1
|
Moreira TS, Mulkey DK, Takakura AC. Update on vascular control of central chemoreceptors. Exp Physiol 2024; 109:1837-1843. [PMID: 38153366 PMCID: PMC11522829 DOI: 10.1113/ep091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Thiago S. Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSao PauloBrazil
| | - Daniel K. Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Ana C. Takakura
- Department of Pharmacology, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSão PauloBrazil
| |
Collapse
|
2
|
Johnsen LØ, Sigad A, Friis KA, Berg PM, Damkier HH. NH 4Cl-induced metabolic acidosis increases the abundance of HCO 3 - transporters in the choroid plexus of mice. Front Physiol 2024; 15:1491793. [PMID: 39497701 PMCID: PMC11532781 DOI: 10.3389/fphys.2024.1491793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Regulation of cerebrospinal fluid (CSF) pH and brain pH are vital for all brain cells. The acute regulation of CSF pH is dependent on the transport of HCO3 - across the choroid plexus in the brain ventricles. Acute regulation in response to acidosis is dependent on H+ export and HCO3 - import across the plasma membrane. Acute regulation in response to alkalosis is dependent on HCO3 - export across the plasma membrane. The objective of the study was to investigate the contribution of the Na+-dependent HCO3 - transporters, Ncbe, NBCn1, and NBCe2 to CSF pH regulation during chronic metabolic acidosis in mice. To induce metabolic acidosis, mice received 0.28 M ammonium chloride (NH4Cl) in the drinking water for three, five, or seven days. While in vivo, CSF pH measurements did not differ, measurements of CSF [HCO3 -] revealed a significantly lower CSF [HCO3 -] after three days of acid-loading. Immunoblotting of choroid plexus protein samples showed that the abundance of the basolateral Na+/HCO3 - transporter, NBCn1, was significantly increased. This was followed by a significant increase in CSF secretion rate determined by ventriculo-cisternal perfusion. After five days of treatment with NH4Cl, CSF [HCO3 -] levels were normalized. After the normalization of CSF [HCO3 -], CSF secretion was no longer increased but the abundance of the basolateral Na+-dependent HCO3 - transporters Ncbe and NBCn1 increased. The luminal HCO3 - transporter, NBCe2, was unaffected by the treatment. In conclusion, we establish that 1) acidotic conditions increase the abundance of the basolateral Na+-dependent HCO3 - transporters in the choroid plexus, 2) NH4Cl loading in mice lowers CSF [HCO3 -] and 3) leads to increased CSF secretion likely caused by the increased capacity for transepithelial transport of Na+ and HCO3 - in the choroid plexus.
Collapse
|
3
|
Adrogué HJ, Madias NE. Acute sodium bicarbonate administration improves ventilatory efficiency in experimental respiratory acidosis: clinical implications. Pflugers Arch 2024; 476:901-909. [PMID: 38532117 DOI: 10.1007/s00424-024-02949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Administering sodium bicarbonate (NaHCO3) to patients with respiratory acidosis breathing spontaneously is contraindicated because it increases carbon dioxide load and depresses pulmonary ventilation. Nonetheless, several studies have reported salutary effects of NaHCO3 in patients with respiratory acidosis but the underlying mechanism remains uncertain. Considering that such reports have been ignored, we examined the ventilatory response of unanesthetized dogs with respiratory acidosis to hypertonic NaHCO3 infusion (1 N, 5 mmol/kg) and compared it with that of animals with normal acid-base status or one of the remaining acid-base disorders. Ventilatory response to NaHCO3 infusion was evaluated by examining the ensuing change in PaCO2 and the linear regression of the PaCO2 vs. pH relationship. Strikingly, PaCO2 failed to increase and the ΔPaCO2 vs. ΔpH slope was negative in respiratory acidosis, whereas PaCO2 increased consistently and the ΔPaCO2 vs. ΔpH slope was positive in the remaining study groups. These results cannot be explained by differences in buffering-induced decomposition of infused bicarbonate or baseline levels of blood pH, PaCO2, and pulmonary ventilation. We propose that NaHCO3 infusion improved the ventilatory efficiency of animals with respiratory acidosis, i.e., it decreased their ratio of total pulmonary ventilation to carbon dioxide excretion (VE/VCO2). Such exclusive effect of NaHCO3 infusion in animals with respiratory acidosis might emanate from baseline increased VD/VT (dead space/tidal volume) caused by bronchoconstriction and likely reduced pulmonary blood flow, defects that are reversed by alkali infusion. Our observations might explain the beneficial effects of NaHCO3 reported in patients with acute respiratory acidosis.
Collapse
Affiliation(s)
- Horacio J Adrogué
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Nephrology, Houston Methodist Hospital, Houston, TX, USA
| | - Nicolaos E Madias
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
- Department of Medicine, Division of Nephrology, St. Elizabeth's Medical Center, Boston, MA, USA.
| |
Collapse
|
4
|
Damkier HH, Praetorius J. Cerebrospinal fluid pH regulation. Pflugers Arch 2024; 476:467-478. [PMID: 38383821 DOI: 10.1007/s00424-024-02917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
The cerebrospinal fluid (CSF) fills the brain ventricles and the subarachnoid space surrounding the brain and spinal cord. The fluid compartment of the brain ventricles communicates with the interstitial fluid of the brain across the ependyma. In comparison to blood, the CSF contains very little protein to buffer acid-base challenges. Nevertheless, the CSF responds efficiently to changes in systemic pH by mechanisms that are dependent on the CO2/HCO3- buffer system. This is evident from early studies showing that the CSF secretion is sensitive to inhibitors of acid/base transporters and carbonic anhydrase. The CSF is primarily generated by the choroid plexus, which is a well-vascularized structure arising from the pial lining of the brain ventricles. The epithelial cells of the choroid plexus host a range of acid/base transporters, many of which participate in CSF secretion and most likely contribute to the transport of acid/base equivalents into the ventricles. This review describes the current understanding of the molecular mechanisms in choroid plexus acid/base regulation and the possible role in CSF pH regulation.
