Sci U S A 2014; 111:10696-701. [PMID: 25002508 DOI: 10.1073/pnas.1320833111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The host defense response critically depends on the production of leukocytes by the marrow and the controlled delivery of these cells to relevant sites of inflammation/infection. The cytokine granulocyte-colony stimulating factor (G-CSF) is commonly used therapeutically to augment neutrophil recovery following chemo/radiation therapy for malignancy, thereby decreasing infection risk. Although best known as a potent inducer of myelopoiesis, we previously reported that G-CSF also promotes the delivery of leukocytes to sites of inflammation by stimulating expression of potent E-selectin ligands, including an uncharacterized ∼65-kDa glycoprotein. To identify this ligand, we performed integrated biochemical analysis and mass spectrometry studies of G-CSF-treated primary human myeloid cells. Our studies show that this novel E-selectin ligand is a glycoform of the heavy chain component of the enzyme myeloperoxidase (MPO), a well-known lysosomal peroxidase. This specialized MPO glycovariant, referred to as "MPO-E-selectin ligand" (MPO-EL), is expressed on circulating G-CSF-mobilized leukocytes and is naturally expressed on blood myeloid cells in patients with febrile leukocytosis. In vitro biochemical studies show that G-CSF programs MPO-EL expression on human blood leukocytes and marrow myeloid cells via induction of N-linked sialofucosylations on MPO, with concomitant cell surface display of the molecule. MPO-EL is catalytically active and mediates angiotoxicity on human endothelial cells that express E-selectin. These findings thus define a G-CSF effect on MPO chemical biology that endows unsuspected functional versatility upon this enzyme, unveiling new perspectives on the biology of G-CSF and MPO, and on the role of E-selectin receptor/ligand interactions in leukocyte migration and vascular pathology.
Collapse
|
22
|
The In Vitro Antimicrobial Activity of Wound and Skin Cleansers at Nontoxic Concentrations. Adv Skin Wound Care 2014; 27:65-9. [DOI: 10.1097/01.asw.0000443255.73875.a3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochem J 2013; 457:89-97. [DOI: 10.1042/bj20131135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The smoking-associated oxidant hypothiocyanous acid converts active dimeric endothelial cell nitric oxide synthase into its monomer form, decreases enzyme activity and releases Zn2+. This is ascribed to targeting of the critical Zn2+–thiol cluster by this thiol-specific oxidant.
Collapse
|
24
|
Yang L, Bai Y, Li N, Hu C, Peng J, Cheng G, Zhang G, Shi R. Vascular VPO1 expression is related to the endothelial dysfunction in spontaneously hypertensive rats. Biochem Biophys Res Commun 2013; 439:511-6. [PMID: 24021280 DOI: 10.1016/j.bbrc.2013.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 01/28/2023]
Abstract
Reactive oxygen species (ROS) contributes to endothelial dysfunction that is involved in the pathogeneses of hypertension. Vascular peroxidase 1 (VPO1) can utilize ROS to catalyze peroxidative reactions, possibly enhancing endothelial dysfunction. This study is to identify VPO1's involvement in endothelial dysfunction and hypertension. Sixty-four spontaneously hypertensive rats (SHRs) and 64 age-matched, bodyweight controlled normotensive Wistar-Kyoto rats (WKYs) were randomly grouped and studied at the age of 5, 8, 13 and 20 weeks (16 animals, each). Blood pressure and vasodilator responses to acetylcholine in aortic rings were observed. The expressions of VPO1 and endothelial NO synthase (eNOS) in aortas were assessed by quantitative reverse transcription-PCR and western blotting analysis. Plasma concentrations of hydrogen peroxide (H2O2) and NO, NOX activity, hypochlorous acid (HOCl) production, and 3-nitrotyrosine content in aortic homogenates were also determined in this study. Along with the development of hypertension in SHR rats, VPO1 expression was up-regulated together with a significant increase in NOX activity, HOCl production, 3-nitrotyrosine content, and plasma H2O2 level compared with WKYs at 8, 13 and 20 weeks of age. In contrast, blood NO levels were decreased and aortic relaxation to acetylcholine was deteriorated in SHRs. The over-expression of VPO1 during the development of hypertension, accompanied by the endothelial dysfunction, the decreased NO levels, the elevated NOX and ROS activities, indicates a clear connection between VPO1 gene and hypertension. VPO1 may pathogenetically contribute to hypertension via signal pathways involving NOX-H2O2-VPO1-HOCl or JNK/p38 MAPK although further studies are needed to determine the precise mechanisms.
Collapse
Affiliation(s)
- Lizhen Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Carmona-Gutierrez D, Alavian-Ghavanini A, Habernig L, Bauer MA, Hammer A, Rossmann C, Zimmermann AS, Ruckenstuhl C, Büttner S, Eisenberg T, Sattler W, Malle E, Madeo F. The cell death protease Kex1p is essential for hypochlorite-induced apoptosis in yeast. Cell Cycle 2013; 12:1704-12. [PMID: 23656787 PMCID: PMC3713129 DOI: 10.4161/cc.24801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 11/19/2022] Open
Abstract
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.
