1
|
Ozan VB, Wang H, Akshay A, Anand D, Hibaoui Y, Feki A, Gote-Schniering J, Gheinani AH, Heller M, Uldry AC, Lagache SB, Gazdhar A, Geiser T. Influence of Microenvironmental Orchestration on Multicellular Lung Alveolar Organoid Development from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2024:10.1007/s12015-024-10789-1. [PMID: 39417930 DOI: 10.1007/s12015-024-10789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as promising in vitro tools, providing a robust system for disease modelling and facilitating drug screening. Human iPSCs have been successfully differentiated into lung cells and three-dimensional lung spheroids or organoids. The lung is a multicellular complex organ that develops under the symphonic influence of the microenvironment. Here, we hypothesize that the generation of lung organoids in a controlled microenvironment (cmO) (oxygen and pressure) yields multicellular organoids with architectural complexity resembling the lung alveoli. iPSCs were differentiated into mature lung organoids following a stepwise protocol in an oxygen and pressure-controlled microenvironment. The organoids developed in the controlled microenvironment displayed complex alveolar architecture and stained for SFTPC, PDPN, and KRT5, indicating the presence of alveolar epithelial type II and type I cells, as well as basal cells. Moreover, gene and protein expression levels were also increased in the cmO. Furthermore, pathway analysis of proteomics revealed upregulation of lung development-specific pathways in the cmO compared to those growing in normal culture conditions. In summary, by using a controlled microenvironment, we established a complex multicellular lung organoid derived from iPSCs as a novel cellular model to study lung alveolar biology in both lung health and disease.
Collapse
Affiliation(s)
- Vedat Burak Ozan
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Huijuan Wang
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Akshay Akshay
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Functional Urology Research Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Deepika Anand
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Youssef Hibaoui
- Department of Gynecology and Obstetrics, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Anis Feki
- Department of Gynecology and Obstetrics, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Janine Gote-Schniering
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Zhang W, Wang Y, Wang L, Cao M, Cao H, Song M, Qian Y, Wang T, Liang Y, Jiang G. COPD-Like Phenotypes in TBC-Treated Mice Can be Effectively Alleviated via Estrogen Supplement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17227-17234. [PMID: 39166923 DOI: 10.1021/acs.est.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Tris(2,3-dibromopropyl) isocyanurate (TBC), recognized as an endocrine disruptor, can cause inflammatory injury to the lung tissue of mice. To investigate the specific respiratory effects of TBC, male C57BL/6J mice were administered a daily dose of 20 mg/kg of TBC over 14 days. Postexposure, these mice developed chronic obstructive pulmonary disease (COPD)-like symptoms characterized by inflammatory lung damage and functional impairment. In light of the antiestrogenic properties of TBC, we administrated estradiol (E2) to investigate its potential protective role against TBC-induced damage and found that the coexposure of E2 notably mitigated the COPD-like phenotypes. Immunohistochemical analysis revealed that TBC exposure reduced estrogen receptor alpha (ERα) expression and increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, while E2 treatment rebalanced the expression levels of ERα and NF-κB to their normative states. Our findings indicate that TBC, as an antiestrogenic agent, may contribute to the pathogenesis of COPD through an ERα-mediated inflammatory pathway, but that E2 treatment could reverse the impairment, providing a potentially promising remedial treatment. Given the lung status as a primary target of air pollution, the presence of antiestrogenic compounds like TBC in atmospheric particulates presents a significant concern, with the potential to exacerbate respiratory conditions such as COPD and pneumonia.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yun Qian
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, Florida 33174, United States
| | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
- Department of Thematic Studies - Environmental Change, Linköping University, SE-58183 Linköping, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
3
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Hall SB, Zuo YY. The biophysical function of pulmonary surfactant. Biophys J 2024; 123:1519-1530. [PMID: 38664968 PMCID: PMC11213971 DOI: 10.1016/j.bpj.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The type II pneumocytes of the lungs secrete a mixture of lipids and proteins that together acts as a surfactant. The material forms a thin film on the surface of the liquid layer that lines the alveolar air sacks. When compressed by the decreasing alveolar surface area during exhalation, the films reduce surface tension to exceptionally low levels. Pulmonary surfactant is essential for preserving the integrity of the barrier between alveolar air and capillary blood during normal breathing. This review focuses on the major biophysical processes by which endogenous pulmonary surfactant achieves its function and the mechanisms involved in those processes. Vesicles of pulmonary surfactant adsorb rapidly from the alveolar liquid to form the interfacial film. Interfacial insertion, which requires the hydrophobic surfactant protein SP-B, proceeds by a process analogous to the fusion of two vesicles. When compressed, the adsorbed film desorbs slowly. Constituents remain at the surface at high interfacial concentrations that reduce surface tensions well below equilibrium levels. We review the models proposed to explain how pulmonary surfactant achieves both the rapid adsorption and slow desorption characteristic of a functional film.
Collapse
Affiliation(s)
- Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon.
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
5
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Thomas SP, Domm JM, van Vloten JP, Xu L, Vadivel A, Yates JGE, Pei Y, Ingrao J, van Lieshout LP, Jackson SR, Minott JA, Achuthan A, Mehrani Y, McAusland TM, Zhang W, Karimi K, Vaughan AE, de Jong J, Kang MH, Thebaud B, Wootton SK. A promoterless AAV6.2FF-based lung gene editing platform for the correction of surfactant protein B deficiency. Mol Ther 2023; 31:3457-3477. [PMID: 37805711 PMCID: PMC10727957 DOI: 10.1016/j.ymthe.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.
Collapse
Affiliation(s)
- Sylvia P Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jakob M Domm
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Liqun Xu
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Arul Vadivel
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joelle Ingrao
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Sergio R Jackson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adithya Achuthan
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jondavid de Jong
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Martin H Kang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
7
|
Yan Z. In vivo genome editing shows promise for treating pulmonary diseases. Mol Ther 2023; 31:3361. [PMID: 37967562 PMCID: PMC10727971 DOI: 10.1016/j.ymthe.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Ziying Yan
- Department of Anatomy & Cell Biology, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
8
|
Peers de Nieuwburgh M, Wambach JA, Griese M, Danhaive O. Towards personalized therapies for genetic disorders of surfactant dysfunction. Semin Fetal Neonatal Med 2023; 28:101500. [PMID: 38036307 PMCID: PMC10753445 DOI: 10.1016/j.siny.2023.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Genetic disorders of surfactant dysfunction are a rare cause of chronic, progressive or refractory respiratory failure in term and preterm infants. This review explores genetic mechanisms underpinning surfactant dysfunction, highlighting specific surfactant-associated genes including SFTPB, SFTPC, ABCA3, and NKX2.1. Pathogenic variants in these genes contribute to a range of clinical presentations and courses, from neonatal hypoxemic respiratory failure to childhood interstitial lung disease and even adult-onset pulmonary fibrosis. This review emphasizes the importance of early recognition, thorough phenotype assessment, and assessment of variant functionality as essential prerequisites for treatments including lung transplantation. We explore emerging treatment options, including personalized pharmacological approaches and gene therapy strategies. In conclusion, this comprehensive review offers valuable insights into the pathogenic mechanisms of genetic disorders of surfactant dysfunction, genetic fundamentals, available and emerging therapeutic options, and underscores the need for further research to develop personalized therapies for affected infants and children.
Collapse
Affiliation(s)
- Maureen Peers de Nieuwburgh
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Jennifer A Wambach
- Washington University School of Medicine/St. Louis Children's Hospital, One Children's Place, St. Louis, Missouri, USA.
| | - Matthias Griese
- Pediatric Pulmonology, Dr von Hauner Children's Hospital, University-Hospital, German Center for Lung Research (DZL), Munich, Germany.
| | - Olivier Danhaive
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium; Division of Neonatology, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Luo H, Li Q, Wang RT, Zhang L, Zhang W, Deng MS, Luo YY, Ji X, Wen Y, Zhou XR, Xu B, Wang D, Hu B, Jin H, Xu CX. Downregulation of pro-surfactant protein B contributes to the recurrence of early-stage non-small cell lung cancer by activating PGK1-mediated Akt signaling. Exp Hematol Oncol 2023; 12:94. [PMID: 37946295 PMCID: PMC10633994 DOI: 10.1186/s40164-023-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Recurrence is one of the main causes of treatment failure in early-stage non-small cell lung cancer (NSCLC). However, there are no predictors of the recurrence of early-stage NSCLC, and the molecular mechanism of its recurrence is not clear. In this study, we used clinical sample analysis to demonstrate that low levels of expression of precursor surfactant protein B (pro-SFTPB) in primary NSCLC tissue compared to their adjacent tissues are closely correlated with recurrence and poor prognosis in early-stage NSCLC patients. In vitro and in vivo experiments showed that downregulation of pro-SFTPB expression activates the Akt pathway by upregulating PGK1, which promotes metastasis and tumorigenicity in NSCLC cells. We then demonstrated that pro-SFTPB suppresses the formation of the ADRM1/hRpn2/UCH37 complex by binding to ADRM1, which inhibits PGK1 deubiquitination, thus accelerating ubiquitin-mediated PGK1 degradation. In summary, our findings indicate that low expression of pro-SFTPB in primary NSCLC compared to their adjacent tissue has potential as a predictor of recurrence and poor prognosis in early-stage NSCLC. Mechanistically, downregulation of pro-SFTPB attenuates inhibition of ADRM1-deubiquitinated PGK1, resulting in elevated levels of PGK1 protein; this activates the Akt pathway, ultimately leading to the progression of early-stage NSCLC.