Collapse
Affiliation(s)
- Helle H Damkier
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Langer T, Zadek F, Carbonara M, Caccioppola A, Brusatori S, Zoerle T, Bottazzini F, Ferraris Fusarini C, di Modugno A, Zanella A, Zanier ER, Fumagalli R, Pesenti A, Stocchetti N. Cerebrospinal Fluid and Arterial Acid-Base Equilibrium of Spontaneously Breathing Patients with Aneurismal Subarachnoid Hemorrhage. Neurocrit Care 2022; 37:102-110. [PMID: 35199305 PMCID: PMC9283163 DOI: 10.1007/s12028-022-01450-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hyperventilation resulting in hypocapnic alkalosis (HA) is frequently encountered in spontaneously breathing patients with acute cerebrovascular conditions. The underlying mechanisms of this respiratory response have not been fully elucidated. The present study describes, applying the physical-chemical approach, the acid-base characteristics of cerebrospinal fluid (CSF) and arterial plasma of spontaneously breathing patients with aneurismal subarachnoid hemorrhage (SAH) and compares these results with those of control patients. Moreover, it investigates the pathophysiologic mechanisms leading to HA in SAH. METHODS Patients with SAH admitted to the neurological intensive care unit and patients (American Society of Anesthesiologists physical status of 1 and 2) undergoing elective surgery under spinal anesthesia were enrolled. CSF and arterial samples were collected simultaneously. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide (PCO2), weak noncarbonic acids (ATOT), and pH were measured in CSF and arterial blood samples. RESULTS Twenty spontaneously breathing patients with SAH and 25 controls were enrolled. The CSF of patients with SAH, as compared with controls, was characterized by a lower SID (23.1 ± 2.3 vs. 26.5 ± 1.4 mmol/L, p < 0.001) and PCO2 (40 ± 4 vs. 46 ± 3 mm Hg, p < 0.001), whereas no differences in ATOT (1.2 ± 0.5 vs. 1.2 ± 0.2 mmol/L, p = 0.95) and pH (7.34 ± 0.06 vs. 7.35 ± 0.02, p = 0.69) were observed. The reduced CSF SID was mainly caused by a higher lactate concentration (3.3 ± 1.3 vs. 1.4 ± 0.2 mmol/L, p < 0.001). A linear association (r = 0.71, p < 0.001) was found between CSF SID and arterial PCO2. A higher proportion of patients with SAH were characterized by arterial HA, as compared with controls (40 vs. 4%, p = 0.003). A reduced CSF-to-plasma difference in PCO2 was observed in nonhyperventilating patients with SAH (0.4 ± 3.8 vs. 7.8 ± 3.7 mm Hg, p < 0.001). CONCLUSIONS Patients with SAH have a reduction of CSF SID due to an increased lactate concentration. The resulting localized acidifying effect is compensated by CSF hypocapnia, yielding normal CSF pH values and resulting in a higher incidence of arterial HA.
Collapse
Affiliation(s)
- Thomas Langer
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
- Department of Anesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy.
| | - Francesco Zadek
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Carbonara
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Caccioppola
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Brusatori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Zoerle
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Bottazzini
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Adriana di Modugno
- Central Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Fumagalli
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Department of Anesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Caldwell HG, Carr JMJR, Minhas JS, Swenson ER, Ainslie PN. Acid-base balance and cerebrovascular regulation. J Physiol 2021; 599:5337-5359. [PMID: 34705265 DOI: 10.1113/jp281517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
The regulation and defence of intracellular pH is essential for homeostasis. Indeed, alterations in cerebrovascular acid-base balance directly affect cerebral blood flow (CBF) which has implications for human health and disease. For example, changes in CBF regulation during acid-base disturbances are evident in conditions such as chronic obstructive pulmonary disease and diabetic ketoacidosis. The classic experimental studies from the past 75+ years are utilized to describe the integrative relationships between CBF, carbon dioxide tension (PCO2 ), bicarbonate (HCO3 - ) and pH. These factors interact to influence (1) the time course of acid-base compensatory changes and the respective cerebrovascular responses (due to rapid exchange kinetics between arterial blood, extracellular fluid and intracellular brain tissue). We propose that alterations in arterial [HCO3 - ] during acute respiratory acidosis/alkalosis contribute to cerebrovascular acid-base regulation; and (2) the regulation of CBF by direct changes in arterial vs. extravascular/interstitial PCO2 and pH - the latter recognized as the proximal compartment which alters vascular smooth muscle cell regulation of CBF. Taken together, these results substantiate two key ideas: first, that the regulation of CBF is affected by the severity of metabolic/respiratory disturbances, including the extent of partial/full acid-base compensation; and second, that the regulation of CBF is independent of arterial pH and that diffusion of CO2 across the blood-brain barrier is integral to altering perivascular extracellular pH. Overall, by realizing the integrative relationships between CBF, PCO2 , HCO3 - and pH, experimental studies may provide insights to improve CBF regulation in clinical practice with treatment of systemic acid-base disorders.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Erik R Swenson
- Pulmonary, Critical Care and Sleep Medicine Division, University of Washington, and VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
8
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
9
|
Avraam J, Wu Y, Richerson GB. Perinatal Nicotine Reduces Chemosensitivity of Medullary 5-HT Neurons after Maturation in Culture. Neuroscience 2020; 446:80-93. [PMID: 32818601 DOI: 10.1016/j.neuroscience.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
Perinatal exposure to nicotine produces ventilatory and chemoreflex deficits in neonatal mammals. Medullary 5-HT neurons are putative central chemoreceptors that innervate respiratory nuclei and promote ventilation, receive cholinergic input and express nicotinic acetylcholine receptors (nAChRs). Perforated patch clamp recordings were made from cultured 5-HT neurons dissociated from the medullary raphé of 0-3 day old mice expressing enhanced yellow fluorescent protein driven by the enhancer region for PET1 (ePet-EYFP). The effect of exposure to low (6 mg kg-1day-1) or high (60 mg kg-1day-1) doses of nicotine in utero (prenatal), in culture (postnatal), or both and the effect of acute nicotine exposure (10 μM), were examined on baseline firing rate (FR at 5% CO2, pH = 7.4) and the change in FR with acidosis (9% CO2, pH 7.2) in young (12-21 days in vitro, DIV) and older (≥22 DIV) acidosis stimulated 5-HT neurons. Nicotine exposed neurons exhibited ∼67% of the response to acidosis recorded in neurons given vehicle (p = 0.005), with older neurons exposed to high dose prenatal and postnatal nicotine, exhibiting only 28% of that recorded in the vehicle neurons (p < 0.01). In neurons exposed to low or high dose prenatal and postnatal nicotine, acute nicotine exposure led to a smaller increase in FR (∼+51% vs +168%, p = 0.026) and response to acidosis (+6% vs +67%, p = 0.014) compared to vehicle. These data show that exposure to nicotine during development reduces chemosensitivity of 5-HT neurons as they mature, an effect that may be related to the abnormal chemoreflexes reported in rodents exposed to nicotine in utero, and may cause a greater risk for sudden infant death syndrome (SIDS).
