1
|
Boskind M, Nelapudi N, Williamson G, Mendez B, Juarez R, Zhang L, Blood AB, Wilson CG, Puglisi JL, Wilson SM. Improved Workflow for Analysis of Vascular Myocyte Time-Series and Line-Scan Ca 2+ Imaging Datasets. Int J Mol Sci 2023; 24:9729. [PMID: 37298681 PMCID: PMC10253939 DOI: 10.3390/ijms24119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Intracellular Ca2+ signals are key for the regulation of cellular processes ranging from myocyte contraction, hormonal secretion, neural transmission, cellular metabolism, transcriptional regulation, and cell proliferation. Measurement of cellular Ca2+ is routinely performed using fluorescence microscopy with biological indicators. Analysis of deterministic signals is reasonably straightforward as relevant data can be discriminated based on the timing of cellular responses. However, analysis of stochastic, slower oscillatory events, as well as rapid subcellular Ca2+ responses, takes considerable time and effort which often includes visual analysis by trained investigators, especially when studying signals arising from cells embedded in complex tissues. The purpose of the current study was to determine if full-frame time-series and line-scan image analysis workflow of Fluo-4 generated Ca2+ fluorescence data from vascular myocytes could be automated without introducing errors. This evaluation was addressed by re-analyzing a published "gold standard" full-frame time-series dataset through visual analysis of Ca2+ signals from recordings made in pulmonary arterial myocytes of en face arterial preparations. We applied a combination of data driven and statistical approaches with comparisons to our published data to assess the fidelity of the various approaches. Regions of interest with Ca2+ oscillations were detected automatically post hoc using the LCPro plug-in for ImageJ. Oscillatory signals were separated based on event durations between 4 and 40 s. These data were filtered based on cutoffs obtained from multiple methods and compared to the published manually curated "gold standard" dataset. Subcellular focal and rapid Ca2+ "spark" events from line-scan recordings were examined using SparkLab 5.8, which is a custom automated detection and analysis program. After filtering, the number of true positives, false positives, and false negatives were calculated through comparisons to visually derived "gold standard" datasets. Positive predictive value, sensitivity, and false discovery rates were calculated. There were very few significant differences between the automated and manually curated results with respect to quality of the oscillatory and Ca2+ spark events, and there were no systematic biases in the data curation or filtering techniques. The lack of statistical difference in event quality between manual data curation and statistically derived critical cutoff techniques leads us to believe that automated analysis techniques can be reliably used to analyze spatial and temporal aspects to Ca2+ imaging data, which will improve experiment workflow.
Collapse
Affiliation(s)
- Madison Boskind
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Nikitha Nelapudi
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Grace Williamson
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Bobby Mendez
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Rucha Juarez
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Lubo Zhang
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Arlin B. Blood
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Christopher G. Wilson
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Jose Luis Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Sean M. Wilson
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| |
Collapse
|
2
|
Reid C, Romero M, Chang SB, Osman N, Puglisi JL, Wilson CG, Blood AB, Zhang L, Wilson SM. Long-Term Hypoxia Negatively Influences Ca2+ Signaling in Basilar Arterial Myocytes of Fetal and Adult Sheep. Front Physiol 2022; 12:760176. [PMID: 35115953 PMCID: PMC8804533 DOI: 10.3389/fphys.2021.760176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Cerebral arterial vasoreactivity is vital to the regulation of cerebral blood flow. Depolarization of arterial myocytes elicits whole-cell Ca2+ oscillations as well as subcellular Ca2+ sparks due to activation of ryanodine receptors on the sarcoplasmic reticulum. Previous evidence illustrates that contraction of cerebral arteries from sheep and underlying Ca2+ signaling pathways are modified by age and that long-term hypoxia (LTH) causes aberrations in Ca2+ signaling pathways and downstream effectors impacting vasoregulation. We hypothesize that age and LTH affect the influence of membrane depolarization on whole-cell intracellular Ca2+ oscillations and sub-cellular Ca2+ spark activity in cerebral arteries. To test this hypothesis, we examined Ca2+ oscillatory and spark activities using confocal fluorescence imaging techniques of Fluo-4 loaded basilar arterial myocytes of low- and high-altitude term fetal (∼145 days of gestation) and adult sheep, where high-altitude pregnant and non-pregnant sheep were placed at 3,801 m for >100 days. Ca2+ oscillations and sparks were recorded using an in situ preparation evaluated in the absence or presence of 30 mM K+ (30K) to depolarize myocytes. Myocytes from adult animals tended to have a lower basal rate of whole-cell Ca2+ oscillatory activity and 30K increased the activity within cells. LTH decreased the ability of myocytes to respond to depolarization independent of age. These observations illustrate that both altitude and age play a role in affecting whole-cell and localized Ca2+ signaling, which are important to arterial vasoreactivity and cerebral blood flow.