Collapse
Affiliation(s)
| | - Ali Alavian-Ghavanini
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Lukas Habernig
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Maria Anna Bauer
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | | | | | - Sabrina Büttner
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| |
Collapse
|
26
|
Radovits T, Arif R, Bömicke T, Korkmaz S, Barnucz E, Karck M, Merkely B, Szabó G. Vascular dysfunction induced by hypochlorite is improved by the selective phosphodiesterase-5-inhibitor vardenafil. Eur J Pharmacol 2013; 710:110-9. [PMID: 23623933 DOI: 10.1016/j.ejphar.2013.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species, such as hypochlorite induce oxidative stress, which impairs nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling and leads to vascular dysfunction. It has been proposed, that elevated cGMP-levels may contribute to an effective cytoprotection against oxidative stress. We investigated the effects of vardenafil, a selective inhibitor of the cGMP-degrading phosphodiesterase-5 enzyme on vascular dysfunction induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitroprusside (SNP). Vascular dysfunction was induced by exposing rings to hypochlorite (100-400 µM). In the treatment groups, rats were pretreated with vardenafil (30 and 300 µg/kg i.v.). Immunohistochemical analysis was performed for the oxidative stress markers nitrotyrosine, poly(ADP-ribose) and for apoptosis inducing factor (AIF). Exposure to hypochlorite resulted in a marked impairment of acetylcholine-induced endothelium-dependent vasorelaxation of aortic rings. Pretreatment with vardenafil led to improved endothelial function as reflected by the higher maximal vasorelaxation (Rmax) to acetylcholine. Regarding endothelium-independent vasorelaxation, hypochlorite exposure led to a left-shift of SNP concentration-response curves in the vardenafil groups without any alterations of the Rmax. In the hypochlorite groups immunohistochemical analysis showed enhanced poly(ADP-ribose)-formation and nuclear translocation of AIF, which were prevented by vardenafil-pretreatment. Our results support the view that cytoprotective effects of PDE-5-inhibitors on the endothelium may underlie the improved endothelial function, however, a slight sensitisation of vascular smooth muscle to NO was also confirmed. PDE-5-inhibition may represent a potential therapy approach for treating vascular dysfunction induced by oxidative stress.
Collapse
Affiliation(s)
- Tamás Radovits
- Department of Cardiac Surgery, University of Heidelberg, 2. OG. INF 326, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rudolph TK, Wipper S, Reiter B, Rudolph V, Coym A, Detter C, Lau D, Klinke A, Friedrichs K, Rau T, Pekarova M, Russ D, Knöll K, Kolk M, Schroeder B, Wegscheider K, Andresen H, Schwedhelm E, Boeger R, Ehmke H, Baldus S. Myeloperoxidase deficiency preserves vasomotor function in humans. Eur Heart J 2012; 33:1625-34. [PMID: 21724624 PMCID: PMC3388013 DOI: 10.1093/eurheartj/ehr193] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/05/2011] [Accepted: 05/23/2011] [Indexed: 01/03/2023] Open
Abstract
AIMS Observational studies have suggested a mechanistic link between the leucocyte-derived enzyme myeloperoxidase (MPO) and vasomotor function. Here, we tested whether MPO is systemically affecting vascular tone in humans. METHODS AND RESULTS A total of 12 135 patients were screened for leucocyte peroxidase activity. We identified 15 individuals with low MPO expression and activity (MPO(low)), who were matched with 30 participants exhibiting normal MPO protein content and activity (control). Nicotine-dependent activation of leucocytes caused attenuation of endothelial nitric oxide (NO) bioavailability in the control group (P < 0.01), but not in MPO(low) individuals (P = 0.12); here the MPO burden of leucocytes correlated with the degree of vasomotor dysfunction (P = 0.008). To directly test the vasoactive properties of free circulating MPO, the enzyme was injected into the left atrium of anaesthetized, open-chest pigs. Myeloperoxidase plasma levels peaked within minutes and rapidly declined thereafter, reflecting vascular binding of MPO. Blood flow in the left anterior descending artery and the internal mammary artery (IMA) as well as myocardial perfusion decreased following MPO injection when compared with albumin-treated animals (P < 0.001). Isolated IMA-rings from animals subjected to MPO revealed markedly diminished relaxation in response to acetylcholine (P < 0.01) and nitroglycerine as opposed to controls (P < 0.001). CONCLUSION Myeloperoxidase elicits profound effects on vascular tone of conductance and resistance vessels in vivo. These findings not only call for revisiting the biological functions of leucocytes as systemic and mobile effectors of vascular tone, but also identify MPO as a critical systemic regulator of vasomotion in humans and thus a potential therapeutic target.