Collapse
Affiliation(s)
- Joanne Avraam
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yuanming Wu
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - George Bradley Richerson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Veteran's Affairs Medical Center, Iowa City, IA 52242, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
10
|
Adrogué HJ, Madias NE. Alkali Therapy for Respiratory Acidosis: A Medical Controversy. Am J Kidney Dis 2020; 75:265-271. [DOI: 10.1053/j.ajkd.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
|
11
|
5-HT neurons and central CO2 chemoreception. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-444-64125-0.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Gupta S, Otero JJ, Sundaresan VB, Czeisler CM. Near field non-invasive electrophysiology of retrotrapezoid nucleus using amperometric cation sensor. Biosens Bioelectron 2019; 151:111975. [PMID: 31999582 DOI: 10.1016/j.bios.2019.111975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Central chemoreception is the process whereby the brainstem senses blood gas levels and adjusts homeostatic functions such as breathing and cardiovascular tone accordingly. Rodent evidence suggests that the retrotrapezoid nucleus (RTN) is a master regulator of central chemoreception, in particular, through direct sensation of acidosis induced by CO2 levels. The oscillatory dynamics caused by pH changes as sensed by the RTN surface and its relationship to the fluctuations in cation flux is not clearly understood due to the current limitations of electrophysiology tools and this article presents our investigations to address this need. A cation selective sensor fabricated from polypyrrole doped with dodecyl benzenesulfonate (PPy (DBS)) is placed over RTN in an ex-vivo en bloc brain and changes in cation concentration in the diffusion limited region above the RTN is measured due to changes in externally imposed basal pH. The novelty of this technique lies in its feasibility to detect cation fluxes from the cells in the RTN region without having to access either sides of the cell membrane. Owing to the placement of the sensor in close proximity to the tissue, we refer to this technique as near-field electrophysiology. It is observed that lowering the pH in the physiological range (7.4-7.2) results in a significant increase in cation concentration in the vicinity of RTN with a median value of ~5 μM. The utilization of such quantifiable measurement techniques to detect sub-threshold brain activity may help provide a platform for future neural network architectures. Findings from this paper present a quantifiable, sensitive, and robust electrophysiology technique with minimal damage to the underlying tissue.
Collapse
Affiliation(s)
- Sujasha Gupta
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19(th) Ave, Columbus, 43210, Ohio, United States.
| | - José Javier Otero
- Department of Pathology, Neuropathology, The Ohio State University, 333 W 10(th) Ave, Columbus, 43210, Ohio, United States.
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19(th) Ave, Columbus, 43210, Ohio, United States.
| | - Catherine Miriam Czeisler
- Division of Department of Pathology, The Ohio State University, 333 W 10(th) Ave, Columbus, 43210, Ohio, United States.
| |
Collapse
|
13
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci 2019; 42:807-824. [PMID: 31635852 DOI: 10.1016/j.tins.2019.09.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
The ventral surface of the rostral medulla oblongata has been suspected since the 1960s to harbor central respiratory chemoreceptors [i.e., acid-activated neurons that regulate breathing to maintain a constant arterial PCO2 (PaCO2)]. The key neurons, a.k.a. the retrotrapezoid nucleus (RTN), have now been identified. In this review we describe their transcriptome, developmental lineage, and anatomical projections. We also review their contribution to CO2 homeostasis and to the regulation of breathing automaticity during sleep and wake. Finally, we discuss several mechanisms that contribute to the activation of RTN neurons by CO2in vivo: cell-autonomous effects of protons; paracrine effects of pH mediated by surrounding astrocytes and blood vessels; and excitatory inputs from other CO2-responsive CNS neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
Gilbertson LE, Fiedorek CS, Fiedorek MC, Lam H, Austin TM. Adequacy of Preoperative Resuscitation in Laparoscopic Pyloromyotomy and Anesthetic Emergence. Anesth Analg 2019; 131:570-578. [DOI: 10.1213/ane.0000000000004446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Wu Y, Proch KL, Teran FA, Lechtenberg RJ, Kothari H, Richerson GB. Chemosensitivity of Phox2b-expressing retrotrapezoid neurons is mediated in part by input from 5-HT neurons. J Physiol 2019; 597:2741-2766. [PMID: 30866045 PMCID: PMC6826216 DOI: 10.1113/jp277052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Neurons of the retrotrapezoid nucleus (RTN) and medullary serotonin (5-HT) neurons are both candidates for central CO2 /pH chemoreceptors, but it is not known how interactions between them influence their responses to pH. We found that RTN neurons in brain slices were stimulated by exogenous 5-HT and by heteroexchange release of endogenous 5-HT, and these responses were blocked by antagonists of 5-HT7 receptors. The pH response of RTN neurons in brain slices was markedly reduced by the same antagonists of 5-HT7 receptors. Similar results were obtained in dissociated, primary cell cultures prepared from the ventral medulla, where it was also found that the pH response of RTN neurons was blocked by preventing 5-HT synthesis and enhanced by blocking 5-HT reuptake. Exogenous 5-HT did not enable latent intrinsic RTN chemosensitivity. RTN neurons may play more of a role as relays from other central and peripheral chemoreceptors than as CO2 sensors. ABSTRACT Phox2b-expressing neurons in the retrotrapezoid nucleus (RTN) and serotonin (5-HT) neurons in the medullary raphe have both been proposed to be central respiratory chemoreceptors. How interactions between these two sets of neurons influence their responses to acidosis is not known. Here we recorded from mouse Phox2b+ RTN neurons in brain slices, and found that their response to moderate hypercapnic acidosis (pH 7.4 to ∼7.2) was markedly reduced by antagonists of 5-HT7 receptors. RTN neurons were stimulated in response to heteroexchange release of 5-HT, indicating that RTN neurons are sensitive to endogenous 5-HT. This electrophysiological behaviour was replicated in primary, dissociated cell cultures containing 5-HT and RTN neurons grown together. In addition, pharmacological inhibition of 5-HT synthesis in culture reduced RTN neuron chemosensitivity, and blocking 5-HT reuptake enhanced chemosensitivity. The effect of 5-HT on RTN neuron chemosensitivity was not explained by a mechanism whereby activation of 5-HT7 receptors enables or potentiates intrinsic chemosensitivity of RTN neurons, as exogenous 5-HT did not enhance the pH response. The ventilatory response to inhaled CO2 of mice was markedly decreased in vivo after systemic treatment with ketanserin, an antagonist of 5-HT2 and 5-HT7 receptors. These data indicate that 5-HT and RTN neurons may interact synergistically in a way that enhances the respiratory chemoreceptor response. The primary role of RTN neurons may be as relays and amplifiers of the pH response from 5-HT neurons and other chemoreceptors rather than as pH sensors themselves.
