1
|
MacAulay N, Toft-Bertelsen TL. Dual function of the choroid plexus: Cerebrospinal fluid production and control of brain ion homeostasis. Cell Calcium 2023; 116:102797. [PMID: 37801806 DOI: 10.1016/j.ceca.2023.102797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
The choroid plexus is a small monolayered epithelium located in the brain ventricles and serves to secrete the cerebrospinal fluid (CSF) that envelops the brain and fills the central ventricles. The CSF secretion is sustained with a concerted effort of a range of membrane transporters located in a polarized fashion in this tissue. Prominent amongst these are the Na+/K+-ATPase, the Na+,K+,2Cl- cotransporter (NKCC1), and several HCO3- transporters, which together support the net transepithelial transport of the major electrolytes, Na+ and Cl-, and thus drive the CSF secretion. The choroid plexus, in addition, serves an important role in keeping the CSF K+ concentration at a level compatible with normal brain function. The choroid plexus Na+/K+-ATPase represents a key factor in the barrier-mediated control of the CSF K+ homeostasis, as it increases its K+ uptake activity when faced with elevated extracellular K+ ([K+]o). In certain developmental or pathological conditions, the NKCC1 may revert its net transport direction to contribute to CSF K+ homeostasis. The choroid plexus ion transport machinery thus serves dual, yet interconnected, functions with its contribution to electrolyte and fluid secretion in combination with its control of brain K+ levels.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Oernbo EK, Steffensen AB, Razzaghi Khamesi P, Toft-Bertelsen TL, Barbuskaite D, Vilhardt F, Gerkau NJ, Tritsaris K, Simonsen AH, Lolansen SD, Andreassen SN, Hasselbalch SG, Zeuthen T, Rose CR, Kurtcuoglu V, MacAulay N. Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure. Fluids Barriers CNS 2022; 19:65. [PMID: 36038945 PMCID: PMC9422132 DOI: 10.1186/s12987-022-00358-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Disturbances in the brain fluid balance can lead to life-threatening elevation in the intracranial pressure (ICP), which represents a vast clinical challenge. Nevertheless, the details underlying the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved, thus preventing targeted and efficient pharmaceutical therapy of cerebral pathologies involving elevated ICP. Methods Experimental rats were employed for in vivo determinations of CSF secretion rates, ICP, blood pressure and ex vivo excised choroid plexus for morphological analysis and quantification of expression and activity of various transport proteins. CSF and blood extractions from rats, pigs, and humans were employed for osmolality determinations and a mathematical model employed to determine a contribution from potential local gradients at the surface of choroid plexus. Results We demonstrate that CSF secretion can occur independently of conventional osmosis and that local osmotic gradients do not suffice to support CSF secretion. Instead, the CSF secretion across the luminal membrane of choroid plexus relies approximately equally on the Na+/K+/2Cl− cotransporter NKCC1, the Na+/HCO3− cotransporter NBCe2, and the Na+/K+-ATPase, but not on the Na+/H+ exchanger NHE1. We demonstrate that pharmacological modulation of CSF secretion directly affects the ICP. Conclusions CSF secretion appears to not rely on conventional osmosis, but rather occur by a concerted effort of different choroidal transporters, possibly via a molecular mode of water transport inherent in the proteins themselves. Therapeutic modulation of the rate of CSF secretion may be employed as a strategy to modulate ICP. These insights identify new promising therapeutic targets against brain pathologies associated with elevated ICP. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00358-4.
Collapse
Affiliation(s)
- Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Pooya Razzaghi Khamesi
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Anja H Simonsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sara D Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Zeuthen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 2022; 19:26. [PMID: 35317823 PMCID: PMC8941821 DOI: 10.1186/s12987-022-00323-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) envelops the brain and fills the central ventricles. This fluid is continuously replenished by net fluid extraction from the vasculature by the secretory action of the choroid plexus epithelium residing in each of the four ventricles. We have known about these processes for more than a century, and yet the molecular mechanisms supporting this fluid secretion remain unresolved. The choroid plexus epithelium secretes its fluid in the absence of a trans-epithelial osmotic gradient, and, in addition, has an inherent ability to secrete CSF against an osmotic gradient. This paradoxical feature is shared with other 'leaky' epithelia. The assumptions underlying the classical standing gradient hypothesis await experimental support and appear to not suffice as an explanation of CSF secretion. Here, we suggest that the elusive local hyperosmotic compartment resides within the membrane transport proteins themselves. In this manner, the battery of plasma membrane transporters expressed in choroid plexus are proposed to sustain the choroidal CSF secretion independently of the prevailing bulk osmotic gradient.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Zeuthen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
4
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 2018; 9:2167. [PMID: 29867199 PMCID: PMC5986890 DOI: 10.1038/s41467-018-04677-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl− cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics. Osmotic forces do not suffice to explain the rate of cerebrospinal fluid (CSF) production. Here, the authors show that the Na+/K+/2Cl− cotransporter in the choroid plexus contributes substantially to CSF production via its inherent ability to cotransport water.