Collapse
Affiliation(s)
- Tanja K. Rudolph
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Sabine Wipper
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Beate Reiter
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Volker Rudolph
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Anja Coym
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Christian Detter
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Denise Lau
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Anna Klinke
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Kai Friedrichs
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Thomas Rau
- Institute for Experimental and Clinical Pharmacology and Toxicology, University Hospital Eppendorf, Hamburg, Germany
| | - Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | - Kay Knöll
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mandy Kolk
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernd Schroeder
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Karl Wegscheider
- Department of Medical Biometry and Epidemiology, University Hospital Eppendorf, Hamburg, Germany
| | - Hilke Andresen
- Institute for Forensic Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute for Experimental and Clinical Pharmacology and Toxicology, University Hospital Eppendorf, Hamburg, Germany
| | - Rainer Boeger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University Hospital Eppendorf, Hamburg, Germany
| | - Heimo Ehmke
- Institute of Cellular and Integrative Physiology, University Hospital Eppendorf, Hamburg, Germany
| | - Stephan Baldus
- Cardiovascular Research Center and Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| |
Collapse
|
28
|
Ozturk E, Balat O, Pehlivan S, Ugur MG, Sever T. Genetic variation of myeloperoxidase gene contributes to preeclampsia: a preliminary association study in Turkish population. Hypertens Pregnancy 2011; 30:377-83. [PMID: 21827295 DOI: 10.3109/10641955.2010.525278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To examine MPO gene polymorphisms of women with preeclampsia in Turkish population. METHODS Sixty-one preeclamptic and 61 normotensive women without history of preeclampsia in earlier pregnancies were enrolled in this prospective controlled study. MPO mutations were characterized by PCR-RFLP method. RESULTS We demonstrated a significant difference in patients with preeclampsia in terms of genotype frequency. Heterozygous carriers of -463A among preeclamptic pregnancies were significantly frequent, whereas rare A/A homozygotes failed to differ from controls. CONCLUSION The -463G/A polymorphism of leukocyte MPO could be an intriguing susceptibility factor that modulates an individual's risk of preeclampsia in Turkish population.
Collapse
Affiliation(s)
- Ebru Ozturk
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | | | | | | | | |
Collapse
|
29
|
Dominguez-Rodriguez A, Abreu-Gonzalez P. Current role of myeloperoxidase in routine clinical practice. Expert Rev Cardiovasc Ther 2011; 9:223-30. [PMID: 21453218 DOI: 10.1586/erc.11.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recognition of inflammation as a critical contributor to atherothrombosis has led to the pursuit of new approaches for the diagnosis and treatment of patients with coronary heart disease. As the intricate relationships between cellular and noncellular participants in the inflammatory aspects of atherogenesis, plaque destabilization and thrombosis have been defined, specific constituents have emerged as potential noninvasive indicators of these processes. Myeloperoxidase is a protein released during degranulation of neutrophils and monocytes. The available experimental and epidemiologic data provide compelling evidence to sustain strong interest in myeloperoxidase as a candidate for clinical application. Nevertheless, additional investigation will be important to fully evaluate myeloperoxidase as a sensitive predictor for myocardial infarction in patients with chest pain.
Collapse
|
30
|
Meotti FC, Jameson GNL, Turner R, Harwood DT, Stockwell S, Rees MD, Thomas SR, Kettle AJ. Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem 2011; 286:12901-11. [PMID: 21266577 PMCID: PMC3075637 DOI: 10.1074/jbc.m110.172460] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/14/2010] [Indexed: 12/23/2022] Open
Abstract
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 10(5) M(-1) s(-1) for compound I and 1.7 × 10(4) M(-1) s(-1) for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease.
Collapse
Affiliation(s)
- Flavia C. Meotti
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - Guy N. L. Jameson
- the Department of Chemistry, University of Otago, Dunedin, New Zealand, and
| | - Rufus Turner
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - D. Tim Harwood
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - Samantha Stockwell
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - Martin D. Rees
- the Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shane R. Thomas
- the Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anthony J. Kettle
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| |
Collapse
|
31
|
Honavar J, Samal AA, Bradley KM, Brandon A, Balanay J, Squadrito GL, MohanKumar K, Maheshwari A, Postlethwait EM, Matalon S, Patel RP. Chlorine gas exposure causes systemic endothelial dysfunction by inhibiting endothelial nitric oxide synthase-dependent signaling. Am J Respir Cell Mol Biol 2010; 45:419-25. [PMID: 21131444 DOI: 10.1165/rcmb.2010-0151oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.
Collapse
Affiliation(s)
- Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Exposure to chlorine gas (Cl(2)) primarily causes injury to the lung and is characterized by inflammation and oxidative stress mediated by reactive chlorine species. Reducing lung injury and improving respiratory function are the principal therapeutic goals in treating individuals exposed to Cl(2) gas. Less is known on the potential for Cl(2) gas exposure to cause injury to extrapulmonary tissues and specifically to mediate endothelial dysfunction. This concept is forwarded in this article on the basis that (1) many irritant gases whose reactivity is limited to the lung have now been shown to have effects that promote endothelial dysfunction in the systemic vasculature, and as such lead to the acute and chronic cardiovascular disease events (e.g., myocardial infarctions and atherosclerosis); and (2) that endogenously produced reactive chlorine species are now considered to be central in the development of cardiovascular diseases. This article discusses these two areas with the view of providing a framework in which potential extrapulmonary toxic effects of Cl(2) gas exposure may be considered.