Collapse
Affiliation(s)
- Yuanming Wu
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
| | - Katherine L. Proch
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
| | - Frida A. Teran
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIA52242USA
| | | | - Harsh Kothari
- Department of PediatricsUniversity of IowaIowa CityIA52242USA
| | - George B. Richerson
- Department of NeurologyUniversity of IowaIowa CityIA52242USA
- Graduate Program in NeuroscienceUniversity of IowaIowa CityIA52242USA
- Department of Molecular Physiology & BiophysicsUniversity of IowaIowa CityIA52242USA
- Neurology ServiceVeterans Affairs Medical CenterIowa CityIA52242USA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
16
|
Puissant MM, Muere C, Levchenko V, Manis AD, Martino P, Forster HV, Palygin O, Staruschenko A, Hodges MR. Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis. FASEB J 2019; 33:5067-5075. [PMID: 30605394 PMCID: PMC6436665 DOI: 10.1096/fj.201802257r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Acute and chronic homeostatic pH regulation is critical for the maintenance of optimal cellular function. Renal mechanisms dominate global pH regulation over longer time frames, and rapid adjustments in ventilation compensate for acute pH and CO2 changes. Ventilatory CO2 and pH chemoreflexes are primarily determined by brain chemoreceptors with intrinsic pH sensitivity likely driven by K+ channels. Here, we studied acute and chronic pH regulation in Kcnj16 mutant Dahl salt-sensitive (SS Kcnj16-/-) rats; Kcnj16 encodes the pH-sensitive inwardly rectifying K+ 5.1 (Kir5.1) channel. SS Kcnj16-/- rats hyperventilated at rest, likely compensating for a chronic metabolic acidosis. Despite their resting hyperventilation, SS Kcnj16-/- rats showed up to 45% reduction in the ventilatory response to graded hypercapnic acidosis vs. controls. SS Kcnj16-/- rats chronically treated with bicarbonate or the carbonic anhydrase inhibitor hydrochlorothiazide had partial restoration of arterial pH, but there was a further reduction in the ventilatory response to hypercapnic acidosis. SS Kcnj16-/- rats also had a nearly absent hypoxic ventilatory response, suggesting major contributions of Kir5.1 to O2- and CO2-dependent chemoreflexes. Although previous studies demonstrated beneficial effects of a high-K+ diet (HKD) on cardiorenal phenotypes in SS Kcnj16-/- rats, HKD failed to restore the observed ventilatory phenotypes. We conclude that Kir5.1 is a key regulator of renal H+ handling and essential for acute and chronic regulation of arterial pH as determinants of the ventilatory CO2 chemoreflex.-Puissant, M. M., Muere, C., Levchenko, V., Manis, A. D., Martino, P., Forster, H. V., Palygin, O., Staruschenko, A., Hodges, M. R. Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis.
Collapse
Affiliation(s)
| | - Clarissa Muere
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anna D. Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul Martino
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biology, Carthage College, Kenosha, Wisconsin, USA; and
| | - Hubert V. Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Burgraff NJ, Neumueller SE, Buchholz KJ, Hodges MR, Pan L, Forster HV. Glutamate receptor plasticity in brainstem respiratory nuclei following chronic hypercapnia in goats. Physiol Rep 2019; 7:e14035. [PMID: 30993898 PMCID: PMC6467842 DOI: 10.14814/phy2.14035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Patients that retain CO2 in respiratory diseases such as chronic obstructive pulmonary disease (COPD) have worse prognoses and higher mortality rates than those with equal impairment of lung function without hypercapnia. We recently characterized the time-dependent physiologic effects of chronic hypercapnia in goats, which suggested potential neuroplastic shifts in ventilatory control mechanisms. However, little is known about how chronic hypercapnia affects brainstem respiratory nuclei (BRN) that control multiple physiologic functions including breathing. Since many CNS neuroplastic mechanisms include changes in glutamate (AMPA (GluR) and NMDA (GluN)) receptor expression and/or phosphorylation state to modulate synaptic strength and network excitability, herein we tested the hypothesis that changes occur in glutamatergic signaling within BRN during chronically elevated inspired CO2 (InCO2 )-hypercapnia. Healthy goats were euthanized after either 24 h or 30 days of chronic exposure to 6% InCO2 or room air, and brainstems were rapidly extracted for western blot analyses to assess GluR and GluN receptor expression within BRN. Following 24-hr exposure to 6% InCO2 , GluR or GluN receptor expression were changed from control (P < 0.05) in the solitary complex (NTS & DMV),ventrolateral medulla (VLM), medullary raphe (MR), ventral respiratory column (VRC), hypoglossal motor nucleus (HMN), and retrotrapezoid nucleus (RTN). These neuroplastic changes were not found following 30 days of chronic hypercapnia. However, at 30 days of chronic hypercapnia, there was overall increased (P < 0.05) expression of glutamate receptors in the VRC and RTN. We conclude that time- and site-specific glutamate receptor neuroplasticity may contribute to the concomitant physiologic changes that occur during chronic hypercapnia.
