1
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Estes Bright LM, Chug MK, Thompson S, Brooks M, Brisbois EJ, Handa H. Analysis of the broad-spectrum potential of nitric oxide for antibacterial activity against clinically isolated drug-resistant bacteria. J Biomed Mater Res B Appl Biomater 2024; 112:e35442. [PMID: 38923117 DOI: 10.1002/jbm.b.35442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The development of drug-resistant microorganisms is taking a heavy toll on the biomedical world. Clinical infections are costly and becoming increasingly dangerous as bacteria that once responded to standard antibiotic treatment are developing resistance mechanisms that require innovative treatment strategies. Nitric oxide (NO) is a gaseous molecule produced endogenously that has shown potent antibacterial capabilities in numerous research studies. Its multimechanistic antibacterial methods prevent the development of resistance and have shown potential as an alternative to antibiotics. However, there has yet to be a direct comparison study evaluating the antibacterial properties of NO against antibiotic susceptible and antibiotic-resistant clinically isolated bacterial strains. Herein, standardized lab and clinically isolated drug-resistant bacterial strains are compared side-by-side for growth and viability following treatment with NO released from S-nitrosoglutathione (GSNO), an NO donor molecule. Evaluation of growth kinetics revealed complete killing of E. coli lab and clinical strains at 17.5 mM GSNO, though 15 mM displayed >50% killing and significantly reduced metabolic activity, with greater dose dependence for membrane permeability. Clinical P. aeruginosa showed greater susceptibility to GSNO during growth curve studies, but metabolic activity and membrane permeability demonstrated similar effects for 12.5 mM GSNO treatment of lab and clinical strains. MRSA lab and clinical strains exhibited total killing at 17.5 mM treatment, though metabolic activity was decreased, and membrane permeation began at 12.5 mM for both strains. Lastly, both S. epidermidis strains were killed by 15 mM GSNO, with sensitivities in metabolic activity and membrane permeability at 12.5 mM GSNO. The mirrored antibacterial effects seen by the lab and clinical strains of two Gram-negative and two Gram-positive bacteria reveal the translational success of NO as an antibacterial therapy and potential alternative to standard antibiotic treatment.
Collapse
Affiliation(s)
- Lori M Estes Bright
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Manjyot Kaur Chug
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Stephen Thompson
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Megan Brooks
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Ozkan E, Estes Bright LM, Kumar A, Pandey R, Devine R, Francis D, Ghalei S, Ashcraft M, Maffe P, Brooks M, Shome A, Garren M, Handa H. Bioinspired superhydrophobic surfaces with silver and nitric oxide-releasing capabilities to prevent device-associated infections and thrombosis. J Colloid Interface Sci 2024; 664:928-937. [PMID: 38503078 PMCID: PMC11025530 DOI: 10.1016/j.jcis.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO2) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.
Collapse
Affiliation(s)
- Ekrem Ozkan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Lori M Estes Bright
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Anil Kumar
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Rashmi Pandey
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ryan Devine
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Divine Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Sama Ghalei
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Morgan Ashcraft
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Patrick Maffe
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Megan Brooks
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Arpita Shome
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Maarouf A, Audoin B, Gherib S, El Mendili MM, Viout P, Pariollaud F, Boutière C, Rico A, Guye M, Ranjeva JP, Zaaraoui W, Pelletier J. Grey-matter sodium concentration as an individual marker of multiple sclerosis severity. Mult Scler 2022; 28:1903-1912. [PMID: 35723278 DOI: 10.1177/13524585221102587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Quantification of brain injury in patients with variable disability despite similar disease duration may be relevant to identify the mechanisms underlying disability in multiple sclerosis (MS). We aimed to compare grey-matter sodium abnormalities (GMSAs), a parameter reflecting neuronal and astrocyte dysfunction, in MS patients with benign multiple sclerosis (BMS) and non-benign multiple sclerosis (NBMS). METHODS We identified never-treated BMS patients in our local MS database of 1352 patients. A group with NBMS was identified with same disease duration. All participants underwent 23Na magnetic resonance imaging (MRI). The existence of GMSA was detected by statistical analysis. RESULTS In total, 102 individuals were included (21 BMS, 25 NBMS and 56 controls). GMSA was detected in 10 BMS and 19 NBMS (11/16 relapsing-remitting multiple sclerosis (RRMS) and 8/9 secondary progressive multiple sclerosis (SPMS) patients) (p = 0.05). On logistic regression including the presence or absence of GMSA, thalamic volume, cortical grey-matter volume and T2-weighted lesion load, thalamic volume was independently associated with BMS status (odds ratio (OR) = 0.64 for each unit). Nonetheless, the absence of GMSA was independently associated when excluding patients with significant cognitive alteration (n = 7) from the BMS group (OR = 4.6). CONCLUSION Detection of GMSA in individuals and thalamic volume are promising to differentiate BMS from NBMS as compared with cortical or whole grey-matter atrophy and T2-weighted lesions.
Collapse
Affiliation(s)
- Adil Maarouf
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Soraya Gherib
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | | | - Patrick Viout
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | | | - Clémence Boutière
- APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Audrey Rico
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | | | - Wafaa Zaaraoui
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | - Jean Pelletier
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| |
Collapse
|
5
|
The Tumor Necrosis Factor Alpha and Interleukin 6 Auto-paracrine Signaling Loop Controls Mycobacterium avium Infection via Induction of IRF1/IRG1 in Human Primary Macrophages. mBio 2021; 12:e0212121. [PMID: 34607464 PMCID: PMC8546851 DOI: 10.1128/mbio.02121-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Macrophages sense and respond to pathogens by induction of antimicrobial and inflammatory programs to alert other immune cells and eliminate the infectious threat. We have previously identified the transcription factor IRF1 to be consistently activated in macrophages during Mycobacterium avium infection, but its precise role during infection is not clear. Here, we show that tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) autocrine/paracrine signaling contributes to controlling the intracellular growth of M. avium in human primary macrophages through activation of IRF1 nuclear translocation and expression of IRG1, a mitochondrial enzyme that produces the antimicrobial metabolite itaconate. Small interfering RNA (siRNA)-mediated knockdown of IRF1 or IRG1 increased the mycobacterial load, whereas exogenously provided itaconate was bacteriostatic at high concentrations. While the overall level of endogenous itaconate was low in M. avium-infected macrophages, the repositioning of mitochondria to M. avium phagosomes suggests a mechanism by which itaconate can be delivered directly to M. avium phagosomes in sufficient quantities to inhibit growth. Using mRNA hybridization, we further show that uninfected bystander cells actively contribute to the resolution of infection by producing IL-6 and TNF-α, which, via paracrine signaling, activate IRF1/IRG1 and strengthen the antimicrobial activity of infected macrophages. This mechanism contributes to the understanding of why patients on anti-inflammatory treatment, e.g., with tocilizumab or infliximab, can be more susceptible to mycobacterial disease.