Collapse
|
33
|
Clinical significance of a myeloperoxidase gene polymorphism and inducible nitric oxide synthase expression in cirrhotic patients with hepatopulmonary syndrome. ACTA ACUST UNITED AC 2010; 30:437-42. [DOI: 10.1007/s11596-010-0445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Indexed: 10/19/2022]
|
34
|
Khoo NKH, White CR, Pozzo-Miller L, Zhou F, Constance C, Inoue T, Patel RP, Parks DA. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radic Biol Med 2010; 49:339-47. [PMID: 20423726 PMCID: PMC2900862 DOI: 10.1016/j.freeradbiomed.2010.04.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/16/2010] [Accepted: 04/16/2010] [Indexed: 12/26/2022]
Abstract
Considerable epidemiological evidence indicates that dietary consumption of moderate levels of polyphenols decreases both the incidence of cardiovascular disease and the mortality associated with myocardial infarction. Molecular mechanisms of this cardiovascular protection remain uncertain but can involve changes in rates of nitric oxide (NO) generation by endothelial nitric oxide synthase (eNOS). We examined the vascular responses to quercetin using a combination of biochemical and vessel function criteria. Quercetin treatment for 30min enhanced relaxation of rat aortic ring segments. Moreover, the addition of L-NAME (100muM) or charybdotoxin (ChTx) blocked quercetin-mediated vasorelaxation thus demonstrating the effect was partially dependent on NOS and endothelium-derived hyperpolarizing factor (EDHF). Additionally, bovine aortic endothelial cells (BAEC) treated with quercetin showed a rapid increase of intracellular Ca(2+) concentrations as well as a dose- and time-dependent stimulation of eNOS phosphorylation with a concomitant increase in NO production. These results demonstrate that quercetin-mediated stimulation of eNOS phosphorylation increases NO bioavailability in endothelial cells and can thus play a role in the vascular protective effects associated with improved endothelial cell function.
Collapse
Affiliation(s)
- Nicholas K H Khoo
- Department of Anesthesiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The in-vivo effect of pyrrolidine dithiocarbamate on hepatic parenchymal microcirculation and oxygenation of the rat liver. Eur J Gastroenterol Hepatol 2009; 21:1184-90. [PMID: 19474746 DOI: 10.1097/meg.0b013e32831d28cc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Pyrrolidine dithiocarbamate has been shown to be a potent inducer of haemeoxygenase-1. This study investigated its in-vivo effects on systemic and hepatic microcirculatory perfusion. METHODS Male Sprague-Dawley rats (n=12) were administered intravenously with pyrrolidine dithiocarbamate (10, 20 and 50 mg/kg body weight) or vehicle (0.2 ml physiological saline) served as control. Systemic and hepatic haemodynamics including arterial oxygen saturation, heart rate, mean arterial blood pressure and portal blood flow were monitored. Microcirculation in skeletal muscle and liver was measured by laser Doppler flowmetry and intravital fluorescence microscopy, whereas hepatic tissue oxyhaemoglobin and cytochrome oxidase CuA redox state, which is an indicative of extracellular and intracellular oxygenation were measured by near infrared spectroscopy. RESULTS Pyrrolidine dithiocarbamate induced a dose-dependent increase in mean arterial blood pressure and skeletal muscle microcirculation. The hepatic parenchymal microcirculation was significantly improved and an increase in sinusoidal diameter and reduction in RBC velocity were observed. Pyrrolidine dithiocarbamate also showed beneficial effect on hepatic tissue oxygenation showed by an increase in oxyhaemoglobin and cytochrome oxidase CuA redox state as well. CONCLUSION Pyrrolidine dithiocarbamate improves hepatic parenchymal microcirculation and tissue oxygenation, suggesting that it may be used as a potential agent in pharmacological preconditioning in the liver.
Collapse
|
36
|
Radovits T, Zotkina J, Lin LN, Karck M, Szabó G. Endothelial dysfunction after hypoxia–reoxygenation: Do in vitro models work? Vascul Pharmacol 2009; 51:37-43. [DOI: 10.1016/j.vph.2009.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/22/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
|
37
|
Chuang GC, Yang Z, Westbrook DG, Pompilius M, Ballinger CA, White CR, Krzywanski DM, Postlethwait EM, Ballinger SW. Pulmonary ozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis. Am J Physiol Lung Cell Mol Physiol 2009; 297:L209-16. [PMID: 19395667 DOI: 10.1152/ajplung.00102.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 100 million people in the United States live in areas that exceed current ozone air quality standards. In addition to its known pulmonary effects, environmental ozone exposures have been associated with increased hospital admissions related to cardiovascular events, but to date, no studies have elucidated the potential molecular mechanisms that may account for exposure-related vascular impacts. Because of the known pulmonary redox and immune biology stemming from ozone exposure, we hypothesized that ozone inhalation would initiate oxidant stress, mitochondrial damage, and dysfunction within the vasculature. Accordingly, these factors were quantified in mice consequent to a cyclic, intermittent pattern of ozone or filtered air control exposure. Ozone significantly modulated vascular tone regulation and increased oxidant stress and mitochondrial DNA damage (mtDNA), which was accompanied by significantly decreased vascular endothelial nitric oxide synthase protein and indices of nitric oxide production. To examine influences on atherosclerotic lesion formation, apoE-/- mice were exposed as above, and aortic plaques were quantified. Exposure resulted in significantly increased atherogenesis compared with filtered air controls. Vascular mitochondrial damage was additionally quantified in ozone- and filtered air-exposed infant macaque monkeys. These studies revealed that ozone increased vascular mtDNA damage in nonhuman primates in a fashion consistent with known atherosclerotic lesion susceptibility in humans. Consequently, inhaled ozone, in the absence of other environmental toxicants, promotes increased vascular dysfunction, oxidative stress, mitochondrial damage, and atherogenesis.