Collapse
Affiliation(s)
| | | | | | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
| | - Lawrence Pan
- Department of Physical TherapyMarquette UniversityMilwaukeeWisconsin
| | - Hubert V. Forster
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
- Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsin
| |
Collapse
|
18
|
Carotid chemoreceptor denervation does not impair hypoxia-induced thermal downregulation but vitiates recovery from a hypothermic and hypometabolic state in mice. Sci Rep 2019; 9:5132. [PMID: 30914789 PMCID: PMC6435667 DOI: 10.1038/s41598-019-41546-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Induction of hypothermia and consequent hypometabolism by pharmacological downmodulation of the internal thermostat could be protective in various medical situations such as ischemia/reperfusion. Systemic hypoxia is a trigger of thermostat downregulation in some mammals, which is sensed though carotid chemoreceptors (carotid bodies, CBs). Using non-invasive thermographic imaging in mice, we demonstrated that surgical bilateral CB denervation does not hamper hypoxia-induced hypothermia. However, the recovery from a protective and reversible hypothermic state after restoration to normoxic conditions was impaired in CB-resected mice versus control animals. Therefore, the carotid chemoreceptors play an important role in the central regulation of hypoxia-driven hypothermia in mice, but only in the rewarming phase.
Collapse
|
19
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Busch SA, Bruce CD, Skow RJ, Pfoh JR, Day TA, Davenport MH, Steinback CD. Mechanisms of sympathetic regulation during Apnea. Physiol Rep 2019; 7:e13991. [PMID: 30693670 PMCID: PMC6349657 DOI: 10.14814/phy2.13991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Volitional Apnea produces a robust peak sympathetic response through several interacting mechanisms. However, the specific contribution of each mechanism has not been elucidated. Muscle sympathetic activity was collected in participants (n = 10; 24 ± 3 years) that performed four maximal volitional apneas aimed at isolating lung-stretch (mechanical) and chemoreflex drive: (Ainslie and Duffin ) end-expiratory breath-hold, (Ainslie et al. ) end-inspiratory breath-hold, (Alpher et al. ) prehyperventilation breath-hold, and (Andersson and Schagatay ) prehyperoxia breath-hold. A final repeated rebreathe breath-hold protocol was performed to measure the peak sympathetic response during successive breath-holds at increasing chemoreflex stress. Finally, the influence of dynamic ventilation was assessed through asphyxic rebreathe. Muscle sympathetic activity was calculated as the change in burst frequency (burst/min), burst incidence (burst/100 heart-beats), and amplitude (au) between baseline and prevolitional breakpoint. Rebreathe was analyzed at similar chemoreflex stress as inspiratory breath-hold. All maneuvers increased muscle sympathetic activity compared to baseline (P < 0.01). However, prehyperoxia exhibited a smaller increase (+22.18 ± 9.13 burst/min; +25.52 ± 11.7 burst/100 heart-beats) compared to inspiratory, expiratory, and prehyperventilation breath-holds. At similar chemoreflex strain, rebreathe sympathetic activity was blunted compared to inspiratory breath-hold (P < 0.01). Finally, muscle sympathetic activity was not different between the repeated rebreathe trials, despite elevated chemoreflex stress and lower breath-hold duration with each subsequent breath-hold. We have demonstrated an obligatory role of the peripheral, but not central, chemoreflex (prehyperventilation vs. prehyperoxia) in producing peak sympathetic responses. At similar chemoreflex stresses the act of dynamic ventilation, but not static lung stretch per se, blunts muscle sympathetic activity. Finally, similar peak sympathetic responses during successive repeated breath-holds suggest a sympathetic ceiling may exist.
Collapse
Affiliation(s)
- Stephen A. Busch
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| | - Christina D. Bruce
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Rachel J. Skow
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| | - Jaime R. Pfoh
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Trevor A. Day
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Margie H. Davenport
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| | - Craig D. Steinback
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
21
|
|
22
|
Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Füchtbauer AC, Füchtbauer EM, Wang T, Praetorius J, Damkier HH. The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 2018; 596:4709-4728. [PMID: 29956324 PMCID: PMC6166071 DOI: 10.1113/jp275489] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Key points Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of CO2 in the blood lead to a decrease in brain pH. CO2 can easily cross the barriers of the brain and will activate chemoreceptors leading to an increased exhalation of CO2. The low pH, however, is harmful and bases such as HCO3− are imported across the brain barriers in order to normalize brain pH. We show that the HCO3− transporter NBCe2 in the choroid plexus of the blood‐cerebrospinal fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO2. This discovery represents a significant step in understanding the molecular mechanisms behind regulation of CSF pH during acid‐base disturbances, such as chronic lung disease.