Collapse
Affiliation(s)
- Casey Reid
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Stephanie B. Chang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Noah Osman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose L. Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B. Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
- *Correspondence: Sean M. Wilson,
| |
Collapse
|
3
|
Leslie E, Lopez V, Anti NAO, Alvarez R, Kafeero I, Welsh DG, Romero M, Kaushal S, Johnson CM, Bosviel R, Blaženović I, Song R, Brito A, Frano MRL, Zhang L, Newman JW, Fiehn O, Wilson SM. Gestational long-term hypoxia induces metabolomic reprogramming and phenotypic transformations in fetal sheep pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2021; 320:L770-L784. [PMID: 33624555 DOI: 10.1152/ajplung.00469.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Vanessa Lopez
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nana A O Anti
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Rafael Alvarez
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Isaac Kafeero
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Donald G Welsh
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shawn Kaushal
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Remy Bosviel
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Ivana Blaženović
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California.,Center for Health Research, California Polytechnic State University, San Luis Obispo, California.,Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John W Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,Department of Nutrition, University of California, Davis, California.,USDA-ARS Western Human Nutrition Research Center, Davis, California
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,West Coast Metabolomics Center, University of California, Davis, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
4
|
Hu XQ, Song R, Romero M, Dasgupta C, Min J, Hatcher D, Xiao D, Blood A, Wilson SM, Zhang L. Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca 2+ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension 2020; 76:930-942. [PMID: 32683903 PMCID: PMC7429261 DOI: 10.1161/hypertensionaha.120.15235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Joseph Min
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daisy Hatcher
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Arlin Blood
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
5
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
6
|
Hu XQ, Song R, Romero M, Dasgupta C, Huang X, Holguin MA, Williams V, Xiao D, Wilson SM, Zhang L. Pregnancy Increases Ca 2+ Sparks/Spontaneous Transient Outward Currents and Reduces Uterine Arterial Myogenic Tone. Hypertension 2019; 73:691-702. [PMID: 30661479 DOI: 10.1161/hypertensionaha.118.12484] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spontaneous transient outward currents (STOCs) at physiological membrane potentials of vascular smooth muscle cells fundamentally regulate vascular myogenic tone and blood flow in an organ. We hypothesize that heightened STOCs play a key role in uterine vascular adaptation to pregnancy. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Ca2+ sparks were measured by confocal microscopy, and STOCs were determined by electrophysiological recording in smooth muscle cells. Percentage of Ca2+ spark firing myocytes increased dramatically at the resting condition in uterine arterial smooth muscle of pregnant animals, as compared with nonpregnant animals. Pregnancy upregulated the expression of RyRs (ryanodine receptors) and significantly boosted Ca2+ spark frequency. Ex vivo treatment of uterine arteries of nonpregnant sheep with estrogen and progesterone imitated pregnancy-induced RyR upregulation. STOCs occurred at much more negative membrane potentials in uterine arterial myocytes of pregnant animals. STOCs in uterine arterial myocytes were diminished by inhibiting large-conductance Ca2+-activated K+ (BKCa) channels and RyRs, thus functionally linking Ca2+ sparks and BKCa channel activity to STOCs. Pregnancy and steroid hormone treatment significantly increased STOCs frequency and amplitude in uterine arteries. Of importance, inhibition of STOCs with RyR inhibitor ryanodine eliminated pregnancy- and steroid hormone-induced attenuation of uterine arterial myogenic tone. Thus, the present study demonstrates a novel role of Ca2+ sparks and STOCs in the regulation of uterine vascular tone and provides new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Xiaohui Huang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Mark A Holguin
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - VaShon Williams
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
7
|