Collapse
Affiliation(s)
- Gin C Chuang
- Department of Pathology, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
White CR, Datta G, Mochon P, Zhang Z, Kelly O, Curcio C, Parks D, Palgunachari M, Handattu S, Gupta H, Garber DW, Anantharamaiah GM. Vasculoprotective Effects of Apolipoprotein Mimetic Peptides: An Evolving Paradigm In Hdl Therapy (Vascular Disease Prevention, In Press.). ACTA ACUST UNITED AC 2009; 6:122-130. [PMID: 20084185 DOI: 10.2174/1567270000906010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anti-atherogenic effects of high density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) are principally thought to be due to their ability to mediate reverse cholesterol transport. These agents also possess anti-oxidant properties that prevent the oxidative modification of low density lipoprotein (LDL) and anti-inflammatory properties that include inhibition of endothelial cell adhesion molecule expression. Results of the Framingham study revealed that a reduction in HDL levels is an independent risk factor for coronary artery disease (CAD). Accordingly, there has been considerable interest in developing new therapies that specifically elevate HDL cholesterol. However, recent evidence suggests that increasing circulating HDL cholesterol levels alone is not sufficient as a mode of HDL therapy. Rather, therapeutic approaches that increase the functional properties of HDL may be superior to simply raising the levels of HDL per se. Our laboratory has pioneered the development of synthetic, apolipoprotein mimetic peptides which are structurally and functionally similar to apoA-I but possess unique structural homology to the lipid-associating domains of apoA-I. The apoA-I mimetic peptide 4F inhibits atherogenic lesion formation in murine models of atherosclerosis. This effect is related to the ability of 4F to induce the formation of pre-β HDL particles that are enriched in apoA-I and paraoxonase. 4F also possesses anti-inflammatory and anti-oxidant properties that are independent of its effect on HDL quality per se. Recent studies suggest that 4F stimulates the expression of the antioxidant enzymes heme oxygenase and superoxide dismutase and inhibits superoxide anion formation in blood vessels of diabetic, hypercholesterolemic and sickle cell disease mice. The goal of this review is to discuss HDL-dependent and -independent mechanisms by which apoA-I mimetic peptides reduce vascular injury in experimental animal models.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Goette A, Wolfram O, Jentsch-Ullrich K, Martens-Lobenhoffer J, Scalera F, Lendeckel U, Bode-Böger SM. The effects of G-CSF-induced mobilization of progenitor cells are limited by ADMA. Int J Cardiol 2009; 143:264-70. [PMID: 19303649 DOI: 10.1016/j.ijcard.2009.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/22/2009] [Accepted: 02/19/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Progenitor cells (PC) are thought to induce angiogenesis, and thereby, PC may help to improve ventricular performance in patients with ischemic heart disease (IHD). However, mobilization of progenitor cells by application of G-CSF gives inconsistent clinical effects. The aim of the present study was to assess pathophysiologic effects of progenitor cell mobilization. METHODS AND RESULTS PC levels (CD34+/CD117+) were counted in 8 patients with severe coronary heart disease and angina pectoris symptoms refractory to conventional therapy during G-CSF treatment (5 μg/kg/d) on days 2, 5, 8, at the end of hospitalization (day 10-12) and after 142±33 days of follow-up. Levels of asymmetric dimethylarginine (ADMA; inhibitor of eNOS) and symmetric dimethylarginine (SDMA) were determined at each occasion and correlated with leukocyte count, systemic nitrite levels, myeloperoxidase (MPO) expression in leukocytes, and urine levels of 8-iso-prostaglandin F2α. Isolated CD34+ cells and endothelial cell cultures were used for functional experiments. G-CSF therapy induced leukocytosis and a rise in CD34+ cell levels. Amounts of MPO positive leukocytes and ADMA levels increased significantly during the treatment phase. ADMA levels correlated to MPO activity (r=0.78; p=0.001) and were inversely related to nitrate levels. In contrast, 8-iso-prostaglandin F2α and amounts of SDMA did not change. Culturing endothelial cells in the presence of myeloperoxidase caused an increase in endothelial ADMA synthesis, which was prevented by application of the antioxidant trolox. CONCLUSIONS Leukocytosis associated with increased MPO activity during G-CSF therapy appears to be responsible for the systemic release of ADMA, which impairs eNOS activity. Thus, increased MPO and ADMA levels seem to counteract the potential beneficial effects of PC mobilization.
Collapse
Affiliation(s)
- Andreas Goette
- Division of Cardiology, University Hospital Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Marsche G, Furtmüller PG, Obinger C, Sattler W, Malle E. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovasc Res 2008; 79:187-94. [PMID: 18296711 DOI: 10.1093/cvr/cvn051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS Myeloperoxidase (MPO), a cardiovascular risk factor in humans, is an in vivo catalyst for lipoprotein modification via intermediate formation of reactive chlorinating species. Among the different lipoprotein classes, anti-atherogenic high-density lipoprotein (HDL) represents a major target for modification by hypochlorous acid (HOCl), generated from H2O2 by MPO in the presence of physiological chloride concentrations. As MPO was identified as an HDL-associated protein that could facilitate selective oxidative modification of its physiological carrier, the aim of the present study was to investigate whether and to what extent modification of HDL by HOCl affects the binding affinity of MPO in vitro. METHODS AND RESULTS We show that binding affinity of 125I-labelled MPO to HDL markedly increases as a function of increasing extent of HOCl modification of HDL. In contrast to native HDL, HOCl-HDL potently inhibits MPO binding/uptake by endothelial cells and effectively attenuates metabolism of MPO by macrophages. Reduction of HDL-associated chloramines with methionine strongly impaired binding affinity of MPO towards HOCl-HDL. This indicates that N-chloramines generated by HOCl are regulators of the high-affinity interaction between HOCl-HDL and positively charged MPO. Most importantly, the presence of HOCl-HDL is almost without effect on the halogenating activity of MPO. CONCLUSION We propose that MPO-dependent modification of HDL and concomitant increase in the binding affinity for MPO could generate a vicious cycle of MPO transport to and MPO-dependent modification at sites of chronic inflammation.