Collapse
Affiliation(s)
- Hao Luo
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing Li
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ren-Tao Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Liang Zhang
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Zhang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Meng-Sheng Deng
- State Key Laboratory of Trauma Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Yuan Luo
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xintong Ji
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Yongheng Wen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xuan-Rui Zhou
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bin Hu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Yang Y, Xu S, Jia G, Yuan F, Ping J, Guo X, Tao R, Shu XO, Zheng W, Long J, Cai Q. Integrating genomics and proteomics data to identify candidate plasma biomarkers for lung cancer risk among European descendants. Br J Cancer 2023; 129:1510-1515. [PMID: 37679517 PMCID: PMC10628278 DOI: 10.1038/s41416-023-02419-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Plasma proteins are potential biomarkers for complex diseases. We aimed to identify plasma protein biomarkers for lung cancer. METHODS We investigated genetically predicted plasma levels of 1130 proteins in association with lung cancer risk among 29,266 cases and 56,450 controls of European descent. For proteins significantly associated with lung cancer risk, we evaluated associations of genetically predicted expression of their coding genes with the risk of lung cancer. RESULTS Nine proteins were identified with genetically predicted plasma levels significantly associated with overall lung cancer risk at a false discovery rate (FDR) of <0.05. Proteins C2, MICA, AIF1, and CTSH were associated with increased lung cancer risk, while proteins SFTPB, HLA-DQA2, MICB, NRP1, and GMFG were associated with decreased lung cancer risk. Stratified analyses by histological types revealed the cross-subtype consistency of these nine associations and identified an additional protein, ICAM5, significantly associated with lung adenocarcinoma risk (FDR < 0.05). Coding genes of NRP1 and ICAM5 proteins are located at two loci that have never been reported by previous GWAS. Genetically predicted blood levels of genes C2, AIF1, and CTSH were associated with lung cancer risk, in directions consistent with those shown in protein-level analyses. CONCLUSION Identification of novel plasma protein biomarkers provided new insights into the biology of lung cancer.
Collapse
Affiliation(s)
- Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Feo-Lucas L, Godio C, Minguito de la Escalera M, Alvarez-Ladrón N, Villarrubia LH, Vega-Pérez A, González-Cintado L, Domínguez-Andrés J, García-Fojeda B, Montero-Fernández C, Casals C, Autilio C, Pérez-Gil J, Crainiciuc G, Hidalgo A, López-Bravo M, Ardavín C. Airway allergy causes alveolar macrophage death, profound alveolar disorganization and surfactant dysfunction. Front Immunol 2023; 14:1125984. [PMID: 37234176 PMCID: PMC10206250 DOI: 10.3389/fimmu.2023.1125984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Respiratory disorders caused by allergy have been associated to bronchiolar inflammation leading to life-threatening airway narrowing. However, whether airway allergy causes alveolar dysfunction contributing to the pathology of allergic asthma remains unaddressed. To explore whether airway allergy causes alveolar dysfunction that might contribute to the pathology of allergic asthma, alveolar structural and functional alterations were analyzed during house dust mite (HDM)-induced airway allergy in mice, by flow cytometry, light and electron microscopy, monocyte transfer experiments, assessment of intra-alveolarly-located cells, analysis of alveolar macrophage regeneration in Cx3cr1 cre:R26-yfp chimeras, analysis of surfactant-associated proteins, and study of lung surfactant biophysical properties by captive bubble surfactometry. Our results demonstrate that HDM-induced airway allergic reactions caused severe alveolar dysfunction, leading to alveolar macrophage death, pneumocyte hypertrophy and surfactant dysfunction. SP-B/C proteins were reduced in allergic lung surfactant, that displayed a reduced efficiency to form surface-active films, increasing the risk of atelectasis. Original alveolar macrophages were replaced by monocyte-derived alveolar macrophages, that persisted at least two months after the resolution of allergy. Monocyte to alveolar macrophage transition occurred through an intermediate stage of pre-alveolar macrophage and was paralleled with translocation into the alveolar space, Siglec-F upregulation, and downregulation of CX3CR1. These data support that the severe respiratory disorders caused by asthmatic reactions not only result from bronchiolar inflammation, but additionally from alveolar dysfunction compromising an efficient gas exchange.
Collapse
Affiliation(s)
- Lidia Feo-Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Godio
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Minguito de la Escalera
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Natalia Alvarez-Ladrón
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Laura H. Villarrubia
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adrián Vega-Pérez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Leticia González-Cintado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jorge Domínguez-Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Belén García-Fojeda
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Carlos Montero-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Cristina Casals
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Chiara Autilio
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | - Jesús Pérez-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | | | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovaculares Carlos III, Madrid, Spain
| | - María López-Bravo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Leiby KL, Yuan Y, Ng R, Raredon MSB, Adams TS, Baevova P, Greaney AM, Hirschi KK, Campbell SG, Kaminski N, Herzog EL, Niklason LE. Rational engineering of lung alveolar epithelium. NPJ Regen Med 2023; 8:22. [PMID: 37117221 PMCID: PMC10147714 DOI: 10.1038/s41536-023-00295-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
Engineered whole lungs may one day expand therapeutic options for patients with end-stage lung disease. However, the feasibility of ex vivo lung regeneration remains limited by the inability to recapitulate mature, functional alveolar epithelium. Here, we modulate multimodal components of the alveolar epithelial type 2 cell (AEC2) niche in decellularized lung scaffolds in order to guide AEC2 behavior for epithelial regeneration. First, endothelial cells coordinate with fibroblasts, in the presence of soluble growth and maturation factors, to promote alveolar scaffold population with surfactant-secreting AEC2s. Subsequent withdrawal of Wnt and FGF agonism synergizes with tidal-magnitude mechanical strain to induce the differentiation of AEC2s to squamous type 1 AECs (AEC1s) in cultured alveoli, in situ. These results outline a rational strategy to engineer an epithelium of AEC2s and AEC1s contained within epithelial-mesenchymal-endothelial alveolar-like units, and highlight the critical interplay amongst cellular, biochemical, and mechanical niche cues within the reconstituting alveolus.
Collapse
Affiliation(s)
- Katherine L Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Karen K Hirschi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Abstract
There is an urgent need for physiologically relevant and customizable biochip models of human lung tissue to provide a niche for lung disease modeling and drug efficacy. Although various lung-on-a-chips have been developed, the conventional fabrication method has been limited in reconstituting a very thin and multilayered architecture and spatial arrangements of multiple cell types in a microfluidic device. To overcome these limitations, we developed a physiologically relevant human alveolar lung-on-a-chip model, effectively integrated with an inkjet-printed, micron-thick, and three-layered tissue. After bioprinting lung tissues inside four culture inserts layer-by-layer, the inserts are implanted into a biochip that supplies a flow of culture medium. This modular implantation procedure enables the formation of a lung-on-a-chip to facilitate the culture of 3D-structured inkjet-bioprinted lung models under perfusion at the air-liquid interface. The bioprinted models cultured on the chip maintained their structure with three layers of tens of micrometers and achieved a tight junction in the epithelial layer, the critical properties of an alveolar barrier. The upregulation of genes involved in the essential functions of alveoli was also confirmed in our model. Our culture insert-mountable organ-on-a-chip is a versatile platform that can be applied to various organ models by implanting and replacing culture inserts. It is amenable to mass production and the development of customized models through the convergence with bioprinting technology.