Moretta D, Papamatheakis DG, Morris DP, Giri PC, Blood Q, Murray S, Ramzy M, Romero M, Vemulakonda S, Lauw S, Longo LD, Zhang L, Wilson SM. Long-Term High-Altitude Hypoxia and Alpha Adrenoceptor-Dependent Pulmonary Arterial Contractions in Fetal and Adult Sheep. Front Physiol 2019; 10:1032. [PMID: 31555139 PMCID: PMC6723549 DOI: 10.3389/fphys.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Autonomic innervation of the pulmonary vasculature triggers vasomotor contractility predominately through activation of alpha-adrenergic receptors (α-ARs) in the fetal circulation. Long-term hypoxia (LTH) modulates pulmonary vasoconstriction potentially through upregulation of α1-AR in the vasculature. Our study aimed to elucidate the role of α-AR in phenylephrine (PE)-induced pulmonary vascular contractility, comparing the effects of LTH in the fetal and adult periods on α-AR subtypes and PE-mediated Ca2+ responses and contractions. To address this, we performed wire myography, Ca2+ imaging, and mRNA analysis of pulmonary arteries from ewes and fetuses exposed to LTH or normoxia. Postnatal maturation depressed PE-mediated contractile responses. α2-AR activation contracted fetal vessels; however, this was suppressed by LTH. α1A- and α1B-AR subtypes contributed to arterial contractions in all groups. The α1D-AR was also important to contractility in fetal normoxic vessels and LTH mitigated its function. Postnatal maturity increased the number of myocytes with PE-triggered Ca2+ responses while LTH decreased the percentage of fetal myocytes reacting to PE. The difference between myocyte Ca2+ responsiveness and vessel contractility suggests that fetal arteries are sensitized to changes in Ca2+. The results illustrate that α-adrenergic signaling and vascular function change during development and that LTH modifies adrenergic signaling. These changes may represent components in the etiology of pulmonary vascular disease and foretell the therapeutic potential of adrenergic receptor antagonists in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Dafne Moretta
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | | | - Daniel P Morris
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Paresh C Giri
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Quintin Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Samuel Murray
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Marian Ramzy
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Srilakshmi Vemulakonda
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sidney Lauw
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Lawrence D Longo
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Advanced Imaging and Microscopy Core, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
8
|
Blum-Johnston C, Thorpe RB, Wee C, Opsahl R, Romero M, Murray S, Brunelle A, Blood Q, Wilson R, Blood AB, Zhang L, Longo LD, Pearce WJ, Wilson SM. Long-term hypoxia uncouples Ca 2+ and eNOS in bradykinin-mediated pulmonary arterial relaxation. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513562 DOI: 10.1152/ajpregu.00311.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers a rise in intracellular Ca2+ that activates nitric oxide (NO)-dependent vasorelaxation. Chronic hypoxia is commonly associated with increased pulmonary vascular tone, which can cause pulmonary hypertension in responsive individuals. In the present study, we tested the hypothesis that long-term high-altitude hypoxia (LTH) diminishes bradykinin-induced Ca2+ signals and inhibits endothelial nitric oxide synthase (eNOS), prostacyclin (PGI2), and large-conductance K+ (BKCa) channels in sheep, which are moderately responsive to LTH, resulting in decreased pulmonary arterial vasorelaxation. Pulmonary arteries were isolated from ewes kept near sea level (720 m) or at high altitude (3,801 m) for >100 days. Vessel force was measured with wire myography and endothelial intracellular Ca2+ with confocal microscopy. eNOS was inhibited with 100 μM NG-nitro-l-arginine methyl ester (l-NAME), PGI2 production was inhibited with 10 µM indomethacin that inhibits cyclooxygenase, and BKCa channels were blocked with 1 mM tetraethylammonium. Bradykinin-induced endothelial Ca2+ signals increased following LTH, but bradykinin relaxation decreased. Furthermore, some vessels contracted in response to bradykinin after LTH. l-NAME sensitivity decreased, suggesting that eNOS dysfunction played a role in uncoupling Ca2+ signals and bradykinin relaxation. The Ca2+ ionophore A-23187 (10 µM) elicited an enhanced Ca2+ response following LTH while relaxation was unchanged although l-NAME sensitivity increased. Additionally, BKCa function decreased during bradykinin relaxation following LTH. Western analysis showed that BKCa α-subunit expression was increased by LTH while that for the β1 subunit was unchanged. Overall, these results suggest that those even moderately responsive to LTH can have impaired endothelial function.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Richard B Thorpe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Chelsea Wee