Abstract The choroid plexus epithelium (CPE) is located in the brain ventricles where it produces the majority of the cerebrospinal fluid (CSF). The hypothesis that normal brain function is sustained by CPE‐mediated CSF pH regulation by extrusion of acid‐base equivalents was tested by determining the contribution of the electrogenic Na+‐HCO3− cotransporter NBCe2 to CSF pH regulation. A novel strain of NBCe2 (Slc4a5) knockout (KO) mice was generated and validated. The base extrusion rate after intracellular alkalization was reduced by 77% in NBCe2 KO mouse CPE cells compared to control mice. NBCe2 KO mice and mice with CPE‐targeted NBCe2 siRNA knockdown displayed a reduction in CSF pH recovery during hypercapnia‐induced acidosis of approximately 85% and 90%, respectively, compared to control mice. NBCe2 KO did not affect baseline respiration rate or tidal volume, and the NBCe2 KO and wild‐type (WT) mice displayed similar ventilatory responses to 5% CO2 exposure. NBCe2 KO mice were not protected against pharmacological or heating‐induced seizure development. In conclusion, we establish the concept that the CPE is involved in the regulation of CSF pH by demonstrating that NBCe2 is necessary for proper CSF pH recovery after hypercapnia‐induced acidosis. Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of CO2 in the blood lead to a decrease in brain pH. CO2 can easily cross the barriers of the brain and will activate chemoreceptors leading to an increased exhalation of CO2. The low pH, however, is harmful and bases such as HCO3− are imported across the brain barriers in order to normalize brain pH. We show that the HCO3− transporter NBCe2 in the choroid plexus of the blood‐cerebrospinal fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO2. This discovery represents a significant step in understanding the molecular mechanisms behind regulation of CSF pH during acid‐base disturbances, such as chronic lung disease.
Collapse
Affiliation(s)
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Hans Malte
- Department of Bioscience, Science and Technology, Aarhus University, Denmark
| | | | - Annette C Füchtbauer
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Denmark
| | - Tobias Wang
- Department of Bioscience, Science and Technology, Aarhus University, Denmark
| | | | - Helle H Damkier
- Department of Biomedicine, Health, Aarhus University, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 2018; 28:423-435. [PMID: 29574504 DOI: 10.1007/s10286-018-0522-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
Ascent to high-altitude elicits compensatory physiological adaptations in order to improve oxygenation throughout the body. The brain is particularly vulnerable to the hypoxemia of terrestrial altitude exposure. Herein we review the ventilatory and cerebrovascular changes at altitude and how they are both implicated in the maintenance of oxygen delivery to the brain. Further, the interdependence of ventilation and cerebral blood flow at altitude is discussed. Following the acute hypoxic ventilatory response, acclimatization leads to progressive increases in ventilation, and a partial mitigation of hypoxemia. Simultaneously, cerebral blood flow increases during initial exposure to altitude when hypoxemia is the greatest. Following ventilatory acclimatization to altitude, and an increase in hemoglobin concentration-which both underscore improvements in arterial oxygen content over time at altitude-cerebral blood flow progressively decreases back to sea-level values. The complimentary nature of these responses (ventilatory, hematological and cerebral) lead to a tightly maintained cerebral oxygen delivery while at altitude. Despite this general maintenance of global cerebral oxygen delivery, the manner in which this occurs reflects integration of these physiological responses. Indeed, ventilation directly influences cerebral blood flow by determining the prevailing blood gas and acid/base stimuli at altitude, but cerebral blood flow may also influence ventilation by altering central chemoreceptor stimulation via central CO2 washout. The causes and consequences of the integration of ventilatory and cerebral blood flow regulation at high altitude are outlined.
Collapse
|
24
|
Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda) 2018; 33:113-126. [PMID: 29412056 PMCID: PMC5899234 DOI: 10.1152/physiol.00002.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
25
|
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13:19. [PMID: 27799072 PMCID: PMC5508927 DOI: 10.1186/s12987-016-0040-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
26
|
Yung A, Thung A, Tobias JD. Acetaminophen for analgesia following pyloromyotomy: does the route of administration make a difference? J Pain Res 2016; 9:123-7. [PMID: 27022299 PMCID: PMC4790489 DOI: 10.2147/jpr.s100607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background During the perioperative care of infants with hypertrophic pyloric stenosis, an opioid-sparing technique is often advocated due to concerns such as postoperative hypoventilation and apnea. Although the rectal administration of acetaminophen is commonly employed, an intravenous (IV) preparation is also currently available, but only limited data are available regarding IV acetaminophen use for infants undergoing pyloromyotomy. The objective of the current study was to compare the efficacy of IV and rectal acetaminophen for postoperative analgesia in infants undergoing laparoscopic pyloromyotomy. Methods A retrospective review of the use of IV and rectal acetaminophen in infants undergoing laparoscopic pyloromyotomy was performed. The efficacy was assessed by evaluating the perioperative need for supplemental analgesic agents, postoperative pain scores, tracheal extubation time, time in the postanesthesia care unit, time to oral feeding, and time to hospital discharge. Results The study cohort included 68 patients, of whom 34 patients received IV acetaminophen and 34 received rectal acetaminophen. All patients also received local infiltration of the surgical site with 0.25% bupivacaine. No intraoperative opioids were administered. There was no difference between the two groups with regard to postoperative pain scores, need for supplemental analgesic agents, time in the postanesthesia care unit, or time in the hospital. There was no difference in the number of children who tolerated oral feeds on the day of surgery or in postoperative complications. Conclusion Our preliminary data suggest that there is no clinical difference or advantage with the use of IV versus rectal acetaminophen in infants undergoing laparoscopic pyloromyotomy.
Collapse
Affiliation(s)
- Arvid Yung
- Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Arlyne Thung
- Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Anesthesiology and Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph D Tobias
- Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Anesthesiology and Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
27
|
Langer T, Zanella A, Caironi P. Understanding the role of the cerebrospinal fluid in acid-base disorders. Intensive Care Med 2016; 42:436-439. [PMID: 26399889 DOI: 10.1007/s00134-015-4059-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Langer
- Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.