Collapse
|
6
|
Omega-3- and Resveratrol-Loaded Lipid Nanosystems for Potential Use as Topical Formulations in Autoimmune, Inflammatory, and Cancerous Skin Diseases. Pharmaceutics 2021; 13:pharmaceutics13081202. [PMID: 34452163 PMCID: PMC8401194 DOI: 10.3390/pharmaceutics13081202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical–chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release–diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.
Collapse
|
7
|
Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S, Hale A, Starr A, Nandi M, Stylianou E, McShane H, Davis S, Fischer R, Kessler BM, McCullagh J, Channon KM, Crabtree MJ. Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Cell Rep 2019; 28:218-230.e7. [PMID: 31269442 PMCID: PMC6616861 DOI: 10.1016/j.celrep.2019.06.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/25/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023] Open
Abstract
Classical activation of macrophages (M(LPS+IFNγ)) elicits the expression of inducible nitric oxide synthase (iNOS), generating large amounts of NO and inhibiting mitochondrial respiration. Upregulation of glycolysis and a disrupted tricarboxylic acid (TCA) cycle underpin this switch to a pro-inflammatory phenotype. We show that the NOS cofactor tetrahydrobiopterin (BH4) modulates IL-1β production and key aspects of metabolic remodeling in activated murine macrophages via NO production. Using two complementary genetic models, we reveal that NO modulates levels of the essential TCA cycle metabolites citrate and succinate, as well as the inflammatory mediator itaconate. Furthermore, NO regulates macrophage respiratory function via changes in the abundance of critical N-module subunits in Complex I. However, NO-deficient cells can still upregulate glycolysis despite changes in the abundance of glycolytic intermediates and proteins involved in glucose metabolism. Our findings reveal a fundamental role for iNOS-derived NO in regulating metabolic remodeling and cytokine production in the pro-inflammatory macrophage.
Collapse
Affiliation(s)
- Jade D Bailey
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marina Diotallevi
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Thomas Nicol
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Eileen McNeill
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Andrew Shaw
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Surawee Chuaiphichai
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ashley Hale
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Anna Starr
- School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Manasi Nandi
- School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | | | - Helen McShane
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Keith M Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Mark J Crabtree
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
8
|
Odebode A, Adekunle A. Biomarkers of Oxidative Stress as Indicators of Fungi Environmental Pollution in Balb/c Albino Mice Monitored from South West, Nigeria. J Pathog 2019; 2019:6561520. [PMID: 31080673 PMCID: PMC6475542 DOI: 10.1155/2019/6561520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/02/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
The presence and detection of common airborne fungi in an area are important for the prevention and treatment of allergic fungal diseases. Because of the ubiquitous nature of fungi, the effect of four different fungal species in production of antioxidant and reactive oxygen species production in balb/c albino mice was investigated. Fifty-four balb/c mice were randomly divided into eight groups (n = 6) and a normal control group. Four different fungal plates, comprising Aspergillus flavus, Aspergillus penicillioides, Penicillium citrinum, and Penicillium chrysogenum, which were the most abundant fungi species sampled in the environment were cultured for one week to make 2.3 x 107 and 3.2 x 105 spores and injected intranasally in sterile saline into the nostrils of each of the mice. Results showed that all fungal inoculated organism produced statistically (P<0.05) significant reactive oxygen species while antioxidant parameters were significantly decreased in a dose dependent manner compared with normal control mice. It is therefore concluded that Aspergillus flavus, Aspergillus penicillioides, Penicillium citrinum, and Penicillium chrysogenum can alter and decrease immune function in balb/c mice. Therefore, this study was conducted to identify the most common airborne fungal species present in Southwest Nigeria and to study their allergic reactions.
Collapse
Affiliation(s)
- Adeyinka Odebode
- Department of Botany, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
- Department of Environment and Natural Science, Kabale University, Uganda
| | - Adedotun Adekunle
- Department of Botany, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| |
Collapse
|
9
|
Reshetnikov V, Hahn J, Maueröder C, Czegley C, Munoz LE, Herrmann M, Hoffmann MH, Mokhir A. Chemical Tools for Targeted Amplification of Reactive Oxygen Species in Neutrophils. Front Immunol 2018; 9:1827. [PMID: 30150984 PMCID: PMC6099268 DOI: 10.3389/fimmu.2018.01827] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
A number of chemical compounds are known, which amplify the availability of reactive oxygen species (ROS) in neutrophils both in vitro and in vivo. They can be roughly classified into NADPH oxidase 2 (NOX2)-dependent and NOX2-independent reagents. NOX2 activation is triggered by protein kinase C agonists (e.g., phorbol esters, transition metal ions), redox mediators (e.g., paraquat) or formyl peptide receptor (FPR) agonists (e.g., aromatic hydrazine derivatives). NOX2-independent mechanisms are realized by reagents affecting glutathione homeostasis (e.g., l-buthionine sulfoximine), modulators of the mitochondrial respiratory chain (e.g., ionophores, inositol mimics, and agonists of peroxisome proliferator-activated receptor γ) and chemical ROS amplifiers [e.g., aminoferrocene-based prodrugs (ABPs)]. Since a number of inflammatory and autoimmune diseases, as well as cancer and bacterial infections, are triggered or enhanced by aberrant ROS production in neutrophils, it is tempting to use ROS amplifiers as drugs for the treatment of these diseases. However, since the known reagents are not cell specific, their application for treatment likely causes systemic enhancement of oxidative stress, leading to severe side effects. Cell-targeted ROS enhancement can be achieved either by using conjugates of ROS amplifiers with ligands binding to receptors expressed on neutrophils (e.g., the GPI-anchored myeloid differentiation marker Ly6G or FPR) or by designing reagents activated by neutrophil function [e.g., phagocytic activity or enzymatic activity of neutrophil elastase (NE)]. Since binding of an artificial ligand to a receptor may trigger or inhibit priming of neutrophils the latter approach has a smaller potential for severe side effects and is probably better suitable for therapy. Here, we review current approaches for the use of ROS amplifiers and discuss their applicability for treatment. As an example, we suggest a possible design of neutrophil-specific ROS amplifiers, which are based on NE-activated ABPs.