Collapse
Affiliation(s)
- Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark.
| |
Collapse
|
6
|
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13:19. [PMID: 27799072 PMCID: PMC5508927 DOI: 10.1186/s12987-016-0040-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
7
|
Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 2010; 168:941-56. [DOI: 10.1016/j.neuroscience.2009.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/13/2009] [Accepted: 09/08/2009] [Indexed: 12/20/2022]
|
8
|
Zeuthen T. General models for water transport across leaky epithelia. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:285-317. [PMID: 11952232 DOI: 10.1016/s0074-7696(02)15013-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The group of leaky epithelia, such as proximal tubule and small intestine, have several common properties in regard to salt and water transport. The fluid transport is isotonic, the transport rate increases in dilute solutions, and water can be transported uphill. Yet, it is difficult to find common features that could form the basis for a general transport model. The direction of transepithelial water transport does not correlate with the direction of the primary active Na+ transport, or with the ultrastucture as defined by the location of apical and basolateral membranes, of the junctional complex and the lateral intercellular spaces. The presence of specific water channels, aquaporins, increases the water permeability of the epithelial cell membranes, i.e., the kidney proximal tubule. Yet other leaky epithelia, for example, the retinal pigment epithelium, have no known aquaporins. There is, however, a general correlation between the direction of transepithelial transport and the direction of transport via cotransporters of the symport type. A simple epithelial model based on water permeabilities, a hyperosmolar compartment and restricted salt diffusion, is unable to explain epithelial transport phenomena, in particular the ability for uphill water transport. The inclusion of cotransporters as molecular water pumps in these models alleviates this problem.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Institute of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Frosini M, Gorelli B, Matteini M, Palmi M, Valoti M, Sgaragli GP. HPLC determination of inorganic cation levels in CSF and plasma of conscious rabbits. J Pharmacol Toxicol Methods 1993; 29:99-104. [PMID: 8318720 DOI: 10.1016/1056-8719(93)90057-l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An HPLC method is described using conductimetric detection for the quantitative determination of sodium, potassium, magnesium, and calcium in cerebrospinal fluid (CSF) and plasma of conscious rabbits. This method enabled the four cations to be estimated with rapidity, sensitivity, accuracy, and precision. The mean millimolar concentrations +/- SD found in CSF and (plasma) of 15 untreated animals were as follows: sodium, 146.96 +/- 17.84 (135.06 +/- 20.11); potassium, 3.32 +/- 0.56 (4.57 +/- 1.03); magnesium, 0.90 +/- 0.20 (0.72 +/- 0.13); and calcium, 1.47 +/- 0.19 (3.32 +/- 0.59).
Collapse
Affiliation(s)
- M Frosini
- Centro Interdipartimentale di Ricerca sul Metabolismo dei Farmaci Psicotropi, Istituto di Scienze Farmacologische, Siena, Italiy
| | | | | | | | | | | |
Collapse
|
10
|
Zeuthen T. From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1113:229-58. [PMID: 1510998 DOI: 10.1016/0304-4157(92)90040-h] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T Zeuthen
- Department of General Physiology and Biophysics, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Ventriculo-cisternal perfusion in rabbits has been employed to examine steady-state relations between ventricular sodium and water fluxes and ventricular osmolality. These fluxes have been determined in individual rabbits when the ventricular fluid was either similar to normal cerebrospinal fluid (c.s.f.) or when its osmolality was changed to one value within the range of about 150-300 mosmol/l. The ventricular osmolality was changed by perfusing the ventricles with sucrose solutions of different concentrations that were either ion free, contained a low concentration of sodium, or contained both sodium and furosemide to inhibit the active production of c.s.f. Results suggest that this experimental range of ventricular osmolality is without significant effect upon a constant active sodium-coupled water movement into the ventricles, whereas a passive osmotic water flux into the ventricles increases with ventricular osmolality.