Collapse
Affiliation(s)
- Wookyeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yunji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dayoon Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Taejeong Kwak
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
14
|
Liu Z, Lami B, Ikonomou L, Gu M. Unlocking the potential of induced pluripotent stem cells for neonatal disease modeling and drug development. Semin Perinatol 2023; 47:151729. [PMID: 37012138 PMCID: PMC10133195 DOI: 10.1016/j.semperi.2023.151729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Neonatal lung and heart diseases, albeit rare, can result in poor quality of life, often require long-term management and/or organ transplantation. For example, Congenital Heart Disease (CHD) is one of the most common type of congenital disabilities, affecting nearly 1% of the newborns, and has complex and multifactorial causes, including genetic predisposition and environmental influences. To develop new strategies for heart and lung regeneration in CHD and neonatal lung disease, human induced pluripotent stem cells (hiPSCs) provide a unique and personalized platform for future cell replacement therapy and high-throughput drug screening. Additionally, given the differentiation potential of iPSCs, cardiac cell types such as cardiomyocytes, endothelial cells, and fibroblasts and lung cell types such Type II alveolar epithelial cells can be derived in a dish to study the fundamental pathology during disease progression. In this review, we discuss the applications of hiPSCs in understanding the molecular mechanisms and cellular phenotypes of CHD (e.g., structural heart defect, congenital valve disease, and congenital channelopathies) and congenital lung diseases, such as surfactant deficiencies and Brain-Lung-Thyroid syndrome. We also provide future directions for generating mature cell types from iPSCs, and more complex hiPSC-based systems using three-dimensional (3D) organoids and tissue-engineering. With these potential advancements, the promise that hiPSCs will deliver new CHD and neonatal lung disease treatments may soon be fulfilled.
Collapse
Affiliation(s)
- Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Bonny Lami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States; Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
15
|
Li L, Xu X, Xiao M, Huang C, Cao J, Zhan S, Guo J, Zhong T, Wang L, Yang L, Zhang H. The Profiles and Functions of RNA Editing Sites Associated with High-Altitude Adaptation in Goats. Int J Mol Sci 2023; 24:3115. [PMID: 36834526 PMCID: PMC9964554 DOI: 10.3390/ijms24043115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
High-altitude environments dramatically influenced the genetic evolution of vertebrates. However, little is known about the role of RNA editing on high-altitude adaptation in non-model species. Here, we profiled the RNA editing sites (RESs) of heart, lung, kidney, and longissimus dorsi muscle from Tibetan cashmere goats (TBG, 4500 m) and Inner Mongolia cashmere goats (IMG, 1200 m) to reveal RNA editing-related functions of high-altitude adaptation in goats. We identified 84,132 high-quality RESs that were unevenly distributed across the autosomes in TBG and IMG, and more than half of the 10,842 non-redundant editing sites were clustered. The majority (62.61%) were adenosine-to-inosine (A-to-I) sites, followed by cytidine-to-uridine (C-to-U) sites (19.26%), and 32.5% of them had a significant correlation with the expression of catalytic genes. Moreover, A-to-I and C-to-U RNA editing sites had different flanking sequences, amino acid mutations, and alternative splicing activity. TBG had higher editing levels of A-to-I and C-to-U than IMG in the kidney, whereas a lower level was found in the longissimus dorsi muscle. Furthermore, we identified 29 IMG and 41 TBG population-specific editing sites (pSESs) and 53 population-differential editing sites (pDESs) that were functionally involved in altering RNA splicing or recoding protein products. It is worth noting that 73.3% population-differential, 73.2% TBG-specific, and 80% IMG-specific A-to-I sites were nonsynonymous sites. Moreover, the pSESs and pDESs editing-related genes play critical functions in energy metabolisms such as ATP binding molecular function, translation, and adaptive immune response, which may be linked to goat high-altitude adaptation. Our results provide valuable information for understanding the adaptive evolution of goats and studying plateau-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liu Yang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Chait M, Yilmaz MM, Shakil S, Ku AW, Dogra P, Connors TJ, Szabo PA, Gray JI, Wells SB, Kubota M, Matsumoto R, Poon MM, Snyder ME, Baldwin MR, Sims PA, Saqi A, Farber DL, Weisberg SP. Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19. JCI Insight 2022; 7:157608. [PMID: 35446789 PMCID: PMC9228710 DOI: 10.1172/jci.insight.157608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory failure in COVID-19 is characterized by widespread disruption of the lung’s alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18–92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased perialveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there was also progressive loss of T2AE cells with increasing age, which may increase susceptibility to COVID-19–mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that expressed distinctly high levels of T cell activation and costimulation genes and strongly correlated with increased extent of alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results show that T2AE cell deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection, and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.
Collapse
Affiliation(s)
- Michael Chait
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Mine M Yilmaz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Shanila Shakil
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Amy W Ku
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States of America
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, United States of America
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, United States of America
| | - Maya Ml Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Mark E Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Matthew R Baldwin
- Department of Medicine, Columbia University Iring Medical Ceter, New York, United States of America
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Donna L Farber
- Department of Surgery, Columbia University Irving Medical Center, New York, United States of America
| | - Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| |
Collapse
|
17
|
A recipe for a good clinical pulmonary surfactant. Biomed J 2022; 45:615-628. [PMID: 35272060 PMCID: PMC9486245 DOI: 10.1016/j.bj.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
The lives of thousands premature babies have been saved along the last thirty years thanks to the establishment and consolidation of pulmonary surfactant replacement therapies (SRT). It took some time to close the gap between the identification of the biophysical and molecular causes of the high mortality associated with respiratory distress syndrome in very premature babies and the development of a proper therapy. Closing the gap required the elucidation of some key questions defining the structure–function relationships in surfactant as well as the particular role of the different molecular components assembled into the surfactant system. On the other hand, the application of SRT as part of treatments targeting other devastating respiratory pathologies, in babies and adults, is depending on further extensive research still required before enough amounts of good humanized clinical surfactants will be available. This review summarizes our current concepts on the compositional and structural determinants defining pulmonary surfactant activity, the principles behind the development of efficient natural animal-derived or recombinant or synthetic therapeutic surfactants, as well as a the most promising lines of research that are already opening new perspectives in the application of tailored surfactant therapies to treat important yet unresolved respiratory pathologies.
Collapse
|
18
|
Wong BH, Mei D, Chua GL, Galam DL, Wenk MR, Torta F, Silver DL. The lipid transporter Mfsd2a maintains pulmonary surfactant homeostasis. J Biol Chem 2022; 298:101709. [PMID: 35150739 PMCID: PMC8914330 DOI: 10.1016/j.jbc.2022.101709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Pulmonary surfactant is a lipoprotein complex essential for lung function, and insufficiency or altered surfactant composition is associated with major lung diseases, such as acute respiratory distress syndromes, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. Pulmonary surfactant is primarily composed of phosphatidylcholine (PC) in complex with specialized surfactant proteins and secreted by alveolar type 2 (AT2) cells. Surfactant homeostasis on the alveolar surface is balanced by the rates of synthesis and secretion with reuptake and recycling by AT2 cells, with some degradation by pulmonary macrophages and loss up the bronchial tree. However, whether phospholipid (PL) transporters exist in AT2 cells to mediate reuptake of surfactant PL remains to be identified. Here, we demonstrate that major facilitator superfamily domain containing 2a (Mfsd2a), a sodium-dependent lysophosphatidylcholine (LPC) transporter, is expressed at the apical surface of AT2 cells. A mouse model with inducible AT2 cell–specific deficiency of Mfsd2a exhibited AT2 cell hypertrophy with reduced total surfactant PL levels because of reductions in the most abundant surfactants, PC containing dipalmitic acid, and PC species containing the omega-3 fatty acid docosahexaenoic acid. These changes in surfactant levels and composition were mirrored by similar changes in the AT2 cell lipidome. Mechanistically, direct tracheal instillation of fluorescent LPC and PC probes indicated that Mfsd2a mediates the uptake of LPC generated by pulmonary phospholipase activity in the alveolar space. These studies reveal that Mfsd2a-mediated LPC uptake is quantitatively important in maintaining surfactant homeostasis and identify this lipid transporter as a physiological component of surfactant recycling.