Collapse
Affiliation(s)
- Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
| | - Christine Czegley
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luis Enrique Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Fauskanger M, Haabeth OAW, Skjeldal FM, Bogen B, Tveita AA. Tumor Killing by CD4 + T Cells Is Mediated via Induction of Inducible Nitric Oxide Synthase-Dependent Macrophage Cytotoxicity. Front Immunol 2018; 9:1684. [PMID: 30083157 PMCID: PMC6064871 DOI: 10.3389/fimmu.2018.01684] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
CD4+ T cells can induce potent anti-tumor immune responses. Due to the lack of MHC class II expression in most cancer cells, antigen recognition occurs indirectly via uptake and presentation on tumor-infiltrating antigen-presenting cells (APCs). Activation of the APCs can induce tumor rejection, but the mechanisms underlying tumor killing by such cells have not been established. To elucidate the molecular basis of CD4+ T-cell-mediated tumor rejection, we utilized a murine model of multiple myeloma, in which the T cells recognize a secreted tumor neoantigen. Our findings demonstrate that T cell recognition triggers inducible nitric oxide synthase activity within tumor-infiltrating macrophages. Diffusion of nitric oxide into surrounding tumor cells results in intracellular accumulation of toxic secondary oxidants, notably peroxynitrite. This results in tumor cell apoptosis through activation of the mitochondrial pathway. We find that this mode of cytotoxicity has strict spatial limitations, and is restricted to the immediate surroundings of the activated macrophage, thus limiting bystander killing. These findings provide a molecular basis for macrophage-mediated anti-tumor immune responses orchestrated by CD4+ T cells. Since macrophages are abundant in most solid tumors, evoking the secretion of nitric oxide by such cells may represent a potent therapeutic strategy.
Collapse
Affiliation(s)
- Marte Fauskanger
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Frode Miltzow Skjeldal
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Aune Tveita
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, Adcock IM, Garssen J. Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. Front Microbiol 2017; 8:2008. [PMID: 29085351 PMCID: PMC5649180 DOI: 10.3389/fmicb.2017.02008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is globally known as one of the most important human pathogens. Mtb is estimated to infect nearly one third of the world's population with many subjects having a latent infection. Thus, from an estimated 2 billion people infected with Mtb, less than 10% may develop symptomatic TB. This indicates that the host immune system may constrain pathogen replication in most infected individuals. On entering the lungs of the host, Mtb initially encounters resident alveolar macrophages which can engulf and subsequently eliminate intracellular microbes via a plethora of bactericidal mechanisms including the generation of free radicals such as reactive oxygen and nitrogen species. Nitric oxide (NO), a key anti-mycobacterial molecule, is detected in the exhaled breath of patients infected with Mtb. Recent knowledge regarding the regulatory role of NO in airway function and Mtb proliferation paves the way of exploiting the beneficial effects of this molecule for the treatment of airway diseases. Here, we discuss the importance of NO in the pathogenesis of TB, the diagnostic use of exhaled and urinary NO in Mtb infection and the potential of NO-based treatments.
Collapse
Affiliation(s)
- Hamidreza Jamaati
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Zeinab Pajouhi
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Mehrnaz Movassaghi
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| |
Collapse
|
12
|
Sannigrahi A, Maity P, Karmakar S, Chattopadhyay K. Interaction of KMP-11 with Phospholipid Membranes and Its Implications in Leishmaniasis: Effects of Single Tryptophan Mutations and Cholesterol. J Phys Chem B 2017; 121:1824-1834. [DOI: 10.1021/acs.jpcb.6b11948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Pabitra Maity
- Department
of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Sanat Karmakar
- Department
of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| |
Collapse
|
13
|
Amara S, Whalen M, Tiriveedhi V. High salt induces anti-inflammatory MΦ2-like phenotype in peripheral macrophages. Biochem Biophys Rep 2016; 7:1-9. [PMID: 27231721 PMCID: PMC4877052 DOI: 10.1016/j.bbrep.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Macrophages play a critical role in inflammation and antigen-presentation. Abnormal macrophage function has been attributed in autoimmune diseases and cancer progression. Recent evidence suggests that high salt tissue micro-environment causes changes in macrophage activation. In our current report, we studied the role of extracellular sodium chloride on phenotype changes in peripheral circulating monocyte/macrophages collected from healthy donors. High salt (0.2 M NaCl vs basal 0.1 M NaCl) treatment resulted in a decrease in MΦ1 macrophage phenotype (CD11b+CD14highCD16low) from 77.4±6.2% (0.1 M) to 29.3±5.7% (0.2 M, p<0.05), while there was an increase in MΦ2 macrophage phenotype (CD11b+ CD14lowCD16high) from 17.2±5.9% (0.1 M) to 67.4±9.4% (0.2 M, p<0.05). ELISA-based cytokine analysis demonstrated that high salt treatment induced decreased expression of in the MΦ1 phenotype specific pro-inflammatory cytokine, TNFα (3.3 fold), IL-12 (2.3 fold), CCL-10 (2 fold) and CCL-5 (3.8 fold), but conversely induced an enhanced expression MΦ2-like phenotype specific anti-inflammatory cytokine, IL-10, TGFβ, CCL-17 (3.7 fold) and CCR-2 (4.3 fold). Further high salt treatment significantly decreased phagocytic efficiency of macrophages and inducible nitric oxide synthetase expression. Taken together, these data suggest that high salt extracellular environment induces an anti-inflammatory MΦ2-like macrophage phenotype with poor phagocytic and potentially reduced antigen presentation capacity commonly found in tumor microenvironment. High salt induced macrophage switch from MΦ1 to MΦ2-like phenotype. High salt induced anti-inflammatory MΦ2-specific cytokine profile. Reduced phagocytic efficiency upon high salt treatment. Inhibition of iNOS activity following high salt stimulation.