Collapse
Affiliation(s)
- Gunther Marsche
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
41
|
Cheng ML, Chen CM, Gu PW, Ho HY, Chiu DTY. Elevated levels of myeloperoxidase, white blood cell count and 3-chlorotyrosine in Taiwanese patients with acute myocardial infarction. Clin Biochem 2008; 41:554-60. [PMID: 18314009 DOI: 10.1016/j.clinbiochem.2008.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Inflammation, a major risk factor for acute myocardial infarction (AMI), is associated with leukocytic activation, secretion of myeloperoxidase (MPO) and generation of the oxidative damage marker, 3-chlorotyrosine (3-Cl-Tyr). To study their association with AMI and their value in diagnosis of AMI, white blood cell (WBC) count, plasma MPO, plasma 3-Cl-Tyr, and conventional risk factors such as cardiac troponin I and CK-MB were examined in AMI patients during the onset of chest pain. METHODS After obtaining informed consent, blood samples were collected from 77 AMI patients during the onset of chest pain and from 53 normal controls. The samples were analyzed for WBC count using SE-9000 automated analyzer. Plasma MPO was measured by an enzyme-linked immunosorbent assay. Plasma levels of 3-Cl-Tyr, a product of MPO, were analyzed by HPLC coupled with Coularray electrochemical detection. RESULTS The WBC, plasma MPO and 3-Cl-Tyr levels were significantly elevated in AMI patients than in normal controls (p<0.001). The levels of WBC, MPO and 3-Cl-Tyr alone were strongly associated with the prevalence of AMI. Plasma MPO was correlated with 3-Cl-Tyr (r=0.389, p<0.01) and WBC counts (r=0.405, p<0.01) respectively. The ROC curve analyses suggested that MPO had the best specificity and sensitivity among these oxidative stress-related markers. CONCLUSION Plasma MPO value should be considered as a better marker for early diagnosis of AMI, as compared with WBC count or 3-Cl-Tyr.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Graduate Institute of Medical Biotechnology and Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-san, Tao-yuan, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Radovits T, Zotkina J, Lin LN, Bömicke T, Arif R, Gerö D, Horváth EM, Karck M, Szabó C, Szabó G. Poly(ADP-Ribose) polymerase inhibition improves endothelial dysfunction induced by hypochlorite. Exp Biol Med (Maywood) 2007; 232:1204-12. [PMID: 17895528 DOI: 10.3181/0701-rm-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species, such as myeloperoxidase-derived hypochlorite, induce oxidative stress and DNA injury. The subsequent activation of the DNA-damage-poly(ADP-ribose) polymerase (PARP) pathway has been implicated in the pathogenesis of various diseases, including ischemia-reperfusion injury, circulatory shock, diabetic complications, and atherosclerosis. We investigated the effect of PARP inhibition on the impaired endothelium-dependent vasorelaxation induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitro-prusside. Endothelial dysfunction was induced by exposing rings to hypochlorite (100-400 microM). In the treatment group, rings were preincubated with the PARP inhibitor INO-1001. DNA strand breaks were assessed by the TUNEL method. Immunohistochemistry was performed for 4-hydroxynonenal (a marker of lipid peroxidation), nitrotyrosine (a marker of nitrosative stress), and poly(ADP-ribose) (an enzymatic product of PARP). Exposure to hypochlorite resulted in a dose-dependent impairment of endothelium-dependent vasorelaxation of aortic rings, which was significantly improved by PARP inhibition, whereas the endothelium-independent vasorelaxation remained unaffected. In the hypochlorite groups we found increased DNA breakage, lipidperoxidation, and enhanced nitrotyrosine formation. The hypochloride-induced activation of PARP was prevented by INO-1001. Our results demonstrate that PARP activation contributes to the pathogenesis of hypochlorite-induced endothelial dysfunction, which can be prevented by PARP inhibitors.