| | - Alberto Zanella
- Dipartimento di Scienze della Salute, Università degli Studi Milano, Bicocca, Monza, Italy
| | - Pietro Caironi
- Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,Dipartimento di Fisiopatologia Medico, Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Pathophysiology of central sleep apneas. Sleep Breath 2016; 20:467-82. [DOI: 10.1007/s11325-015-1290-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
|
29
|
Fan JL, Subudhi AW, Duffin J, Lovering AT, Roach RC, Kayser B. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude. Front Physiol 2016; 6:394. [PMID: 26779030 PMCID: PMC4705915 DOI: 10.3389/fphys.2015.00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of OtagoWellington, New Zealand; Department of Surgery and Anaesthesia, University of OtagoWellington, New Zealand
| | - Andrew W Subudhi
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - James Duffin
- Department of Physiology, University of TorontoToronto, ON, Canada; Department of Anaesthesiology, University of TorontoToronto, ON, Canada; University Health NetworkToronto, ON, Canada
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon Eugene, Oregon, OR, USA
| | - Robert C Roach
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
30
|
Kamata M, Cartabuke RS, Tobias JD. Perioperative care of infants with pyloric stenosis. Paediatr Anaesth 2015; 25:1193-206. [PMID: 26490352 DOI: 10.1111/pan.12792] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 11/28/2022]
Abstract
Pyloric stenosis (PS) is one of the most common surgical conditions affecting neonates and young infants. The definitive treatment for PS is surgical pyloromyotomy, either open or laparoscopic. However, surgical intervention should never be considered urgent or emergent. More importantly, emergent medical intervention may be required to correct intravascular volume depletion and electrolyte disturbances. Given advancements in surgical and perioperative care, morbidity and mortality from PS should be limited. However, either may occur related to poor preoperative resuscitation, anesthetic management difficulties, or postoperative complications. The following manuscript reviews the current evidence-based medicine regarding the perioperative care of infants with PS with focus on the preoperative assessment and correction of metabolic abnormalities, intraoperative care including airway management (particularly debate related to rapid sequence intubation), maintenance anesthetic techniques, and techniques for postoperative pain management. Additionally, reports of applications of regional anesthesia for either postoperative pain control or as an alternative to general anesthesia are discussed. Management recommendations are provided whenever possible.
Collapse
Affiliation(s)
- Mineto Kamata
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard S Cartabuke
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph D Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
31
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
32
|
Skow RJ, Tymko MM, MacKay CM, Steinback CD, Day TA. The effects of head-up and head-down tilt on central respiratory chemoreflex loop gain tested by hyperoxic rebreathing. PROGRESS IN BRAIN RESEARCH 2014; 212:149-72. [DOI: 10.1016/b978-0-444-63488-7.00009-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Abstract
Among the several topics included in respiratory studies investigators have focused on the control of breathing for a relatively few number of years, perhaps only the last 75 to 80. For a very long time, the phenomenon of respiration presented a great mystery. The Chinese had suggestions for proper breathing, and later the Egyptians sought to understand its purpose. But in the western world, the early Greeks made the more significant observations. Centuries passed before the anatomical structures pertinent to respiration were properly visualized and located. There followed efforts to understand if lung movement was necessary for life and what happened in the lung. The rise of chemistry in the 18th century eventually clarified the roles of the gases significant in respiratory behavior. More time was needed to understand what gases provoked increases in breathing and where those gases worked. At this point, control of breathing became a significant focus of respiratory investigators. Studies included identifying the structures and functions of central and peripheral chemoreceptors, and airway receptors, sources of respiratory rhythm and pattern generation, the impact of the organism's status on its breathing including environment and disease/trauma. At this same time, mid- to late-20th century, efforts to mathematicize the variables in the control of breathing appeared. So though wonderment about the mysterious phenomenon of respiration began over two millennia ago, serious physiological investigation into its control is by comparison very young.
Collapse
Affiliation(s)
- Robert S Fitzgerald
- Departments of Environmental Health Sciences Division of Physiology, of Physiology, and of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | |
Collapse
|
34
|
Christensen HL, Nguyen AT, Pedersen FD, Damkier HH. Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 2013; 4:304. [PMID: 24155723 PMCID: PMC3804831 DOI: 10.3389/fphys.2013.00304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023] Open
Abstract
The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family of bicarbonate transporters are expressed in the CPE. In the basolateral membrane the electroneutral Na+ dependent Cl−/HCO3− exchanger, NCBE (slc4a10) is expressed. In the luminal membrane, the electrogenic Na+:HCO3− cotransporter, NBCe2 (slc4a5) is expressed. The electroneutral Na+:HCO3− cotransporter, NBCn1 (slc4a7), has been located in both membranes. In addition to the bicarbonate transporters, the Na+/H+ exchanger, NHE1 (slc9a1), is located in the luminal membrane of the CPE. Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular pH regulation (slc4a7 and slc4a10). In some instances, removal of the proteins from the CPE (slc4a5, 7, and 10) causes changes in abundance and localization of non-target transporters known to be involved in pH regulation and CSF secretion. The focus of this review is to combine the insights gathered from these knockout mice to highlight the impact of slc4 gene deletion on the CSF production and intracellular pH regulation resulting from the deletion of slc4a5, 7 and 10, and slc9a1. Furthermore, the review contains a comparison of the described human mutations of these genes to the findings in the knockout studies. Finally, the future perspective of utilizing these proteins as potential targets for the treatment of CSF disorders will be discussed.
Collapse
|
35
|
Ainslie PN, Lucas SJ, Burgess KR. Breathing and sleep at high altitude. Respir Physiol Neurobiol 2013; 188:233-56. [DOI: 10.1016/j.resp.2013.05.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
36
|
Tipton CM. Recognition of American Physiological Society members whose research publications had a significant impact on the discipline of physiology. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:15-27. [PMID: 23471244 DOI: 10.1152/advan.00145.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Society members whose research publication during the past 125 yr had an important impact on the discipline of physiology were featured at the American Physiological Society (APS)'s 125th Anniversary symposium. The daunting and challenging task of identifying and selecting significant publications was assumed by the Steering Committee of the History of Physiology Interest Group, who requested recommendations and rationales from all Sections, select Interest Groups, and active senior APS members. The request resulted in recommendations and rationales from nine Sections, one Interest Group, and 28 senior members, identifying 38 publications and 43 members for recognition purposes. The publication recommendations included 5 individuals (Cournand, Erlanger, Gasser, Hubel, and Wiesel) whose research significantly contributed to their selection for the Nobel Prize in Medicine or Physiology, 4 individuals who received multiple recommendations [i.e., Cannon (3), Curran (2), Fenn (3), and Hamilton (2)], and 11 members who had been APS Presidents. Of the recommended articles, 33% were from the American Journal of Physiology, with the earliest being published in 1898 (Cannon) and the latest in 2007 (Sigmund). For the brief oral presentations, the History of Physiology Steering Committee selected the first choices of the Sections or Interest Group, whereas rationales and representation of the membership were used for the presentations by senior members.