Collapse
Affiliation(s)
| | - Margaret Whalen
- Department of Chemistry, Tennessee State University; Nashville, TN
| | | |
Collapse
|
14
|
Ranjan R, Karpurapu M, Rani A, Chishti AH, Christman JW. Hemozoin Regulates iNOS Expression by Modulating the Transcription Factor NF-κB in Macrophages. ACTA ACUST UNITED AC 2016; 2. [PMID: 27790644 DOI: 10.21767/2471-8084.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemozoin (Hz) is released from ruptured erythrocytes during malaria infection caused by Plasmodium sp., in addition the malaria infected individuals are prone to bacterial sepsis. The molecular interactions between Hz, bacterial components and macrophages remains poorly investigated. In this report, we investigated the combinatorial immune-modulatory effects of phagocytosed Hz, Interferon gamma (IFNγ) or lipopolysaccharide (LPS) in macrophages. Macrophages were treated with various concentrations of commercial synthetic Hz, and surprisingly it did not result in inducible nitric oxide synthase (iNOS) expression. However, when macrophages were pretreated with Hz and then challenged with IFNγ or LPS, there was a differential impact on iNOS expression. There was an increase in iNOS expression when macrophages were pre-treated with Hz and subsequently treated with IFNγ when compared to IFNγ alone. Whereas iNOS expression was reduced when Hz phagocytosed macrophages were stimulated with LPS compared to LPS alone. Furthermore, there was an increased activation of NF-κB in Hz phagocytosed macrophages that were challenged with IFNγ. The interaction between Hz and macrophages has an impact on iNOS expression.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Manjula Karpurapu
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, The Ohio State University, Columbus, Ohio, USA
| | - Asha Rani
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Athar H Chishti
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, USA
| | - John W Christman
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Maarouf A, Ferré JC, Zaaraoui W, Le Troter A, Bannier E, Berry I, Guye M, Pierot L, Barillot C, Pelletier J, Tourbah A, Edan G, Audoin B, Ranjeva JP. Ultra-small superparamagnetic iron oxide enhancement is associated with higher loss of brain tissue structure in clinically isolated syndrome. Mult Scler 2015; 22:1032-9. [PMID: 26453679 DOI: 10.1177/1352458515607649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 08/25/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Macrophages are important components of inflammatory processes in multiple sclerosis, closely linked to axonal loss, and can now be observed in vivo using ultra-small superparamagnetic iron oxide (USPIO). In the present 1-year longitudinal study, we aimed to determine the prevalence and the impact on tissue injury of macrophage infiltration in patients after the first clinical event of multiple sclerosis. METHODS Thirty-five patients, 32 years mean age, were imaged in a mean of 66 days after their first event using conventional magnetic resonance imaging, gadolinium (Gd) to probe blood-brain barrier integrity, USPIO to study macrophage infiltration and magnetization transfer ratio (MTR) to assess tissue structure integrity. Statistics were performed using two-group repeated-measures ANOVA. Any patient received treatment at baseline. RESULTS At baseline, patients showed 17 USPIO-positive lesions reflecting infiltration of macrophages present from the onset. This infiltration was associated with local higher loss of tissue structure as emphasized by significant lower MTRnorm values (p<0.03) in USPIO(+)/Gd(+) lesions (n=16; MTRnormUSPIO(+)/Gd(+)=0.78 at baseline, MTRnormUSPIO(+)/Gd(+)=0.81 at M12) relative to USPIO(-)/Gd(+) lesions (n=67; MTRnormUSPIO(-)/Gd(+)=0.82 at baseline, MTRnormUSPIO(-)/Gd(+)=0.85 at M12). No interaction in MTR values was observed during the 12 months follow-up (lesion type × time). CONCLUSION Infiltration of activated macrophages evidenced by USPIO enhancement, is present at the onset of multiple sclerosis and is associated with higher and persistent local loss of tissue structure. Macrophage infiltration affects more tissue structure while tissue recovery during the following year has a similar pattern for USPIO and Gd-enhanced lesions, leading to relative higher persistent local loss of tissue structure in lesions showing USPIO enhancement at baseline.
Collapse
Affiliation(s)
- Adil Maarouf
- Centre Hospitalier Universitaire de Reims, Université de Reims Champagne Ardennes, Service de Neurologie, Reims, France/Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Jean-Christophe Ferré
- CHU Rennes, Hôpital Pontchaillou, Service de Radiologie, Rennes, France/INRIA Rennes - VisAGeS Team, Rennes, France
| | - Wafaa Zaaraoui
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | | | | | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Laurent Pierot
- Centre Hospitalier Universitaire de Reims, Université de Reims Champagne Ardennes, Service de Radiologie, Reims, France
| | | | - Jean Pelletier
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Ayman Tourbah
- Centre Hospitalier Universitaire de Reims, Université de Reims Champagne Ardennes, Service de Neurologie, Reims, France/Laboratoire de Psychopathologie et de Neuropsychologie, EA 2027 Université Paris VIII, Saint-Denis Cedex, France
| | - Gilles Edan
- CHU Rennes, Hôpital Pontchaillou, Service de Neurologie, Rennes, France
| | - Bertrand Audoin
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | | |
Collapse
|
16
|
Mehta HH, Liu Y, Zhang MQ, Spiro S. Genome-wide analysis of the response to nitric oxide in uropathogenic Escherichia coli CFT073. Microb Genom 2015; 1:e000031. [PMID: 28348816 PMCID: PMC5320621 DOI: 10.1099/mgen.0.000031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022] Open
Abstract
Uropathogenic Escherchia coli (UPEC) is the causative agent of urinary tract infections. Nitric oxide (NO) is a toxic water-soluble gas that is encountered by UPEC in the urinary tract. Therefore, UPEC probably requires mechanisms to detoxify NO in the host environment. Thus far, flavohaemoglobin (Hmp), an NO denitrosylase, is the only demonstrated NO detoxification system in UPEC. Here we show that, in E. coli strain CFT073, the NADH-dependent NO reductase flavorubredoxin (FlRd) also plays a major role in NO scavenging. We generated a mutant that lacks all known and candidate NO detoxification pathways (Hmp, FlRd and the respiratory nitrite reductase, NrfA). When grown and assayed anaerobically, this mutant expresses an NO-inducible NO scavenging activity, pointing to the existence of a novel detoxification mechanism. Expression of this activity is inducible by both NO and nitrate, and the enzyme is membrane-associated. Genome-wide transcriptional profiling of UPEC grown under anaerobic conditions in the presence of nitrate (as a source of NO) highlighted various aspects of the response of the pathogen to nitrate and NO. Several virulence-associated genes are upregulated, suggesting that host-derived NO is a potential regulator of UPEC virulence. Chromatin immunoprecipitation and sequencing was used to evaluate the NsrR regulon in CFT073. We identified 49 NsrR binding sites in promoter regions in the CFT073 genome, 29 of which were not previously identified in E. coli K-12. NsrR may regulate some CFT073 genes that do not have homologues in E. coli K-12.