Collapse
Affiliation(s)
- Bernice H Wong
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Ding Mei
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Geok Lin Chua
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Dwight L Galam
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David L Silver
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
19
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
20
|
Regulatory Roles of Human Surfactant Protein B Variants on Genetic Susceptibility to Pseudomonas Aeruginosa Pneumonia-Induced Sepsis. Shock 2021; 54:507-519. [PMID: 31851120 DOI: 10.1097/shk.0000000000001494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Surfactant protein B (SP-B) is essential for life and plays critical roles in host defense and lowering alveolar surface tension. A single-nucleotide polymorphism (SNP rs1130866) of human SP-B (hSP-B) alters the N-linked glycosylation, thus presumably affecting SP-B function. This study has investigated the regulatory roles of hSP-B genetic variants on lung injury in pneumonia-induced sepsis. METHODS Wild-type (WT) FVB/NJ and humanized transgenic SP-B-T and SP-B-C mice (expressing either hSP-B C or T allele without mouse SP-B gene) were infected intratracheally with 50 μL (4 × 10 colony-forming units [CFUs]/mouse) Pseudomonas aeruginosa Xen5 or saline, and then killed 24 or 48 h after infection. Bacterial dynamic growths were monitored from 0 to 48 h postinfection by in vivo imaging. Histopathological, cellular, and molecular changes of lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed. Surface tension of surfactants was determined with constrained drop surfactometry. RESULTS SP-B-C mice showed higher bioluminescence and CFUs, increased inflammation and mortality, the higher score of lung injury, and reduced numbers of lamellar bodies in type II cells compared with SP-B-T or WT (P < 0.05). Minimum surface tension increased dramatically in infected mice (P < 0.01) with the order of SP-B-C > SP-B-T > WT. Levels of multiple cytokines in the lung of infected SP-B-C were higher than those of SP-B-T and WT (P < 0.01). Furthermore, compared with SP-B-T or WT, SP-B-C exhibited lower SP-B, higher NF-κB and NLRP3 inflammasome activation, and higher activated caspase-3. CONCLUSIONS hSP-B variants differentially regulate susceptibility through modulating the surface activity of surfactant, cell death, and inflammatory signaling in sepsis.
Collapse
|
21
|
Simulated Breathing: Application of Molecular Dynamics Simulations to Pulmonary Lung Surfactant. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we delve into the topic of the pulmonary surfactant (PS) system, which is present in the respiratory system. The total composition of the PS has been presented and explored, from the types of cells involved in its synthesis and secretion, down to the specific building blocks used, such as the various lipid and protein components. The lipid and protein composition varies across species and between individuals, but ultimately produces a PS monolayer with the same role. As such, the composition has been investigated for the ways in which it imposes function and confers peculiar biophysical characteristics to the system as a whole. Moreover, a couple of theories/models that are associated with the functions of PS have been addressed. Finally, molecular dynamic (MD) simulations of pulmonary surfactant have been emphasized to not only showcase various group’s findings, but also to demonstrate the validity and importance that MD simulations can have in future research exploring the PS monolayer system.
Collapse
|
22
|
Schulz A, Pagerols Raluy L, Kolman JP, Königs I, Trochimiuk M, Appl B, Reinshagen K, Boettcher M, Trah J. The Inhibitory Effect of Curosurf ® and Alveofact ® on the Formation of Neutrophil Extracellular Traps. Front Immunol 2021; 11:582895. [PMID: 33574811 PMCID: PMC7871907 DOI: 10.3389/fimmu.2020.582895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are a defense mechanism in which neutrophils cast a net-like structure in response to microbial infection. NETs consist of decondensed chromatin and about 30 enzymes and peptides. Some components, such as neutrophil elastase (NE) and myeloperoxidase (MPO), present antimicrobial but also cytotoxic properties, leading to tissue injury. Many inflammatory diseases are associated with NETs, and their final role has not been identified. Pulmonary surfactant is known to have immunoregulatory abilities that alter the function of adaptive and innate immune cells. The aim of this study was to investigate the hypothesis that natural surfactant preparations inhibit the formation of NETs. Methods The effect of two natural surfactants (Alveofact® and Curosurf®) on spontaneous and phorbol-12-myristate-13-acetate–induced NET formation by neutrophils isolated by magnetic cell sorting from healthy individuals was examined. NETs were quantitatively detected by absorption and fluorometric-based assays for the NET-specific proteins (NE, MPO) and cell-free DNA. Immunofluorescence microscopy images were used for visualization. Results Both surfactant preparations exerted a dose-dependent inhibitory effect on NET formation. Samples treated with higher concentrations and with 30 min pre-incubation prior to stimulation with phorbol-12-myristate-13-acetate had significantly lower levels of NET-specific proteins and cell-free DNA compared to untreated samples. Immunofluorescence microscopy confirmed these findings. Conclusions The described dose-dependent modulation of NET formation ex vivo suggests an interaction between exogenous surfactant supplementation and neutrophil granulocytes. The immunoregulatory effects of surfactant preparations should be considered for further examination of inflammatory diseases.
Collapse
Affiliation(s)
- Annabell Schulz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jan Philipp Kolman
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Julian Trah
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
23
|
Testoni G, Olmeda B, Duran J, López-Rodríguez E, Aguilera M, Hernández-Álvarez MI, Prats N, Pérez-Gil J, Guinovart JJ. Pulmonary glycogen deficiency as a new potential cause of respiratory distress syndrome. Hum Mol Genet 2020; 29:3554-3565. [PMID: 33219378 DOI: 10.1093/hmg/ddaa249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/14/2022] Open
Abstract
The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.
Collapse
Affiliation(s)
- Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Elena López-Rodríguez
- Institute of Functional Anatomy Wilhelm-Waldeyer-Haus, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - María Isabel Hernández-Álvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Kang MH, van Lieshout LP, Xu L, Domm JM, Vadivel A, Renesme L, Mühlfeld C, Hurskainen M, Mižíková I, Pei Y, van Vloten JP, Thomas SP, Milazzo C, Cyr-Depauw C, Whitsett JA, Nogee LM, Wootton SK, Thébaud B. A lung tropic AAV vector improves survival in a mouse model of surfactant B deficiency. Nat Commun 2020; 11:3929. [PMID: 32764559 PMCID: PMC7414154 DOI: 10.1038/s41467-020-17577-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Surfactant protein B (SP-B) deficiency is an autosomal recessive disorder that impairs surfactant homeostasis and manifests as lethal respiratory distress. A compelling argument exists for gene therapy to treat this disease, as de novo protein synthesis of SP-B in alveolar type 2 epithelial cells is required for proper surfactant production. Here we report a rationally designed adeno-associated virus (AAV) 6 capsid that demonstrates efficiency in lung epithelial cell transduction based on imaging and flow cytometry analysis. Intratracheal administration of this vector delivering murine or human proSFTPB cDNA into SP-B deficient mice restores surfactant homeostasis, prevents lung injury, and improves lung physiology. Untreated SP-B deficient mice develop fatal respiratory distress within two days. Gene therapy results in an improvement in median survival to greater than 200 days. This vector also transduces human lung tissue, demonstrating its potential for clinical translation against this lethal disease.
Collapse
Affiliation(s)
- Martin H Kang
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Laura P van Lieshout
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Liqun Xu
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jakob M Domm
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Arul Vadivel
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Laurent Renesme
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Maria Hurskainen
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ivana Mižíková
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Yanlong Pei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sylvia P Thomas
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Claudia Milazzo
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Chanèle Cyr-Depauw
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jeffrey A Whitsett
- Divisions of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lawrence M Nogee
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Bernard Thébaud
- Sinclair Center for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
25
|
Loney RW, Panzuela S, Chen J, Yang Z, Fritz JR, Dell Z, Corradi V, Kumar K, Tieleman DP, Hall SB, Tristram-Nagle SA. Location of the Hydrophobic Surfactant Proteins, SP-B and SP-C, in Fluid-Phase Bilayers. J Phys Chem B 2020; 124:6763-6774. [PMID: 32600036 DOI: 10.1021/acs.jpcb.0c03665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, promote rapid adsorption by the surfactant lipids to the surface of the liquid that lines the alveolar air sacks of the lungs. To gain insights into the mechanisms of their function, we used X-ray diffuse scattering (XDS) and molecular dynamics (MD) simulations to determine the location of SP-B and SP-C within phospholipid bilayers. Initial samples contained the surfactant lipids from extracted calf surfactant with increasing doses of the proteins. XDS located protein density near the phospholipid headgroup and in the hydrocarbon core, presumed to be SP-B and SP-C, respectively. Measurements on dioleoylphosphatidylcholine (DOPC) with the proteins produced similar results. MD simulations of the proteins with DOPC provided molecular detail and allowed direct comparison of the experimental and simulated results. Simulations used conformations of SP-B based on other members of the saposin-like family, which form either open or closed V-shaped structures. For SP-C, the amino acid sequence suggests a partial α-helix. Simulations fit best with measurements of XDS for closed SP-B, which occurred at the membrane surface, and SP-C oriented along the hydrophobic interior. Our results provide the most definitive evidence yet concerning the location and orientation of the hydrophobic surfactant proteins.