Collapse
Affiliation(s)
- Tamás Radovits
- The Laboratory of Cardiac Surgery Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Astern JM, Pendergraft WF, Falk RJ, Jennette JC, Schmaier AH, Mahdi F, Preston GA. Myeloperoxidase interacts with endothelial cell-surface cytokeratin 1 and modulates bradykinin production by the plasma Kallikrein-Kinin system. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:349-60. [PMID: 17591979 PMCID: PMC1941610 DOI: 10.2353/ajpath.2007.060831] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2007] [Indexed: 11/20/2022]
Abstract
During an inflammatory state, functional myeloperoxidase (MPO) is released into the vessel as a result of intravascular neutrophil degradation. One mechanism of resulting cellular injury involves endothelial internalization of MPO, which causes oxidative damage and impairs endothelial signaling. We report the discovery of a protein that facilitates MPO internalization, cytokeratin 1 (CK1), identified using affinity chromatography and mass spectrometry. CK1 interacts with MPO in vitro, even in the presence of 100% human plasma, thus substantiating biological relevance. Immunofluorescent microscopy confirmed that MPO added to endothelial cells can co-localize with endogenously expressed CK1. CK1 acts as a scaffolding protein for the assembly of the vasoregulatory plasma kallikrein-kinin system; thus we explored whether MPO and high molecular weight kininogen (HK) reside on CK1 together or whether they compete for binding. The data support cooperative binding of MPO and HK on cells such that MPO masked the plasma kallikrein cleavage site on HK, and MPO-generated oxidants caused inactivation of both HK and kallikrein. Collectively, interactions between MPO and the components of the plasma kallikrein-kinin system resulted in decreased bradykinin production. This study identifies CK1 as a facilitator of MPO-mediated vascular responses and thus provides a new paradigm by which MPO affects vasoregulatory systems.
Collapse
Affiliation(s)
- Joshua M Astern
- Burnett-Womack, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7155, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Yang J, Cheng Y, Ji R, Zhang C. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia. Am J Physiol Heart Circ Physiol 2006; 291:H3087-93. [PMID: 16844918 DOI: 10.1152/ajpheart.00412.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis, which is characterized by neointima formation, is an inflammatory disease. However, there is no inflammatory product-elicited neointimal model to support the causal role of inflammation in atherogenesis. We reported previously that leukocyte-derived MPO induces vascular injury responses such as endothelial dysfunction. We now test the role of MPO in inflammatory neointima formation. We infused temporarily isolated rat common carotid arteries with MPO (200 nM) and incubated for 1 h. We found that although MPO itself did not induce any neointima formation 2 wk after treatment, in the presence of its substrate, hydrogen peroxide, MPO was able to elicit neointimal hyperplasia. We further confirmed that MPO-induced neointimal hyperplasia is mediated by its product, hypochlorous acid (HOCl). HOCl elicited apoptosis both in intima and media followed by vascular proliferative response and resulted in neointima formation with a heterogeneous cell population. Both histological and functional features of HOCl-treated vessels are similar to those in atherosclerotic lesions. To our knowledge, this is the first direct in vivo demonstration of neointimal formation induced by a product of the inflammatory cascade. The results suggest that MPO may be a mediator for pathological neointima growth. This novel neointimal model could be useful for studying inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Jian Yang
- Vascular Biology Center and Dept. of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
45
|
Plass CA, Schmid W, Holy EW, Kreatschitsch U, Laggner H, Volf I. Redox-sensitive impairment of porcine coronary artery vasodilation by hypochlorite-modified LDL. Atherosclerosis 2006; 190:330-7. [PMID: 16730731 DOI: 10.1016/j.atherosclerosis.2006.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 02/02/2023]
Abstract
Atherosclerotic vascular disease is associated with abnormal vasomotor function and oxidized low density lipoproteins (OxLDL) are believed to play a keyrole therein. Several compounds emerging from LDL lipid peroxidation have been shown to be able to alter vasomotion but the role of oxidized apoB in this process is not fully understood. Myeloperoxidase has been identified in atherosclerotic lesions and hypochlorite produced by this enzyme represents a strong oxidant. LDL oxidation by hypochlorite differs from most other forms of LDL oxidation in that hypochlorite-mediated oxidation shows a predilection for the protein moiety of LDL and does not result in lipid peroxidation. In this work, we use porcine coronary artery segments and show that hypochlorite-oxidized LDL (hyp-OxLDL) are able to impair dilatation induced by substance P in a dose- and modification-dependent way. Treatment of hyp-OxLDL with methionine resulted in quantitative elimination of reactive chloramines in LDL and complete recovery of relaxation. As application of the scavenger receptor antagonist maleylated albumin strongly interferes with the effects of hyp-OxLDL on vasomotion, we conclude that specific binding of hypochlorite-modified apoB is likely to be involved in mediating the observed effects.
Collapse
Affiliation(s)
- Christian A Plass
- Institute of Physiology, Center for Physiology & Pathophysiology, Medical University of Vienna, Schwarzspanierstr 17, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Kumar AP, Ryan C, Cordy V, Reynolds WF. Inducible nitric oxide synthase expression is inhibited by myeloperoxidase. Nitric Oxide 2005; 13:42-53. [PMID: 15893945 DOI: 10.1016/j.niox.2005.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) plays key roles in vasodilation and host defense, yet the overproduction of NO by inducible nitric oxide synthase (iNOS) at inflammatory sites can also be pathogenic. Here, we investigate the role of MPO in modulating the induction of iNOS by IFNgamma/LPS (IL). In monocyte-macrophages (Mvarphi) treated with IL, MPO gene expression was found to be downregulated as iNOS was upregulated. In Mvarphi from MPO-knockout (KO) mice, the induction of iNOS by IL was earlier and higher than in MPO-positive cells, suggesting MPO is inhibitory. Consistent with that interpretation, the addition of purified MPO enzyme to cultured macrophages inhibited iNOS induction by IL. In addition, an inhibitor of MPO enzyme, 4-aminobenzohydrazide, enhanced iNOS induction in MPO-positive cells, but not in MPO-KO cells. Similarly, taurine, a scavenger of MPO-generated HOCl, enhanced iNOS induction in MPO-positive cells, but not in MPO-KO cells. MPO affects an early event, suppressing iNOS induction when added within 2h of IL, but not when added several hours after IL. The suppression by MPO was alleviated by NO donor, sodium nitroprusside, suggesting the suppression results from scavenging of NO by MPO. This interpretation is consistent with earlier reports that MPO consumes NO, and that low levels of NO donor augment induction of iNOS by IFNgamma/LPS. The implication of these findings is that MPO acts as gatekeeper, suppressing the deleterious induction of iNOS at inflammatory sites by illegitimate signals. The combined signaling of IFNgamma/LPS overrides the gatekeeper function by suppressing MPO gene expression.