Collapse
Affiliation(s)
- Heer H. Mehta
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Yuxuan Liu
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Michael Q. Zhang
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Stephen Spiro
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
17
|
Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. THE JOURNAL OF IMMUNOLOGY 2015; 194:4901-13. [PMID: 25876760 DOI: 10.4049/jimmunol.1402941] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in the virulence of Bordetella pertussis. CyaA penetrates complement receptor 3-expressing phagocytes and catalyzes uncontrolled conversion of cytosolic ATP to the key second messenger molecule cAMP. This paralyzes the capacity of neutrophils and macrophages to kill bacteria by complement-dependent oxidative burst and opsonophagocytic mechanisms. We show that cAMP signaling through the protein kinase A (PKA) pathway activates Src homology domain 2 containing protein tyrosine phosphatase (SHP) 1 and suppresses production of bactericidal NO in macrophage cells. Selective activation of PKA by the cell-permeable analog N(6)-benzoyladenosine-3',5'-cyclic monophosphate interfered with LPS-induced inducible NO synthase (iNOS) expression in RAW264.7 macrophages, whereas inhibition of PKA by H-89 largely restored the production of iNOS in CyaA-treated murine macrophages. CyaA/cAMP signaling induced SHP phosphatase-dependent dephosphorylation of the c-Fos subunit of the transcription factor AP-1 and thereby inhibited TLR4-triggered induction of iNOS gene expression. Selective small interfering RNA knockdown of SHP-1, but not of the SHP-2 phosphatase, rescued production of TLR-inducible NO in toxin-treated cells. Finally, inhibition of SHP phosphatase activity by NSC87877 abrogated B. pertussis survival inside murine macrophages. These results reveal that an as yet unknown cAMP-activated signaling pathway controls SHP-1 phosphatase activity and may regulate numerous receptor signaling pathways in leukocytes. Hijacking of SHP-1 by CyaA action then enables B. pertussis to evade NO-mediated killing in sentinel cells of innate immunity.
Collapse
Affiliation(s)
- Ondrej Cerny
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jana Kamanova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jiri Masin
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Ilona Bibova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Karolina Skopova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| |
Collapse
|
18
|
Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014; 26:471-85. [PMID: 25453226 DOI: 10.1016/j.smim.2014.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
Abstract
Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Claire E Dodd
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Ranjan R, Deng J, Chung S, Lee YG, Park GY, Xiao L, Joo M, Christman JW, Karpurapu M. The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis. J Innate Immun 2014; 6:754-64. [PMID: 24970700 DOI: 10.1159/000362647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/03/2014] [Indexed: 01/16/2023] Open
Abstract
The role of the transcription factor nuclear factor of activated T cells (NFAT) was initially identified in T and B cell gene expression, but its role in regulating gene expression in macrophages during sepsis is not known. Our data show that NFATc3 regulates expression of inducible nitric oxide synthase (iNOS) in macrophages stimulated with lipopolysaccharide. Selective inhibition of NFAT by cyclosporine A and a competitive peptide inhibitor 11R-VIVIT inhibited endotoxin-induced expression of iNOS and nitric oxide (NO) release. Macrophages from NFATc3 knockout (KO) mice show reduced iNOS expression and NO release and attenuated bactericidal activity. Gel shift and chromatin immunoprecipitation assays show that endotoxin challenge increases NFATc3 binding to the iNOS promoter, resulting in transcriptional activation of iNOS. The binding of NFATc3 to the iNOS promoter is abolished by NFAT inhibitors. NFATc3 KO mice subjected to sepsis show that NFATc3 is necessary for bacterial clearance in mouse lungs during sepsis. Our study demonstrates for the first time that NFATc3 is necessary for macrophage iNOS expression during sepsis, which is essential for containment of bacterial infections.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Medicine and Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois, Chicago, Ill., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Larsen AK, Nymo IH, Briquemont B, Sørensen KK, Godfroid J. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells. PLoS One 2013; 8:e84861. [PMID: 24376851 PMCID: PMC3869908 DOI: 10.1371/journal.pone.0084861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.
Collapse
Affiliation(s)
- Anett K. Larsen
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
- * E-mail:
| | - Ingebjørg H. Nymo
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Benjamin Briquemont
- Faculty of Science, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Karen K. Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Jacques Godfroid
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
| |
Collapse
|
21
|
Abstract
OBJECTIVE Nitric Oxide (NO) is one of the most powerful antibacterial compounds. The aim of this study was to determine the association between salivary NO, dental caries and cariogenic bacteria. MATERIALS AND METHODS The salivary NO concentration of 257 Korean children was analyzed by the Griess colorimetric reaction method. Salivary mutans streptococci (MS) and Lactobacilli (LB) were counted using the Dentocult MS and Dentocult LB kit, respectively. Dental caries status was examined using the WHO criteria. Confounders were age, gender, salivary flow rate and salivary buffer capacity. Analysis of covariance (ANCOVA) was used to evaluate the association among NO, salivary MS level, salivary LB level and dental caries status after adjusting for the effects of confounders. RESULTS A significant decrease was found in salivary NO levels as the salivary LB count increased after controlling for confounders (p = 0.049). However, the MS level, caries experience and active caries status showed no significant association. CONCLUSION This result indicates that NO production might be a host defense mechanism against the growth of cariogenic bacteria.
Collapse
Affiliation(s)
- Dong-Hun Han
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
22
|
Larsen AK, Nymo IH, Boysen P, Tryland M, Godfroid J. Entry and elimination of marine mammal Brucella spp. by hooded seal (Cystophora cristata) alveolar macrophages in vitro. PLoS One 2013; 8:e70186. [PMID: 23936159 PMCID: PMC3723690 DOI: 10.1371/journal.pone.0070186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/16/2013] [Indexed: 11/26/2022] Open
Abstract
A high prevalence of Brucellapinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal (Cystophoracristata); however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B. pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B. pinnipedialis reference strain (NCTC 12890) from harbor seal (Phocavitulina), B. ceti reference strain (NCTC 12891) from harbor porpoise (Phocoenaphocoena) and a B. ceti Atlantic white-sided dolphin (Lagenorhynchusacutus) isolate (M83/07/1), to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B. pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains tested were able to establish a persistent infection in primary alveolar macrophages from hooded seal.
Collapse
Affiliation(s)
- Anett K Larsen
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
23
|
Link between cancer and Alzheimer disease via oxidative stress induced by nitric oxide-dependent mitochondrial DNA overproliferation and deletion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:962984. [PMID: 23691268 PMCID: PMC3649749 DOI: 10.1155/2013/962984] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 01/19/2023]
Abstract
Nitric oxide- (NO-) dependent oxidative stress results in mitochondrial ultrastructural alterations and DNA damage in cases of Alzheimer disease (AD). However, little is known about these pathways in human cancers, especially during the development as well as the progression of primary brain tumors and metastatic colorectal cancer. One of the key features of tumors is the deficiency in tissue energy that accompanies mitochondrial lesions and formation of the hypoxic smaller sized mitochondria with ultrastructural abnormalities. We speculate that mitochondrial involvement may play a significant role in the etiopathogenesis of cancer. Recent studies also demonstrate a potential link between AD and cancer, and anticancer drugs are being explored for the inhibition of AD-like pathology in transgenic mice. Severity of the cancer growth, metastasis, and brain pathology in AD (in animal models that mimic human AD) correlate with the degree of mitochondrial ultrastructural abnormalities. Recent advances in the cell-cycle reentry of the terminally differentiated neuronal cells indicate that NO-dependent mitochondrial abnormal activities and mitotic cell division are not the only important pathogenic factors in pathogenesis of cancer and AD, but open a new window for the development of novel treatment strategies for these devastating diseases.