Collapse
Affiliation(s)
- Ryan W Loney
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sergio Panzuela
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Theoretical Physics and Condensed Matter, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Jespar Chen
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zimo Yang
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan R Fritz
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zachary Dell
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kamlesh Kumar
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Stephanie A Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
26
|
Impact of Influenza on Pneumococcal Vaccine Effectiveness during Streptococcus pneumoniae Infection in Aged Murine Lung. Vaccines (Basel) 2020; 8:vaccines8020298. [PMID: 32545261 PMCID: PMC7349919 DOI: 10.3390/vaccines8020298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Changes in innate and adaptive immune responses caused by viral imprinting can have a significant direct or indirect influence on secondary infections and vaccine responses. The purpose of our current study was to investigate the role of immune imprinting by influenza on pneumococcal vaccine effectiveness during Streptococcus pneumoniae infection in the aged murine lung. Aged adult (18 months) mice were vaccinated with the pneumococcal polyvalent vaccine Pneumovax (5 mg/mouse). Fourteen days post vaccination, mice were instilled with PBS or influenza A/PR8/34 virus (3.5 × 102 PFU). Control and influenza-infected mice were instilled with PBS or S. pneumoniae (1 × 103 CFU, ATCC 6303) on day 7 of infection and antibacterial immune responses were assessed in the lung. Our results illustrate that, in response to a primary influenza infection, there was diminished bacterial clearance and heightened production of pro-inflammatory cytokines, such as IL6 and IL1β. Vaccination with Pneumovax decreased pro-inflammatory cytokine production by modulating NFҡB expression; however, these responses were significantly diminished after influenza infection. Taken together, the data in our current study illustrate that immune imprinting by influenza diminishes pneumococcal vaccine efficacy and, thereby, may contribute to increased susceptibility of older persons to a secondary infection with S. pneumoniae.
Collapse
|
27
|
Liekkinen J, Enkavi G, Javanainen M, Olmeda B, Pérez-Gil J, Vattulainen I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. J Mol Biol 2020; 432:3251-3268. [DOI: 10.1016/j.jmb.2020.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
|
28
|
Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem Cell Derived Lung Organoids by Gene Therapy. Sci Rep 2019; 9:13450. [PMID: 31530844 PMCID: PMC6748939 DOI: 10.1038/s41598-019-49696-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.
Collapse
|
29
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
30
|
Bi G, Wu L, Huang P, Islam S, Heruth DP, Zhang LQ, Li DY, Sampath V, Huang W, Simon BA, Easley RB, Ye SQ. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown. FASEB J 2018; 32:3583-3596. [PMID: 29452569 PMCID: PMC5998971 DOI: 10.1096/fj.201701059r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Although a deficiency of surfactant protein B (SFTPB) has been associated with lung injury, SFTPB expression has not yet been linked with nicotinamide phosphoribosyltransferase (NAMPT), a potential biomarker of acute lung injury (ALI). The effects of Nampt in the pulmonary epithelial cell on both SFTPB expression and lung inflammation were investigated in a LPS-induced ALI mouse model. Pulmonary epithelial cell-specific knockdown of Nampt gene expression, achieved by the crossing of Nampt gene exon 2 floxed mice with mice expressing epithelial-specific transgene Cre or by the use of epithelial-specific expression of anti-Nampt antibody cDNA, significantly attenuated LPS-induced ALI. Knockdown of Nampt expression was accompanied by lower levels of bronchoalveolar lavage (BAL) neutrophil infiltrates, total protein and TNF-α levels, as well as lower lung injury scores. Notably, Nampt knockdown was also associated with significantly increased BAL SFTPB levels relative to the wild-type control mice. Down-regulation of NAMPT increased the expression of SFTPB and rescued TNF-α-induced inhibition of SFTPB, whereas overexpression of NAMPT inhibited SFTPB expression in both H441 and A549 cells. Inhibition of NAMPT up-regulated SFTPB expression by enhancing histone acetylation to increase its transcription. Additional data indicated that these effects were mainly mediated by NAMPT nonenzymatic function via the JNK pathway. This study shows that pulmonary epithelial cell-specific knockdown of NAMPT expression attenuated ALI, in part, via up-regulation of SFTPB expression. Thus, epithelial cell-specific knockdown of Nampt may be a potential new and viable therapeutic modality to ALI.-Bi, G., Wu, L., Huang, P., Islam, S., Heruth, D. P., Zhang, L. Q., Li, D.-Y., Sampath, V., Huang, W., Simon, B. A., Easley, R. B., Ye, S. Q. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown.
Collapse
Affiliation(s)
- Guangliang Bi
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wu
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Changsha Central Hospital, Changsha, China
| | - Peixin Huang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Shamima Islam
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Li Qin Zhang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Ding-You Li
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Brett A. Simon
- Department of Anesthesiology, Josie Robertson Surgery Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ronald Blaine Easley
- Department of Pediatrics-Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shui Qing Ye
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Biomedical and Health Informatics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
31
|
Rao Y, Sun X, Yang N, Zhang F, Jiang X, Huang L, Guo X, Du W, Hao H, Zhao X, Jiang Q, Liu Y. Neonatal respiratory distress syndrome and underlying mechanisms in cloned cattle. Mol Reprod Dev 2018; 85:227-235. [PMID: 29388718 DOI: 10.1002/mrd.22956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/09/2018] [Indexed: 01/30/2023]
Abstract
Neonatal respiratory distress is a major mortality factor in cloned animals, but the pathogenesis of this disease is rarely investigated. In this study, four neonatal cloned cattle, born after full-term gestation, exhibited symptoms of neonatal respiratory distress syndrome (NRDS), which included symptoms of hyaline membrane disease as well as disordered surfactant homeostasis in their collapsed lungs. No differences in DNA methylation or histone modifications correlated with the suppressed SPB and SPC transcription observed in the cloned cattle group (p > 0.05), whereas TTF-1 occupancy at SPB and SPC promoter regions in cloned cattle was significantly reduced to 24% and 20% that of normal lungs, respectively (SPB, p < 0.05; SPC, p < 0.01). Decreased TTF1 expression, dysregulation of SPB and SPC transcription by TTF-1, and disordered proteolytic processing of Surfactant protein B precursor together potentially contribute to the disruption of surfactant homeostasis and NRDS in bovine clones. Elucidation of the associated mechanisms should facilitate the development of novel preventive or therapeutic strategies to reduce the mortality rate of cloned animals and to improve the efficiency of SCNT technology.
Collapse
Affiliation(s)
- Yifan Rao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Na Yang
- Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Fanyi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojing Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linhua Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaogai Guo
- Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Weihua Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Hao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueming Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuling Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Somaschini M, Presi S, Ferrari M, Vergani B, Carrera P. Surfactant proteins gene variants in premature newborn infants with severe respiratory distress syndrome. J Perinatol 2018; 38:337-344. [PMID: 29255193 PMCID: PMC5953905 DOI: 10.1038/s41372-017-0018-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Genetic surfactant dysfunction causes respiratory failure in term and near-term newborn infants, but little is known of such condition in prematures. We evaluated genetic surfactant dysfunction in premature newborn infants with severe RDS. PATIENTS AND METHODS A total of 68 preterm newborn infants with gestational age ≤32 weeks affected by unusually severe RDS were analysed for mutations in SFTPB, SFTPC and ABCA3. Therapies included oxygen supplementation, nasal CPAP, different modalities of ventilatory support, administration of exogenous surfactant, inhaled nitric oxide and steroids. Molecular analyses were performed on genomic DNA extracted from peripheral blood and Sanger sequencing of whole gene coding regions and intron junctions. In one case histology and electron microscopy on lung tissue was performed. RESULTS Heterozygous previously described rare or novel variants in surfactant proteins genes ABCA3, SFTPB and SFTPC were identified in 24 newborn infants. In total, 11 infants died at age of 2 to 6 months. Ultrastructural analysis of lung tissue of one infant showed features suggesting ABCA3 dysfunction. DISCUSSION Rare or novel genetic variants in genes encoding surfactant proteins were identified in a large proportion (35%) of premature newborn infants with particularly severe RDS. We speculate that interaction of developmental immaturity of surfactant production in association with abnormalities of surfactant metabolism of genetic origin may have a synergic worsening phenotypic effect.