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Raechel Opsahl
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Samuel Murray
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Quintin Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Rachael Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
9
|
Shen CP, Romero M, Brunelle A, Wolfe C, Dobyns A, Francis M, Taylor MS, Puglisi JL, Longo LD, Zhang L, Wilson CG, Wilson SM. Long-term high-altitude hypoxia influences pulmonary arterial L-type calcium channel-mediated Ca 2+ signals and contraction in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 2017; 314:R433-R446. [PMID: 29167165 DOI: 10.1152/ajpregu.00154.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term hypoxia (LTH) has a profound effect on pulmonary arterial vasoconstriction in the fetus and adult. Dysregulation in Ca2+ signaling is important during the development of LTH-induced pulmonary hypertension. In the present study, we tested the hypothesis that L-type Ca2+ channels (CaL), which are voltage dependent and found in smooth, skeletal, and cardiac muscle, are important in the adaptation of pulmonary arterial contractions in postnatal maturation and in response to LTH. Pulmonary arteries were isolated from fetal or adult sheep maintained at low or high altitude (3,801 m) for >100 days. The effects were measured using an L-type Ca2+ channel opener FPL 64176 (FPL) in the presence or absence of an inhibitor, Nifedipine (NIF) on arterial contractions, intracellular Ca2+ oscillations, and ryanodine receptor-driven Ca2+ sparks. FPL induced pulmonary arterial contractions in all groups were sensitive to NIF. However, when compared with 125 mM K+, FPL contractions were greater in fetuses than in adults. FPL reduced Ca2+ oscillations in myocytes of adult but not fetal arteries, independently of altitude. The FPL effects on Ca2+ oscillations were reversed by NIF in myocytes of hypoxic but not normoxic adults. FPL failed to enhance Ca2+ spark frequency and had little impact on spatiotemporal firing characteristics. These data suggest that CaL-dependent contractions are largely uncoupled from intracellular Ca2+ oscillations and the development of Ca2+ sparks. This raises questions regarding the coupling of pulmonary arterial contractility to membrane depolarization, attendant CaL facilitation, and the related associations with the activation of Ca2+ oscillations and Ca2+ sparks.
Collapse
Affiliation(s)
- Christine P Shen
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Craig Wolfe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Abigail Dobyns
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Michael Francis
- Department of Physiology, University of South Alabama College of Medicine , Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology, University of South Alabama College of Medicine , Mobile, Alabama
| | - Jose L Puglisi
- Department of Biostatistics, California Northstate University School of Medicine , Elk Grove, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Christopher G Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
10
|
Giang M, Papamatheakis DG, Nguyen D, Paez R, Blum Johnston C, Kim J, Brunnell A, Blood Q, Goyal R, Longo LD, Wilson SM. Muscarinic Receptor Activation Affects Pulmonary Artery Contractility in Sheep: The Impact of Maturation and Chronic Hypoxia on Endothelium-Dependent and Endothelium-Independent Function. High Alt Med Biol 2017; 17:122-32. [PMID: 27281473 DOI: 10.1089/ham.2015.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Giang, Michael, Demosthenes G. Papamatheakis, Dan Nguyen, Ricardo Paez, Carla Blum Johnston, Joon Kim, Alexander Brunnell, Quintin Blood, Ravi Goyal, Lawrence D. Longo, and Sean M. Wilson. Muscarinic receptor activation affects pulmonary artery contractility in sheep: the impact of maturation and chronic hypoxia on endothelium-dependent and endothelium-independent function. High Alt Med Biol. 17:122-132, 2015.-Muscarinic receptor activation in the pulmonary vasculature can cause endothelium-dependent vasodilation and smooth muscle-dependent vasoconstriction. Chronic hypoxia (CH) can modify both of these responses. This study aimed to assess the combined influence of CH and maturation on endothelium-dependent and endothelium-independent muscarinic-induced vasoreactivity. This was accomplished by performing wire myography on endothelium-intact or endothelium-disrupted pulmonary arterial rings isolated from normoxic or CH fetal and adult sheep. In endothelium-intact arteries, vasodilation was evaluated using cumulative bradykinin doses in phenylephrine and carbachol precontracted pulmonary arterial segments; and vasoconstriction was examined using cumulative doses of carbachol following bradykinin predilation. Effects of nonselective (atropine) and selective M1 (pirenzepine), M2 (AFDX116), and M3 (4-DAMP and Dau5884) muscarinic receptor antagonists were assessed in disrupted