Collapse
|
12
|
Abstract
The blood-perfused choroid plexuses from the lateral ventricles of the sheep were used to determine the nature of sugar exchanges between blood and cerebrospinal fluid (c.s.f.). There was a net entry of sugars from blood to c.s.f. at all concentrations of sugars which were used and this net entry was seen when the sugars were measured either directly by enzymic analysis or by the use of isotopically labelled sugars. From competition experiments the order of affinity of the transporting system from both blood to c.s.f. and c.s.f. to blood was the same, i.e. 2-deoxy-D-glucose much greater than D-glucose greater than 3-O-methyl-D-glucose much greater than D-galactose. The transport of sugars from c.s.f. to blood and blood to c.s.f. consists in both cases of a non-saturable and a saturable component. However, the affinity of the two systems is markedly different, the blood to c.s.f. being a system of low affinity and high capacity while that of the c.s.f. to blood has a high affinity and a low capacity. The concentration of glucose in the newly formed c.s.f. was estimated from the rate of c.s.f. secretion and the net flux of glucose across the choroid plexus. The concentration of glucose in this fluid was some 45-60% of that in plasma and so the low glucose concentration observed in bulk c.s.f. would appear to be a result of the entry process and not that of cerebral metabolism.
Collapse
|
13
|
Karol MD, Veng-Pedersen P, Brashear RE. Diffusion and flow transfer of theophylline across the blood-brain barrier: pharmacokinetic analysis. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1983; 11:273-87. [PMID: 6644553 DOI: 10.1007/bf01061868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two possible schemes describing the transfer of theophylline across the blood-brain barrier are investigated. The first, the "diffusion only model," assumes that the rate of transfer is proportional to the difference in free drug concentration in the serum and cerebrospinal fluid. The second, the "diffusion and flow model," has the added feature that drug may be transferred from the CSF to the blood by the continuous secretion of CSF into the blood. Comparison of the results of nonlinear regression for the two proposed schemes indicated that the "diffusion and flow" model best describes the transfer process. The analysis indicates that the parameters obtained for the "diffusion and flow" model are physiologically meaningful.
Collapse
|
14
|
Fenstermacher JD, Blasberg RG, Patlak CS. Methods for Quantifying the transport of drugs across brain barrier systems. Pharmacol Ther 1981; 14:217-48. [PMID: 7031708 DOI: 10.1016/0163-7258(81)90062-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Sahar A, Tsipstein E. Effects of mannitol and furosemide on the rate of formation of cerebrospinal fluid. Exp Neurol 1978; 60:584-91. [PMID: 680059 DOI: 10.1016/0014-4886(78)90012-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Reisin IL, Rabito CA, Rotunno CA, Cereijido M. The permeability of the membranes of experimental secondary cysts of Echinococcus granulosus to [14C]mebendazole. Int J Parasitol 1977; 7:189-94. [PMID: 881283 DOI: 10.1016/0020-7519(77)90045-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
|
18
|
|
19
|
Wald A, Hochwald GM, Malhan C. Movement of sodium from blood and brain into the cerebral ventricles of cats during altered CSF volume flow rates. Exp Neurol 1976; 50:304-11. [PMID: 1248552 DOI: 10.1016/0014-4886(76)90005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
DiMattio J, Hochwald GM, Malhan C, Wald A. Effects of changes in serum osmolarity on bulk flow of fluid into cerebral ventricles and on brain water content. Pflugers Arch 1975; 359:253-64. [PMID: 1103083 DOI: 10.1007/bf00587383] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effects of changes in serum osmolarity on the rate and osmolarity of bulk flow of fluid into the cerebral ventricles and on cortical white and grey matter water content were studied in cats. Bulk flow rates and osmolarities were measured during ventriculocisternal perfusion both before and after intravenous infusion of glucose solutions. Infusions of glucose in concentrations greater than 6% decreased fluid bulk flow rate and its osmolarity. Glucose in concentrations less than 6 percent increased fluid bulk flow rate and decreased its osmolarity. Bulk flow rate and serum osmolarity were found to be linearly related with a coefficient of osmotic flow of minus 0.835 mul/min per mOsm/l. At the extremes of induced serum osmolarities, (290 and 360 mOsm/l) bulk flow rate was either increased by 120 percent or completely inhibited. Effluent osmolarity also increased proportionately to serum osmolarity (0.338 mOsm/l per mOsm/l). When compared to controls, cortical grey and white matter water content increased by 1.9 percent and 2.9 percent, respectively, when the infused glucose concentration was 2.5 percent or less, and decreased by 1.8 percent and 2.9 percent when the concentration was 10 percent or more. The results of these experiments suggest that the increased bulk flow comes from the brain, rather then directly from the blood.