Collapse
|
24
|
The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. mBio 2013; 4:e00617-12. [PMID: 23512964 PMCID: PMC3604766 DOI: 10.1128/mbio.00617-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Environmental pathogens survive and replicate within the outside environment while maintaining the capacity to infect mammalian hosts. For some microorganisms, mammalian infection may be a relatively rare event. Understanding how environmental pathogens retain their ability to cause disease may provide insight into environmental reservoirs of disease and emerging infections. Listeria monocytogenes survives as a saprophyte in soil but is capable of causing serious invasive disease in susceptible individuals. The bacterium secretes virulence factors that promote cell invasion, bacterial replication, and cell-to-cell spread. Recently, an L. monocytogenes chitinase (ChiA) was shown to enhance bacterial infection in mice. Given that mammals do not synthesize chitin, the function of ChiA within infected animals was not clear. Here we have demonstrated that ChiA enhances L. monocytogenes survival in vivo through the suppression of host innate immunity. L. monocytogenes ΔchiA mutants were fully capable of establishing bacterial replication within target organs during the first 48 h of infection. By 72 to 96 h postinfection, however, numbers of ΔchiA bacteria diminished, indicative of an effective immune response to contain infection. The ΔchiA-associated virulence defect could be complemented in trans by wild-type L. monocytogenes, suggesting that secreted ChiA altered a target that resulted in a more permissive host environment for bacterial replication. ChiA secretion resulted in a dramatic decrease in inducible nitric oxide synthase (iNOS) expression, and ΔchiA mutant virulence was restored in NOS2−/− mice lacking iNOS. This work is the first to demonstrate modulation of a specific host innate immune response by a bacterial chitinase. Bacterial chitinases have traditionally been viewed as enzymes that either hydrolyze chitin as a food source or serve as a defense mechanism against organisms containing structural chitin (such as fungi). Recent evidence indicates that bacterial chitinases and chitin-binding proteins contribute to pathogenesis, primarily via bacterial adherence to chitin-like molecules present on the surface of mammalian cells. In contrast, mammalian chitinases have been linked to immunity via inflammatory immune responses that occur outside the context of infection, and since mammals do not produce chitin, the targets of these mammalian chitinases have remained elusive. This work demonstrates that a Listeria monocytogenes-secreted chitinase has distinct functional roles that include chitin hydrolysis and suppression of host innate immunity. The established link between chitinase and the inhibition of host inducible nitric oxide synthase (iNOS) expression may help clarify the thus far elusive relationship observed between mammalian chitinase enzymes and host inflammatory responses occurring in the absence of infection.
Collapse
|
25
|
Abdel-Salam OME, Sleem AA, Shafee N. Hepatoprotective effects of Cynara extract and silymarin on carbon tetrachloride-induced hepatic damage in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-012-1675-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Plekhova NG, Somova LM, Krylova NV, Leonova GN, Lyapun IN, Smirnov IS. Biochemical markers of virus cytopathogenicity in macrophages. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683813010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Verma RK, Singh AK, Mohan M, Agrawal AK, Verma PRP, Gupta A, Misra A. Inhalable microparticles containing nitric oxide donors: saying NO to intracellular Mycobacterium tuberculosis. Mol Pharm 2012; 9:3183-9. [PMID: 22978290 DOI: 10.1021/mp300269g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although nitric oxide (NO) is a bactericidal component of the macrophage's innate response to intracellular infections such as tuberculosis (TB), prolonged inhalation of NO gas has little benefit in chemotherapy of TB. The impact of controlled release of NO through intracellular delivery of NO donors to macrophages infected in vitro with Mycobacterium tuberculosis (Mtb) was investigated. Inhalable microparticles (MP) were prepared by spray-drying. Isosorbide mononitrate (ISMN), sodium nitroprusside (SNP), and diethylenetriamine nitric oxide adduct (DETA/NO) were incorporated in poly(lactic-co-glycolic acid) (PLGA) with encapsulation efficiencies of >90% to obtain MP yields of ∼70%. The mass median aerodynamic diameter (MMAD) of the MP was 2.2-2.4 μm within geometric standard deviations (GSD) of ≤0.1 μm. MP were phagocytosed by THP-1 derived macrophages in culture and significantly (P < 0.05) sustained NO secretion into culture supernatant from 6 to 72 h in comparison to equivalent amounts of drugs in solution. Significantly (P < 0.05) higher dose-dependent killing of intracellular Mtb by MP compared to equivalent amounts of drugs in solution was observed on estimation of colony forming units (CFU) surviving 24 h after exposure to drugs or MP. The cytotoxicity of MP toward macrophages was lower than that of dissolved drugs. It was concluded that inhalable MP can target NO donors to the macrophage, control NO release in the macrophage cytosol, and reduce Mtb CFU by up to 3-log in 24 h, at doses that are much lower than those required for cardiovascular effects.
Collapse
Affiliation(s)
- Rahul K Verma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Ogier de Baulny H, Schiff M, Dionisi-Vici C. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab 2012; 106:12-7. [PMID: 22402328 DOI: 10.1016/j.ymgme.2012.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
Lysinuric protein intolerance (LPI) is an inherited defect of cationic amino acid (lysine, arginine and ornithine) transport at the basolateral membrane of intestinal and renal tubular cells caused by mutations in SLC7A7 encoding the y(+)LAT1 protein. LPI has long been considered a relatively benign urea cycle disease, when appropriately treated with low-protein diet and l-citrulline supplementation. However, the severe clinical course of this disorder suggests that LPI should be regarded as a severe multisystem disease with uncertain outcome. Specifically, immune dysfunction potentially attributable to nitric oxide (NO) overproduction secondary to arginine intracellular trapping (due to defective efflux from the cell) might be a crucial pathophysiological route explaining many of LPI complications. The latter comprise severe lung disease with pulmonary alveolar proteinosis, renal disease, hemophagocytic lymphohistiocytosis with subsequent activation of macrophages, various auto-immune disorders and an incompletely characterized immune deficiency. These results have several therapeutic implications, among which lowering the l-citrulline dosage may be crucial, as excessive citrulline may worsen intracellular arginine accumulation.