Collapse
Affiliation(s)
- Marco Somaschini
- Unit of Neonatology, Sant'Anna Clinic, Sorengo, Switzerland. .,Unit of Genomics for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Silvia Presi
- 0000000417581884grid.18887.3eClinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Ferrari
- 0000000417581884grid.18887.3eUnit of Genomics for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy ,0000000417581884grid.18887.3eClinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.15496.3fVita-Salute San Raffaele University, Milan, Italy
| | - Barbara Vergani
- 0000 0001 2174 1754grid.7563.7Microscopy and Image Analisys Consortium, University of Milano-Bicocca, Monza, Italy
| | - Paola Carrera
- 0000000417581884grid.18887.3eUnit of Genomics for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy ,0000000417581884grid.18887.3eClinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Stem cell biology and regenerative medicine for neonatal lung diseases. Pediatr Res 2018; 83:291-297. [PMID: 28922348 DOI: 10.1038/pr.2017.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
Lung diseases remain one of the main causes of morbidity and mortality in neonates. Cell therapy and regenerative medicine have the potential to revolutionize the management of life-threatening and debilitating lung diseases that currently lack effective treatments. Over the past decade, the repair capabilities of stem/progenitor cells have been harnessed to prevent/rescue lung damage in experimental neonatal lung diseases. Mesenchymal stromal cells and amnion epithelial cells exert pleiotropic effects and represent ideal therapeutic cells for bronchopulmonary dysplasia, a multifactorial disease. Endothelial progenitor cells are optimally suited to promote lung vascular growth and attenuate pulmonary hypertension in infants with congenital diaphragmatic hernia or a vascular bronchopulmonary dysplasia phenotype. Induced pluripotent stem cells (iPSCs) are one of the most exciting breakthroughs of the past decade. Patient-specific iPSCs can be derived from somatic cells and differentiated into any cell type. iPSCs can be capitalized upon to develop personalized regenerative cell products for surfactant protein deficiencies-lethal lung disorders without treatment-that affect a single gene in a single cell type and thus lend themselves to phenotype-specific cell replacement. While the clinical translation has begun, more needs to be learned about the biology of these repair cells to make this translation successful.
Collapse
|
34
|
Mei H, Zhang Y, Liu C, Zhang Y, Liu C, Song D, Xin C, Wang J, Josephs-Spaulding J, Zhu Y, Tang F. Messenger RNA sequencing reveals similar mechanisms between neonatal and acute respiratory distress syndrome. Mol Med Rep 2017; 17:59-70. [PMID: 29115600 PMCID: PMC5780146 DOI: 10.3892/mmr.2017.7891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Hypoxemia and hypercarbia resulting from a lack of surfactant is considered to be the primary mechanism underlying neonatal respiratory distress syndrome (NRDS). Surfactant replacement therapy may mitigate the symptoms of the disease by decreasing the surface tension of alveoli and facilitating inflation. However, surfactant serves an additional role in immunological processes. Therefore, it may be hypothesized that mechanisms of NRDS involving surfactant exert additional functions to promoting alveolar inflation. Using peripheral blood obtained from mature infants with and without NRDS, in tandem with mRNA sequencing (mRNA-seq) analysis, the present study identified that, while cell cycle regulation and alveolar surfactants serve a role in deterring the further onset of NRDS, innate and pathogen-induced responses of the immune system are among the most important factors in the pathology. The present study illustrated the regulatory importance of these immune pathways in response to alterations in the expression of gene families, particularly in perpetual lung injury leading to NRDS. Notably, data collected from the mRNA-seq analysis revealed similar mechanisms between NRDS and acute respiratory distress syndrome, a clinical phenotype precipitated by the manifestation of a severe form of lung injury due to numerous lung insults, implying that similar therapies may be applied to treat these two diseases.
Collapse
Affiliation(s)
- Hua Mei
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Yuheng Zhang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Chunzhi Liu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Yayu Zhang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Chunli Liu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Dan Song
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Chun Xin
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | - Jing Wang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia 010050, P.R. China
| | | | - Yan Zhu
- Beijing Amorlife Pharma Services Co., Ltd., Beijing 100176, P.R. China
| | - Feng Tang
- Beijing Amorlife Pharma Services Co., Ltd., Beijing 100176, P.R. China
| |
Collapse
|
35
|
Tang X, Sun L, Jin X, Chen Y, Zhu H, Liang Y, Wu Q, Han X, Liang J, Liu X, Liang Z, Wang G, Luo F. Runt-Related Transcription Factor 1 Regulates LPS-Induced Acute Lung Injury via NF-κB Signaling. Am J Respir Cell Mol Biol 2017; 57:174-183. [PMID: 28314106 DOI: 10.1165/rcmb.2016-0319oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Runt-related transcription factor 1 (RUNX1), a transcription factor expressed in multiple organs, plays important roles in embryonic development and hematopoiesis. Although RUNX1 is highly expressed in pulmonary tissues, its roles in lung function and homeostasis are unknown. We sought to assess the role of RUNX1 in lung development and inflammation after LPS challenge. Expression of RUNX1 was assessed in the developing and postnatal lung. RUNX1 was conditionally deleted in pulmonary epithelial cells. Pulmonary maturation was evaluated in the developing and postnatal lung, and lung inflammation was investigated in adult mice after LPS challenge. Interactions between RUNX1 and inflammatory signaling via NF-κB-IkB kinase β were assessed in vitro. RUNX1 was expressed in both mesenchymal and epithelial compartments of the developing and postnatal lung. The RUNX1 gene was efficiently deleted from respiratory epithelial cells producing Runx1∆/∆ mice. Although lung maturation was delayed, Runx1∆/∆ mice survived postnatally and subsequent growth and maturation of the lung proceeded normally. Increased respiratory distress, inflammation, and proinflammatory cytokines were observed in the Runx1-deleted mice after pulmonary LPS exposure. RUNX1 deletion was associated with the activation of NF-κB in respiratory epithelial cells. RUNX1 was required for the suppression of NF-κB signaling pathway via inhibition of IkB kinase β in in vitro studies. RUNX1 plays a critical role in the lung inflammation after LPS-induced injury.
Collapse
Affiliation(s)
- Xiaoju Tang
- 1 Department of Respiratory Medicine.,2 Laboratory of Cardiovascular Diseases, Research Center of Regeneration Medicine, and
| | - Ling Sun
- 2 Laboratory of Cardiovascular Diseases, Research Center of Regeneration Medicine, and
| | - Xiaodong Jin
- 3 Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hui Zhu
- 1 Department of Respiratory Medicine
| | - Yasha Liang
- 4 First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingbo Wu
- 1 Department of Respiratory Medicine
| | - Xing Han
- 5 Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Jianing Liang
- 6 Department of Respiratory Medicine, Fourth Military Medical University, Xian, China
| | - Xiaojing Liu
- 2 Laboratory of Cardiovascular Diseases, Research Center of Regeneration Medicine, and
| | | | - Gang Wang
- 1 Department of Respiratory Medicine
| | | |
Collapse
|
36
|
Barnett RC, Lin X, Barravecchia M, Norman RA, de Mesy Bentley KL, Fazal F, Young JL, Dean DA. Featured Article: Electroporation-mediated gene delivery of surfactant protein B (SP-B) restores expression and improves survival in mouse model of SP-B deficiency. Exp Biol Med (Maywood) 2017; 242:1345-1354. [PMID: 28581337 PMCID: PMC5529004 DOI: 10.1177/1535370217713000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
Surfactant Protein B Deficiency is a rare but lethal monogenetic, congenital lung disease of the neonate that is unresponsive to any treatment except lung transplantation. Based on the potential that gene therapy offers to treat such intractable diseases, our objective was to test whether an electroporation-based gene delivery approach could restore surfactant protein B expression and improve survival in a compound knockout mouse model of surfactant protein B deficiency. Surfactant protein B expression can be shut off in these mice upon withdrawl of doxycycline, resulting in decreased levels of surfactant protein B within four days and death due to lung dysfunction within four to seven days. Control or one of several different human surfactant protein B-expressing plasmids was delivered to the lung by aspiration and electroporation at the time of doxycycline removal or four days later. Plasmids expressing human surfactant protein B from either the UbC or CMV promoter expressed surfactant protein B in these transgenic mice at times when endogenous surfactant protein B expression was silenced. Mean survival was increased 2- to 5-fold following treatment with the UbC or CMV promoter-driven plasmids, respectively. Histology of all surfactant protein B treated groups exhibited fewer neutrophils and less alveolar wall thickening compared to the control groups, and electron microscopy revealed that gene transfer of surfactant protein B resulted in lamellar bodies that were similar in the presence of electron-dense, concentric material to those in surfactant protein B-expressing mice. Taken together, our results show that electroporation-mediated gene delivery of surfactant protein B-expressing plasmids improves survival, lung function, and lung histology in a mouse model of surfactant protein B deficiency and suggest that this may be a useful approach for the treatment of this otherwise deadly disease. Impact statement Surfactant protein B (SP-B) deficiency is a rare but lethal genetic disease of neonates that results in severe respiratory distress with no available treatments other than lung transplantation. The present study describes a novel treatment for this disease by transferring the SP-B gene to the lungs using electric fields in a mouse model. The procedure is safe and results in enough expression of exogenous SP-B to improve lung histology, lamellar body structure, and survival. If extended to humans, this approach could be used to bridge the time between diagnosis and lung transplantation and could greatly increase the likelihood of affected neonates surviving to transplantation and beyond.