arteries. In normoxic arteries, bradykinin relaxation was twofold greater in the adult compared to fetus, while carbachol contraction was fourfold greater. In adult arteries, CH increased bradykinin relaxation and carbachol contraction. In vessels with intact endothelium, maturation and CH augmented maximal response and efficacy for carbachol constriction and bradykinin relaxation. Approximately 50%-80% of adult normoxic and CH endothelium-disrupted arteries contracted to acetylcholine, while ∼50% of fetal normoxic and ∼10% of CH arteries responded. Atropine reduced carbachol-induced contraction in all vessels. Adult normoxic vessels were most responsive to M3 antagonism, fetal to M2 antagonism, while M1 inhibition had no effect. Overall, muscarinic-induced pulmonary arterial contraction is partially endothelium dependent and appears to develop after birth. Fetuses are more reliant on M3 receptors while M2 receptors predominate in adults, whereas CH augments muscarinic-dependent pulmonary vasoconstriction in both.
Collapse
Affiliation(s)
- Michael Giang
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | | | - Dan Nguyen
- 3 Department of Pharmacology, University of Mississippi School of Pharmacy , University, Mississippi
| | - Ricardo Paez
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,4 Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, California
| | - Carla Blum Johnston
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,4 Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, California
| | - Joon Kim
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,5 Division of Pulmonary and Critical Care, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunnell
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Quintin Blood
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Ravi Goyal
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lawrence D Longo
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
11
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
12
|
Blum-Johnston C, Thorpe RB, Wee C, Romero M, Brunelle A, Blood Q, Wilson R, Blood AB, Francis M, Taylor MS, Longo LD, Pearce WJ, Wilson SM. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 2015; 310:L271-86. [PMID: 26637638 DOI: 10.1152/ajplung.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Richard B Thorpe
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Chelsea Wee
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Monica Romero
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| | - Alexander Brunelle
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Quintin Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Rachael Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California;
| | - Arlin B Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
13
|
Papamatheakis DG, Chundu M, Blood AB, Wilson SM. Prenatal programming of pulmonary hypertension induced by chronic hypoxia or ductal ligation in sheep. Pulm Circ 2014; 3:757-80. [PMID: 25006393 DOI: 10.1086/674767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/28/2013] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension of the newborn is caused by a spectrum of functional and structural abnormalities of the cardiopulmonary circuit. The existence of multiple etiologies and an incomplete understanding of the mechanisms of disease progression have hindered the development of effective therapies. Animal models offer a means of gaining a better understanding of the fundamental basis of the disease. To that effect, a number of experimental animal models are being used to generate pulmonary hypertension in the fetus and newborn. In this review, we compare the mechanisms associated with pulmonary hypertension caused by two such models: in utero ligation of the ductus arteriosus and chronic perinatal hypoxia in sheep fetuses and newborns. In this manner, we make direct comparisons between ductal ligation and chronic hypoxia with respect to the associated mechanisms of disease, since multiple studies have been performed with both models in a single species. We present evidence that the mechanisms associated with pulmonary hypertension are dependent on the type of stress to which the fetus is subjected. Such an analysis allows for a more thorough evaluation of the disease etiology, which can help focus clinical treatments. The final part of the review provides a clinical appraisal of current treatment strategies and lays the foundation for developing individualized therapies that depend on the causative factors.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Division of Pulmonary and Critical Care, University of California San Diego Health System, San Diego, California, USA
| | - Madalitso Chundu
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Department of Pediatrics Division of Neonatology, and Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
14
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|