Collapse
Affiliation(s)
- Hélène Ogier de Baulny
- APHP, Reference Center for Inherited Metabolic Disease, Hôpital Robert Debré, F-75019 Paris, France
| | | | | |
Collapse
|
29
|
Schmid M, Wege AK, Ritter U. Characteristics of "Tip-DCs and MDSCs" and Their Potential Role in Leishmaniasis. Front Microbiol 2012; 3:74. [PMID: 22416241 PMCID: PMC3298847 DOI: 10.3389/fmicb.2012.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/13/2012] [Indexed: 12/23/2022] Open
Abstract
Since the first description of dendritic cells (DCs) by Steinman and Cohn (1973), the myeloid lineage of leukocytes was investigated intensively. Nowadays it is obvious that myeloid cells, especially DCs, are crucial for the adaptive and innate immune response against intracellular pathogens such as Leishmania major parasites. Based on the overlapping expression of molecules that were commonly used to classify myeloid cells, it becomes difficult to denominate those cell types precisely. Of note, most of these markers used for myeloid cell identification are expressed on a broad range of myeloid cells, and should therefore be handled with care if used for subtyping of myeloid cells. In this mini-review we aim to discuss the relative impact of DCs that release TNF and nitric oxide (Tip-DCs) and myeloid cells with suppressive capacities (myeloid-derived suppressor cells, MDSCs) in infectious diseases such as experimental leishmaniasis. In our point of view it cannot be excluded that the novel subsets that were denominated as “Tip-DCs” and “MDSCs” might not be classical “subsets” but rather represent myeloid cells in a transient maturation stage expressing different genes, in response to the surrounding environment.
Collapse
Affiliation(s)
- Maximilian Schmid
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|
30
|
Friedman AJ, Blecher K, Schairer D, Tuckman-Vernon C, Nacharaju P, Sanchez D, Gialanella P, Martinez LR, Friedman JM, Nosanchuk JD. Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide 2011; 25:381-6. [PMID: 21946032 DOI: 10.1016/j.niox.2011.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/05/2011] [Accepted: 09/11/2011] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) plays a vital role in mammalian host defense through a variety of mechanisms. In particular, NO can oxidize to form reactive nitrogen species or interact with protein thiols and metal centers, blocking essential microbial processes. S-nitrosoglutathione (GSNO), a potent NO donor formed by the interaction of NO with intracellular glutathione (GSH), is a major factor in this pathway and is considered one of the strongest naturally occurring nitrosating agent. We previously described the broad-spectrum antimicrobial activity of a nanoparticulate platform capable of controlled and sustained release of NO (NO-np). Interestingly, in vivo efficacy of the NO-np surpassed in vitro data generated. We hypothesized that the enhanced activity was in part achieved via the interaction between the generated NO and available GSH, forming GSNO. In the current study, we investigated the efficiency of NO-np to form GSNO in the presence of GSH was evaluated, and assessed the antimicrobial activity of the formed GSNO against methicillin resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. When GSH was combined with NO-np, GSNO was rapidly produced and significant concentrations of GSNO were maintained for >24h. The GSNO generated was more effective compared to NO-np alone against all bacterial strains examined, with P. aeruginosa being the most sensitive and K. pneumoniae the most resistant. We conclude that the combination of NO-np with GSH is an effective means of generating GSNO, and presents a novel approach to potent antimicrobial therapy.
Collapse
Affiliation(s)
- Adam J Friedman
- Department of Medicine (Division of Dermatology), Montefiore Medical Center, Bronx, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ameredes BT. Translating airway biomarker information into practice: from theoretical science to applied medicine. Pulm Pharmacol Ther 2010; 24:187-92. [PMID: 20883807 DOI: 10.1016/j.pupt.2010.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/21/2010] [Indexed: 11/17/2022]
Abstract
Biomarkers ranging from simple to sophisticated have been used by man for many years of his existence. The main use for biomarkers over that time has been to assess relative states health and well-being, including the presence of functional limitations that presage debilitation and even death. In recent years, there has been intense interest in the development of non-invasive biomarkers to accurately predict disease state and progression, as well as potential drug therapy to assist in early mitigation of morbidity and possibly, forestall premature mortality. The development of biomarkers of airway status has followed a similar pattern, and in recent years, several biomarkers have followed the progression from basic and pre-clinical development, to clinical/translational application, and finally to potential clinical therapeutic application. Inherent in this progression is the refinement of technology that has allowed measurement of these biomarkers in a fast, convenient, and reliable fashion, such that they can be obtainable within a clinical practice setting, to allow the physician to make treatment decisions for diseases such as asthma and COPD. While the clinical therapeutic application of airway biomarkers such as exhaled nitric oxide and β(2)-adrenoreceptor Arg-16 polymorphism are still in their infancy, they have followed this common pathway of development, and now will require some years of application to demonstrate their true utility as predictive biomarkers of airway status and treatment response.
Collapse
Affiliation(s)
- Bill T Ameredes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Medical Research Building 8.104, 301 University Blvd., Galveston, TX 77555-1083, USA.
| |
Collapse
|
32
|
Ghazanfari T, Yaraee R, Farahnejad Z, Hakimzadeh H, Danialy F. In vitroeffect ofPleurotusfloridaon macrophage cell viability and nitric oxide production. FOOD AGR IMMUNOL 2009. [DOI: 10.1080/09540100902838198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Plekhova NG, Somova LM, Zavorueva DV, Krylova NV, Leonova GN. NO-producing activity of macrophages infected with tick-borne encephalitis virus. Bull Exp Biol Med 2008; 145:344-7. [DOI: 10.1007/s10517-008-0087-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Lung Defenses. DAIL AND HAMMAR’S PULMONARY PATHOLOGY 2008. [PMCID: PMC7120004 DOI: 10.1007/978-0-387-68792-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We breathe to live, but the air we breathe carries many potentially harmful agents. To protect us against these constant challenges, our lungs have defenses that are remarkably effective, biologically complex, and scientifically fascinating. It is not hyperbole to say that the pathogenesis of most lung disease begins with a breach of these defenses. This chapter surveys these normal lung defense systems. Just as this text assumes familiarity with general pathology, we also assume knowledge of basic immunology. This chapter emphasizes the lung’s variations on themes of innate and adaptive immunity, and discusses the special role of granulomatous inflammation in lung defenses.