Collapse
Affiliation(s)
- Rebecca C Barnett
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| | - Xin Lin
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| | - Michael Barravecchia
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| | - Rosemary A Norman
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| | - Karen L de Mesy Bentley
- Department of Pathology and Laboratory
Medicine, University of Rochester, Rochester, New York, NY 14642, USA
| | - Fabeha Fazal
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| | - Jennifer L Young
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| | - David A Dean
- Division of Neonatology, University of
Rochester, Rochester, New York, NY 14642, USA
| |
Collapse
|
37
|
Alapati D, Morrisey EE. Gene Editing and Genetic Lung Disease. Basic Research Meets Therapeutic Application. Am J Respir Cell Mol Biol 2017; 56:283-290. [PMID: 27780343 DOI: 10.1165/rcmb.2016-0301ps] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although our understanding of the genetics and pathology of congenital lung diseases such as surfactant protein deficiency, cystic fibrosis, and alpha-1 antitrypsin deficiency is extensive, treatment options are lacking. Because the lung is a barrier organ in direct communication with the external environment, targeted delivery of gene corrective technologies to the respiratory system via intratracheal or intranasal routes is an attractive option for therapy. CRISPR/Cas9 gene-editing technology is a promising approach to repairing or inactivating disease-causing mutations. Recent reports have provided proof of concept by using CRISPR/Cas9 to successfully repair or inactivate mutations in animal models of monogenic human diseases. Potential pulmonary applications of CRISPR/Cas9 gene editing include gene correction of monogenic diseases in pre- or postnatal lungs and ex vivo gene editing of patient-specific airway stem cells followed by autologous cell transplant. Strategies to enhance gene-editing efficiency and eliminate off-target effects by targeting pulmonary stem/progenitor cells and the assessment of short-term and long-term effects of gene editing are important considerations as the field advances. If methods continue to advance rapidly, CRISPR/Cas9-mediated gene editing may provide a novel opportunity to correct monogenic diseases of the respiratory system.
Collapse
Affiliation(s)
- Deepthi Alapati
- 1 Department of Pediatrics, Nemours, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,2 Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,3 Cardiovascular Institute.,4 Penn Center for Pulmonary Biology
| | - Edward E Morrisey
- 3 Cardiovascular Institute.,4 Penn Center for Pulmonary Biology.,Departments of 5 Medicine and.,6 Cell and Developmental Biology, and.,7 Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Liu Y, Rao Y, Jiang X, Zhang F, Huang L, Du W, Hao H, Zhao X, Wang D, Jiang Q, Zhu H, Sun X. Transcriptomic profiling reveals disordered regulation of surfactant homeostasis in neonatal cloned bovines with collapsed lungs and respiratory distress. Mol Reprod Dev 2017; 84:668-674. [DOI: 10.1002/mrd.22836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Liu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Yifan Rao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xiaojing Jiang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| | - Fanyi Zhang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Linhua Huang
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| | - Weihua Du
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Haisheng Hao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xueming Zhao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Dong Wang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Qiuling Jiang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Huabin Zhu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xiuzhu Sun
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| |
Collapse
|
39
|
DIFFERENTIAL SUSCEPTIBILITY OF HUMAN SP-B GENETIC VARIANTS ON LUNG INJURY CAUSED BY BACTERIAL PNEUMONIA AND THE EFFECT OF A CHEMICALLY MODIFIED CURCUMIN. Shock 2016; 45:375-84. [PMID: 26863117 DOI: 10.1097/shk.0000000000000535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a common cause of nosocomial pneumonia frequently resulting in acute respiratory distress syndrome (ARDS). Surfactant protein B (SP-B) gene expresses two proteins involved in lowering surface tension and host defense. Genotyping studies demonstrate a significant association between human SP-B genetic variants and ARDS. Curcumins have been shown to attenuate host inflammation in many sepsis models. Our hypothesis is that functional differences of SP-B variants and treatment with curcumin (CMC2.24) modulate lung injury in bacterial pneumonia. Humanized transgenic mice, expressing either SP-B T or C allele without mouse SP-B gene, were used. Bioluminescent labeled S. aureus Xen 36 (50 μL) was injected intratracheally to cause pneumonia. Infected mice received daily CMC2.24 (40 mg/kg) or vehicle alone by oral gavage. Dynamic changes of bacteria were monitored using in vivo imaging system. Histological, cellular, and molecular indices of lung injury were studied in infected mice 48 h after infection. In vivo imaging analysis revealed total flux (bacterial number) was higher in the lung of infected SP-B-C mice compared with infected SP-B-T mice (P < 0.05). Infected SP-B-C mice demonstrated increased mortality, lung injury, apoptosis, and NF-κB expression compared with infected SP-B-T mice. Compared with controls, CMC2.24 treatment significantly reduced the following: mortality, total bacterial flux and lung tissue apoptosis, inflammatory cells, NF-κB expression (P < 0.05), and MMPs-2, -9, -12 activities (P < 0.05). We conclude that mice with SP-B-C allele are more susceptible to S. aureus pneumonia than mice with SP-B-T allele, and that CMC2.24 attenuates lung injury thus reducing mortality.
Collapse
|
40
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
41
|
Xiong M, Heruth DP, Zhang LQ, Ye SQ. Identification of lung-specific genes by meta-analysis of multiple tissue RNA-seq data. FEBS Open Bio 2016; 6:774-81. [PMID: 27398317 PMCID: PMC4932457 DOI: 10.1002/2211-5463.12089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022] Open
Abstract
Lung-specific genes play critically important roles in lung development, lung physiology, and pathogenesis of lung-associated diseases. We performed a meta-analysis of multiple tissue RNA-seq data to identify lung-specific genes in order to better investigate their lung-specific functions and pathological roles. We identified 83 lung-specific genes consisting of 62 protein-coding genes, five pseudogenes and 16 noncoding RNA genes. About 49.4% of lung-specific genes were implicated in the pathogenesis of lung diseases and 21.7% were involved with lung development. The identification of genes with enriched expression in the lung will facilitate the elucidation of lung-specific functions and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Min Xiong
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA; Department of Biomedical and Health Informatics University of Missouri Kansas City School of Medicine MO USA
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA
| | - Li Qin Zhang
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA
| | - Shui Qing Ye
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA; Department of Biomedical and Health Informatics University of Missouri Kansas City School of Medicine MO USA
| |
Collapse
|
42
|
Tsuda A, Venkata NK. The role of natural processes and surface energy of inhaled engineered nanoparticles on aggregation and corona formation. NANOIMPACT 2016; 2:38-44. [PMID: 29202111 PMCID: PMC5711474 DOI: 10.1016/j.impact.2016.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The surface chemistry of engineered nanoparticles (ENPs) becomes more important as their size decreases and enters the nanometer-range. This review explains the fundamental properties of the surface chemistry of nanoparticles, and argues that their agglomeration and the formation of corona around them are natural processes that reduce surface energy. ENP agglomeration and surface corona formation are further discussed in the context of inhaled ENPs, as the lung is a major port of ENP entry to the body. The pulmonary surfactant layer, which the inhaled ENPs first encounter as they land on the lung surface, represents a unique environment with a variety of well-defined biomolecules. Many factors, such as hydrophobicity, surface charge of ENPs, protein/phospholipid concentrations of the alveolar lining fluid, etc. influence the complex processes of ENP agglomeration and corona formation in the alveolar lining fluid, and these events occur even before the ENPs reach the cells. We suggest that molecular dynamic simulations can represent a promising future direction for research of the behavior of inhaled ENPs, complementing the experimental approaches. Moreover, we want to remind biologists working on ENPs of the importance relationship between ENP surface energy and size.
Collapse
Affiliation(s)
- Akira Tsuda
- Molecular and Integrative Physiological Sciences, Dept. of Environmental Health, Harvard School of Public Health, Boston MA, USA
| | - Nagarjun Konduru Venkata
- Molecular and Integrative Physiological Sciences, Dept. of Environmental Health, Harvard School of Public Health, Boston MA, USA
| |
Collapse
|
43
|
Marcinkiewicz MM, Baker ST, Wu J, Hubert TL, Wolfson MR. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals. PLoS One 2016; 11:e0152027. [PMID: 26999050 PMCID: PMC4801353 DOI: 10.1371/journal.pone.0152027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.