Collapse
Affiliation(s)
- Charles M Tipton
- Department of Physiology, University of Arizona, Tucson, AZ 85704, USA.
| |
Collapse
|
37
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
38
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
39
|
Huckstepp RTR, Dale N. Redefining the components of central CO2 chemosensitivity--towards a better understanding of mechanism. J Physiol 2011; 589:5561-79. [PMID: 22005672 PMCID: PMC3249032 DOI: 10.1113/jphysiol.2011.214759] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract The field of CO2 chemosensitivity has developed considerably in recent years. There has been a mounting number of competing nuclei proposed as chemosensitive along with an ever increasing list of potential chemosensory transducing molecules. Is it really possible that all of these areas and candidate molecules are involved in the detection of chemosensory stimuli? How do we discriminate rigorously between molecules that are chemosensory transducers at the head of a physiological reflexversusthose that just happen to display sensitivity to a chemosensory stimulus? Equally, how do we differentiate between nuclei that have a primary chemosensory function, versusthose that are relays in the pathway? We have approached these questions by proposing rigorous definitions for the different components of the chemosensory reflex, going from the salient molecules and ions, through the components of transduction to the identity of chemosensitive cells and chemosensitive nuclei. Our definitions include practical and rigorous experimental tests that can be used to establish the identity of these components. We begin by describing the need for central CO2 chemosensitivity and the problems that the field has faced. By comparing chemosensory mechanisms to those in the visual system we suggest stricter definitions for the components of the chemosensory pathway. We then, considering these definitions, re-evaluate current knowledge of chemosensory transduction, and propose the ‘multiple salient signal hypothesis’ as a framework for understanding the multiplicity of transduction mechanisms and brain areas seemingly involved in chemosensitivity.
Collapse
|
40
|
|
41
|
|
42
|
|
43
|
Nattie E. Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then ... and now. J Appl Physiol (1985) 2011; 110:1-8. [PMID: 21071595 PMCID: PMC3252999 DOI: 10.1152/japplphysiol.01061.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/05/2010] [Indexed: 12/19/2022] Open
Abstract
The 2010 Julius H. Comroe, Jr., Lecture of the American Physiological Society focuses on evolving ideas in chemoreception for CO₂/pH in terms of what is "sensed," where it is sensed, and how the sensed information is used physiologically. Chemoreception is viewed as involving neurons (and glia) at many sites within the hindbrain, including, but not limited to, the retrotrapezoid nucleus, the medullary raphe, the locus ceruleus, the nucleus tractus solitarius, the lateral hypothalamus (orexin neurons), and the caudal ventrolateral medulla. Central chemoreception also has an important nonadditive interaction with afferent information arising at the carotid body. While ventilation has been viewed as the primary output variable, it appears that airway resistance, arousal, and blood pressure can also be significantly affected. Emphasis is placed on the importance of data derived from studies performed in the absence of anesthesia.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon New Hampshire 03756-0001, USA.
| |
Collapse
|
44
|
|
45
|
|
46
|
Cunningham DJC, Robbins PA, Wolff CB. Integration of Respiratory Responses to Changes in Alveolar Partial Pressures of
CO
2
and O
2
and in Arterial pH. Compr Physiol 2011. [DOI: 10.1002/cphy.cp030215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Abstract
By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO(2) in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO(2) during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH-dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake-promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
48
|
Siesjö BK, Kjällquist Å. Factors Affecting H+and HCO−3in the Cerebrospinal Fluid. Scandinavian Journal of Clinical and Laboratory Investigation 2010. [DOI: 10.3109/00365516809168958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Nattie E, Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol (1985) 2010; 108:1417-24. [PMID: 20133433 PMCID: PMC2867536 DOI: 10.1152/japplphysiol.01261.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/28/2010] [Indexed: 11/22/2022] Open
Abstract
This minireview examines data showing the locations of central chemoreceptor sites as identified by the presence of ventilatory responses to focal, mild acidification produced in unanesthetized animals in vivo, how the site-specific responses vary by arousal state, and what the emerging role of orexin might be in this state-dependent central chemoreceptor system. We comment on the organization of this distributed central chemoreceptor system and suggest that interactions among sites are synergistic and not additive, which is an important aspect of its normal function.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA.
| | | |
Collapse
|
50
|
Forster HV, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol (1985) 2010; 108:989-94. [PMID: 20075260 DOI: 10.1152/japplphysiol.01059.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The major objective of this review is to evaluate existing information and reach conclusions regarding whether there is interaction between P(CO(2))/H(+) stimulation of carotid (peripheral) and intracranial (central) chemoreceptors. Interaction is defined as a ventilatory response to simultaneous changes in the degree of Pco2/H(+) stimulation of both chemoreceptors that is greater (hyperadditive) or less (hypoadditive) than the sum of the responses when stimulation of each set of chemoreceptors is individually altered. Simple summation of the simultaneous changes in stimuli results in no interaction (i.e., additive interaction). Knowledge of the nature of central/peripheral interaction is crucial for determining the physiological significance of newer models of ventilatory control based on recent neuroanatomic observations of the circuitry of key elements of the ventilatory control system. In this review, we will propose that these two sets of receptors are not functionally separate but rather that they are dependent on one another such that the sensitivity of the medullary chemoreceptors is critically determined by input from the peripheral chemoreceptors and possibly other breathing-related reflex afferents as well. The short format of this minireview demands that we be somewhat selective in developing our ideas. We will briefly discuss the limitations of experiments used to study CO(2)/H(+) sensitivity and interaction to date, traditional views of the relative contributions of peripheral and central chemoreceptors to CO(2)/H(+) sensitivity, the evidence for and against different types of interaction, and the effect of tonic carotid chemoreceptor afferent activity on central control mechanisms.
Collapse
Affiliation(s)
- H V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-4801, USA.
| | | |
Collapse
|