Collapse
|
21
|
Wald A, Hochwald GM, Malhan C. The relationship between sodium influx and volume flow into the cerebral ventricles of cats. J Neurochem 1975; 25:151-4. [PMID: 1141912 DOI: 10.1111/j.1471-4159.1975.tb12242.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Pollay M. Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg 1975; 42:665-73. [PMID: 1141963 DOI: 10.3171/jns.1975.42.6.0665] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
After a brief summary of current views on the origin of cerebrospinal fluid (CSF) and the processes underlying its elaboration, the author discusses studies of isolated choroid plexus in extracorporeal perfusion systems and flux chambers. The results suggest that transependymal water flow is secondary to the electrically silent pumping of sodium. The author presents evidence in support of the standing gradient hypothesis as the structural basis of CSF secretion.
Collapse
|
23
|
Hochwald GM, Wald A, DiMattio J, Malhan C. The effects of serum osmolarity on cerebrospinal fluid volume flow. Life Sci 1974; 15:1309-16. [PMID: 4549978 DOI: 10.1016/0024-3205(74)90312-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Bourke RS, Nelson KM. Studies on the site of mediated transport of chloride from blood into cerebrospinal fluid: effects of acetazolamide. J Neurochem 1972; 19:1225-32. [PMID: 4623563 DOI: 10.1111/j.1471-4159.1972.tb01448.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Bourke RS, Nelson KM. Further studies on the K + -dependent swelling of primate cerebral cortex in vivo: the enzymatic basis of the K + -dependent transport of chloride. J Neurochem 1972; 19:663-85. [PMID: 4624151 DOI: 10.1111/j.1471-4159.1972.tb01383.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Abstract
1. (24)Na, (36)Cl and (35)S thiourea were infused I.V. in rabbits according to schedules designed to yield approximately level activity in plasma for periods up to 5 hr. Cerebrospinal fluid was sampled before ending the experiment by decapitation and the radioactivities in cerebrospinal fluid and in homogenized brain were compared in each case to a time weighted mean value for plasma.2. The results are considered in terms of a simplified model which specifically acknowledges the continuity of the extracellular and cerebrospinal fluids and thus the coupling between processes which occur at the interfaces bordering those fluids.3. From the rate constants for exchange across the blood-brain interface that were necessary for simulation of the observed behaviours, permeability coefficients for that interface were estimated for the materials studied and, from experiments of others, for (42)K.
Collapse
|
27
|
Davson H, Segal MB. The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 1970; 209:131-53. [PMID: 5499038 PMCID: PMC1396036 DOI: 10.1113/jphysiol.1970.sp009159] [Citation(s) in RCA: 161] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
1. The purpose of the experiments was to discover whether the turnover of (22)Na in the c.s.f., which is largely determined by its rate of secretion, is affected in the same manner by inhibitors or accelerators of active transport as the turnover in the brain tissue since there is reason to believe that the composition of the extracellular fluid of brain is controlled by active processes.2. Although acetazolamide (Diamox) inhibits rate of secretion of c.s.f. and the turnover of (22)Na in this fluid it does not appreciably affect the turnover of (22)Na in the brain tissue of either rat or rabbit, the small inhibition observed being probably secondary to the effects on the c.s.f.3. Ouabain inhibits secretion of c.s.f. and turnover of (22)Na in this fluid, but it, also, has no effect on turnover of (22)Na in the brain tissue alone or in combination with Diamox.4. Amphotericin B and amiloride, the anti-aldosterone spirolactone S.C. 114266, all inhibited secretion of c.s.f. without affecting turnover of (22)Na in the brain tissue; actinomycin D, puromycin and cycloheximide, however, had no effect on secretion of c.s.f.5. Vasopressin inhibited secretion of c.s.f. and turnover of (22)Na in this fluid but increased the turnover in the brain by some 16%.6. In the ventriculo-cisternally perfused rabbit, replacement of 80% of the NaCl in the perfusion fluid by choline chloride caused a slowing of the passage of (22)Na from blood into the perfusion fluid.7. On the basis of these results it is concluded that the brain extracellular fluid is not renewed by appreciable bulk-flow, in contrast with the c.s.f.
Collapse
|
28
|
Welch K, Sadler K, Hendee R. Cooperative phenomena in the permeation of sugars through the lining epithelium of choroid plexus. Brain Res 1970; 19:465-82. [PMID: 5444326 DOI: 10.1016/0006-8993(70)90389-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Curl FD, Pollay M. Transport of water and electrolytes between brain and ventricular fluid in the rabbit. Exp Neurol 1968; 20:558-74. [PMID: 5659448 DOI: 10.1016/0014-4886(68)90109-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Van der Meulen JP. Cerebrospinal fluid. PROGRESS IN NEUROLOGY AND PSYCHIATRY 1967; 22:295-312. [PMID: 4881393 DOI: 10.1016/b978-1-4831-9662-6.50016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
|