Collapse
Affiliation(s)
- Mariola M. Marcinkiewicz
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Sandy T. Baker
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Jichuan Wu
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Terrence L. Hubert
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Marla R. Wolfson
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Department of Physiology, Pediatrics and Medicine, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Mahiny AJ, Dewerth A, Mays LE, Alkhaled M, Mothes B, Malaeksefat E, Loretz B, Rottenberger J, Brosch DM, Reautschnig P, Surapolchai P, Zeyer F, Schams A, Carevic M, Bakele M, Griese M, Schwab M, Nürnberg B, Beer-Hammer S, Handgretinger R, Hartl D, Lehr CM, Kormann MSD. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol 2015; 33:584-6. [PMID: 25985262 DOI: 10.1038/nbt.3241] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Azita J Mahiny
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Alexander Dewerth
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Lauren E Mays
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Mohammed Alkhaled
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Benedikt Mothes
- 1] Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany. [2] ICePha, University of Tübingen, Tübingen, Germany
| | - Emad Malaeksefat
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbrücken, Germany
| | - Jennifer Rottenberger
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Darina M Brosch
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Philipp Reautschnig
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Pacharapan Surapolchai
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Franziska Zeyer
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Andrea Schams
- 1] Department of Pediatric Pulmonology, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany. [2] Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Carevic
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Martina Bakele
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Matthias Griese
- 1] Department of Pediatric Pulmonology, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany. [2] Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Schwab
- 1] ICePha, University of Tübingen, Tübingen, Germany. [2] Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany. [3] Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Claus-Michael Lehr
- 1] Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbrücken, Germany. [2] Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Michael S D Kormann
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
Leung JM, Mayo J, Tan W, Tammemagi CM, Liu G, Peacock S, Shepherd FA, Goffin J, Goss G, Nicholas G, Tremblay A, Johnston M, Martel S, Laberge F, Bhatia R, Roberts H, Burrowes P, Manos D, Stewart L, Seely JM, Gingras M, Pasian S, Tsao MS, Lam S, Sin DD. Plasma pro-surfactant protein B and lung function decline in smokers. Eur Respir J 2015; 45:1037-45. [PMID: 25614175 DOI: 10.1183/09031936.00184214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plasma pro-surfactant protein B (pro-SFTPB) levels have recently been shown to predict the development of lung cancer in current and ex-smokers, but the ability of pro-SFTPB to predict measures of chronic obstructive pulmonary disease (COPD) severity is unknown. We evaluated the performance characteristics of pro-SFTPB as a biomarker of lung function decline in a population of current and ex-smokers. Plasma pro-SFTPB levels were measured in 2503 current and ex-smokers enrolled in the Pan-Canadian Early Detection of Lung Cancer Study. Linear regression was performed to determine the relationship of pro-SFTPB levels to changes in forced expiratory volume in 1 s (FEV1) over a 2-year period as well as to baseline FEV1 and the burden of emphysema observed in computed tomography (CT) scans. Plasma pro-SFTPB levels were inversely related to both FEV1 % predicted (p=0.024) and FEV1/forced vital capacity (FVC) (p<0.001), and were positively related to the burden of emphysema on CT scans (p<0.001). Higher plasma pro-SFTPB levels were also associated with a more rapid decline in FEV1 at 1 year (p=0.024) and over 2 years of follow-up (p=0.004). Higher plasma pro-SFTPB levels are associated with increased severity of airflow limitation and accelerated decline in lung function. Pro-SFTPB is a promising biomarker for COPD severity and progression.
Collapse
Affiliation(s)
- Janice M Leung
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - John Mayo
- Dept of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Wan Tan
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - C Martin Tammemagi
- Dept of Community Health Sciences, Brock University, St Catharines, ON, Canada
| | - Geoffrey Liu
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Stuart Peacock
- The Canadian Centre for Applied Research in Cancer Control, Vancouver, BC, Canada The British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Frances A Shepherd
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - John Goffin
- The Juravinsky Cancer Centre, Hamilton, ON, Canada
| | | | | | - Alain Tremblay
- University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Michael Johnston
- Beatrice Hunter Cancer Research Institute and Dalhousie University, Halifax, NS, Canada
| | - Simon Martel
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | - Francis Laberge
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | | | - Heidi Roberts
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Paul Burrowes
- University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Daria Manos
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Lori Stewart
- Dept of Diagnostic Imaging, Henderson Hospital, Hamilton, ON, Canada
| | | | - Michel Gingras
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | - Sergio Pasian
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | - Ming-Sound Tsao
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Stephen Lam
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada The British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Don D Sin
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
47
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
48
|
Li Q, Wang HY, Chepelev I, Zhu Q, Wei G, Zhao K, Wang RF. Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development. PLoS Genet 2014; 10:e1004524. [PMID: 25079229 PMCID: PMC4117460 DOI: 10.1371/journal.pgen.1004524] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Histone demethylases have emerged as important players in developmental processes. Jumonji domain containing-3 (Jmjd3) has been identified as a key histone demethylase that plays a critical role in the regulation of gene expression; however, the in vivo function of Jmjd3 in embryonic development remains largely unknown. To this end, we generated Jmjd3 global and conditional knockout mice. Global deletion of Jmjd3 induces perinatal lethality associated with defective lung development. Tissue and stage-specific deletion revealed that Jmjd3 is dispensable in the later stage of embryonic lung development. Jmjd3 ablation downregulates the expression of genes critical for lung development and function, including AQP-5 and SP-B. Jmjd3-mediated alterations in gene expression are associated with locus-specific changes in the methylation status of H3K27 and H3K4. Furthermore, Jmjd3 is recruited to the SP-B promoter through interactions with the transcription factor Nkx2.1 and the epigenetic protein Brg1. Taken together, these findings demonstrate that Jmjd3 plays a stage-dependent and locus-specific role in the mouse lung development. Our study provides molecular insights into the mechanisms by which Jmjd3 regulates target gene expression in the embryonic stages of lung development.
Collapse
Affiliation(s)
- Qingtian Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Qingyuan Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Gang Wei
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
The effects of low-moderate dose prenatal ethanol exposure on the fetal and postnatal rat lung. J Dev Orig Health Dis 2014; 4:358-67. [PMID: 24970729 DOI: 10.1017/s2040174413000305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about whether exposure of the fetus to alcohol alters pulmonary development or function. This study aimed to determine whether low-moderate ethanol (EtOH) exposure throughout gestation alters structural and non-respiratory functional aspects of the fetal and postnatal lung. Sprague-Dawley rats were fed an ad libitum liquid diet ±6% v/v EtOH daily throughout pregnancy, achieving a plasma ethanol (EtOH) concentration of 0.03%. Gene and protein expression was determined in pulmonary tissue collected from fetuses at embryonic day (E) 20 and adult offspring. The percentage of airspace and alveolar size was measured in pulmonary tissue collected at postnatal day (PN) 1. At E20, EtOH-exposed fetuses had decreased aquaporin 5 mRNA levels and a non-significant trend for decreased epithelial sodium channel type α; expression of other pulmonary fluid homeostatic and development genes and surfactant protein genes were not different between groups. At PN1, there was no difference between EtOH-exposed and control offspring in the distal airspace percentage or diameter. At 8 months, collagen type III α1 gene expression was upregulated in EtOH-exposed male offspring; this was associated with increased collagen deposition at 10 months. At 19 months, male EtOH-exposed offspring had a 25% reduction in the protein levels of surfactant protein B. The alterations observed in male EtOH-exposed offspring suggest chronic low-moderate prenatal EtOH-exposure during development may result in increased pulmonary fibrosis. Such an alteration would decrease the respiratory capacity of the lung.
Collapse
|
50
|
Larsen ST, Dallot C, Larsen SW, Rose F, Poulsen SS, Nørgaard AW, Hansen JS, Sørli JB, Nielsen GD, Foged C. Mechanism of action of lung damage caused by a nanofilm spray product. Toxicol Sci 2014; 140:436-44. [PMID: 24863969 PMCID: PMC4120103 DOI: 10.1093/toxsci/kfu098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products.
Collapse
Affiliation(s)
- Søren T Larsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Constantin Dallot
- National Research Centre for the Working Environment, Copenhagen, Denmark Polytech Nice-Sophia, University of Nice, Biot, France
| | - Susan W Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabrice Rose
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Research, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Asger W Nørgaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jitka S Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jorid B Sørli
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Gunnar D Nielsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|