Collapse
Affiliation(s)
- Alan P Kumar
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Myeloperoxidase (MPO) is a leukocyte-derived enzyme that catalyzes the formation of a number of reactive oxidant species. In addition to being an integral component of the innate immune response, evidence has emerged that MPO-derived oxidants contribute to tissue damage during inflammation. MPO-catalyzed reactions have been attributed to potentially proatherogenic biological activities throughout the evolution of cardiovascular disease, including during initiation, propagation, and acute complication phases of the atherosclerotic process. As a result, MPO and its downstream inflammatory pathways represent attractive targets for both prognostication and therapeutic intervention in the prophylaxis of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Department of Cardiovascular Medicine and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
48
|
Walter R, Schroecksnadel K, Fuchs D. Letter regarding article by Vita et al, "serum myeloperoxidase levels independently predict endothelial dysfunction in humans". Circulation 2005; 111:e167-8; author reply e167-8. [PMID: 15795359 DOI: 10.1161/01.cir.0000159251.34353.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zhang C, Yang J, Jennings LK. Leukocyte-derived myeloperoxidase amplifies high-glucose--induced endothelial dysfunction through interaction with high-glucose--stimulated, vascular non--leukocyte-derived reactive oxygen species. Diabetes 2004; 53:2950-9. [PMID: 15504976 DOI: 10.2337/diabetes.53.11.2950] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular non-leukocyte-derived reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H(2)O(2)), have emerged as important molecules in diabetic endothelial dysfunction. In addition, leukocyte-derived myeloperoxidase (MPO) has been implicated in vascular injury, and its injury response is H(2)O(2) dependent. It is well known that MPO can use leukocyte-derived H(2)O(2); however, it is unknown whether the vascular-bound MPO can use high-glucose-stimulated, vascular non-leukocyte-derived H(2)O(2) to induce diabetic endothelial dysfunction. In the present study, we demonstrated that MPO activity is increased in vessels from diabetic rats. In high-glucose-incubated rat aortas and in carotid arteries from rats with acute hyperglycemia, vascular-bound MPO utilized high-glucose-stimulated H(2)O(2) to amplify the ROS-induced impairment of endothelium-dependent relaxation via reduction of nitric oxide bioavailability. Hypochlorous acid (HOCL)-modified LDL, a specific biomarker for the MPO/HOCL/chlorinating species pathway, was detected in LDL- and MPO-bound vessels with high-glucose-stimulated H(2)O(2). The results suggest that vascular-bound MPO could use high-glucose-stimulated H(2)O(2) to amplify high-glucose-induced injury in the vascular wall. MPO/H(2)O(2)/HOCL/chlorinating species may represent an important pathway in diabetes complications and a new mechanism in phagocyte- and systemic infection-induced exacerbation of diabetic vascular diseases.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Vascular Biology Center of Excellence, Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Coleman Bldg., H300, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
50
|
Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, Penn MS, Keaney JF, Hazen SL. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 2004; 110:1134-9. [PMID: 15326065 PMCID: PMC2718053 DOI: 10.1161/01.cir.0000140262.20831.8f] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND In vitro and animal studies demonstrate that myeloperoxidase catalytically consumes nitric oxide as a substrate, limiting its bioavailability and function. We therefore hypothesized that circulating levels of myeloperoxidase would predict risk of endothelial dysfunction in human subjects. METHODS AND RESULTS Serum myeloperoxidase was measured by enzyme-linked immunoassay, and brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were determined by ultrasound in a hospital-based population of 298 subjects participating in an ongoing study of the clinical correlates of endothelial dysfunction (age, 51+/-16; 61% men, 51% with cardiovascular disease). A strong inverse relation between brachial artery flow-mediated dilation and increasing quartile of serum myeloperoxidase level was observed (11.0+/-6.0%, 9.4+/-5.3%, 8.6+/-5.8%, and 6.4+/-4.5% for quartiles 1 through 4, respectively; P<0.001 for trend). Using the median as a cut point to define endothelial dysfunction, increasing quartile of myeloperoxidase predicted endothelial dysfunction after adjustment for classic cardiovascular disease risk factors, C-reactive protein levels, prevalence of cardiovascular disease, and ongoing treatment with cardiovascular medications (OR, 6.4; 95% CI, 2.6 to 16; P=0.001 for highest versus lowest quartile). CONCLUSIONS Serum myeloperoxidase levels serve as a strong and independent predictor of endothelial dysfunction in human subjects. Myeloperoxidase-mediated endothelial dysfunction may be an important mechanistic link between oxidation, inflammation, and cardiovascular disease.
Collapse
Affiliation(s)
- Joseph A Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass, USA
| | | | | | | | | | | | | | | | | |
Collapse
|