Collapse
|
35
|
Gilchrist M, Befus AD. Interferon-gamma regulates chemokine expression and release in the human mast cell line HMC1: role of nitric oxide. Immunology 2007; 123:209-17. [PMID: 17662042 PMCID: PMC2433300 DOI: 10.1111/j.1365-2567.2007.02688.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mast cells (MCs) are critical immune effector cells that release cytokines and chemokines involved in both homeostasis and disease. Interferon-gamma (IFN-gamma) is a pleiotropic cytokine that regulates multiple cellular activities. IFN-gamma modulates rodent MC responsiveness via production of nitric oxide (NO), although the effects in human MC populations is unknown. We sought to investigate the effects of IFN-gamma on expression of the chemokines interleukin-8 (IL-8) and CCL1 (I-309) in a human mast cell line (HMC1) and to determine the underlying regulatory mechanism. Nitric oxide synthase (NOS), IL-8 and CCL1 expression was determined using real-time polymerase chain reaction (PCR). NOS protein expression was analysed using western blot. NOS activity was determined using the citrulline assay. IL-8 and CCL1 release was measured by specific enzyme-linked immunosorbent assay (ELISA). IFN-gamma inhibited phorbol 12-myristate 13-acetate (PMA)-induced release of IL-8 and CCL1 (by 47 and 38%). Real-time PCR analysis of IFN-gamma-treated HMC1 showed a significant (P < 0.05) time-dependent increase in NOS1 and NOS3 mRNA. NOS3 protein was significantly increased at 18 hr, which correlated with a significant (P < 0.05) increase in constitutive NOS (cNOS) activity. IFN-gamma-induced inhibition of chemokine expression and release was NO dependent, as treatment with the NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) reduced the IFN-gamma inhibitory effect on IL-8 and CCL1 mRNA expression. NO donors mimicked the IFN-gamma effect. IFN-gamma inhibited PMA-induced cAMP response element binding protein (CREB) phosphorylation and DNA-binding activity. Our observations indicate for the first time that IFN-gamma enhances endogenous NO formation through NOS3 activity, and that NO regulates the transcription and release of IL-8 and CCL1 in a human MC line.
Collapse
Affiliation(s)
- M Gilchrist
- Glaxo-Heritage Asthma Research Laboratory, Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
36
|
Pullan ST, Gidley MD, Jones RA, Barrett J, Stevanin TM, Read RC, Green J, Poole RK. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol 2007; 189:1845-55. [PMID: 17189370 PMCID: PMC1855760 DOI: 10.1128/jb.01354-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 12/05/2006] [Indexed: 12/28/2022] Open
Abstract
We previously elucidated the global transcriptional responses of Escherichia coli to the nitrosating agent S-nitrosoglutathione (GSNO) in both aerobic and anaerobic chemostats, demonstrated the expression of nitric oxide (NO)-protective mechanisms, and obtained evidence of critical thiol nitrosation. The present study was the first to examine the transcriptome of NO-exposed E. coli in a chemostat. Using identical conditions, we compared the GSNO stimulon with the stimulon of NO released from two NO donor compounds {3-[2-hydroxy-1-(1-methyl-ethyl)-2-nitrosohydrazino]-1-propanamine (NOC-5) and 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamine (NOC-7)} simultaneously and demonstrated that there were marked differences in the transcriptional responses to these distinct nitrosative stresses. Exposure to NO did not induce met genes, suggesting that, unlike GSNO, NO does not elicit homocysteine S nitrosation and compensatory increases in methionine biosynthesis. After entry into cells, exogenous methionine provided protection from GSNO-mediated killing but not from NO-mediated killing. Anaerobic exposure to NO led to up-regulation of multiple Fnr-repressed genes and down-regulation of Fnr-activated genes, including nrfA, which encodes cytochrome c nitrite reductase, providing strong evidence that there is NO inactivation of Fnr. Other global regulators apparently affected by NO were IscR, Fur, SoxR, NsrR, and NorR. We tried to identify components of the NorR regulon by performing a microarray comparison of NO-exposed wild-type and norR mutant strains; only norVW, encoding the NO-detoxifying flavorubredoxin and its cognate reductase, were unambiguously identified. Mutation of norV or norR had no effect on E. coli survival in mouse macrophages. Thus, GSNO (a nitrosating agent) and NO have distinct cellular effects; NO more effectively interacts with global regulators that mediate adaptive responses to nitrosative stress but does not affect methionine requirements arising from homocysteine nitrosation.
Collapse
Affiliation(s)
- Steven T Pullan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ricciardolo FLM, Di Stefano A, Sabatini F, Folkerts G. Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 2006; 533:240-52. [PMID: 16464450 DOI: 10.1016/j.ejphar.2005.12.057] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/23/2022]
Abstract
Endogenous Nitric Oxide (NO) plays a key role in the physiological regulation of airway functions. In response to various stimuli activated inflammatory cells (e.g., eosinophils and neutrophils) generate oxidants ("oxidative stress") which in conjunction with exaggerated enzymatic release of NO and augmented NO metabolites produce the formation of strong oxidizing reactive nitrogen species, such as peroxynitrite, in various airway diseases including asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and acute respiratory distress syndrome (ARDS). Reactive nitrogen species provoke amplification of inflammatory processes in the airways and lung parenchyma causing DNA damage, inhibition of mitochondrial respiration, protein dysfunction and cell damage ("nitrosative stress"). These effects alter respiratory homeostasis (such as bronchomotor tone and pulmonary surfactant activity) and the long-term persistence of "nitrosative stress" may contribute to the progressive deterioration of pulmonary functions leading to respiratory failure. Recent studies showing that protein nitration can be dynamic and reversible ("denitration mechanisms") open new horizons in the treatment of chronic respiratory diseases affected by the deleterious actions of "nitrosative stress".
Collapse
|
38
|
Papp KM, Maguire ME. The CorA Mg2+ transporter does not transport Fe2+. J Bacteriol 2004; 186:7653-8. [PMID: 15516579 PMCID: PMC524906 DOI: 10.1128/jb.186.22.7653-7658.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/13/2004] [Indexed: 11/20/2022] Open
Abstract
corA encodes the constitutively expressed primary Mg2+ uptake system of most eubacteria and many archaea. Recently, a mutation in corA was reported to make Salmonella enterica serovar Typhimurium markedly resistant to Fe2+-mediated toxicity. Mechanistically, this was hypothesized to be from an ability of CorA to mediate the influx of Fe2+. Consequently, we directly examined Fe2+ transport and toxicity in wild-type versus corA cells. As determined by direct transport assay, CorA cannot transport Fe2+ and Fe2+ does not potently inhibit CorA transport of 63Ni2+. Mg2+ can, relatively weakly, inhibit Fe2+ uptake, but inhibition is not dependent on the presence of a functional corA allele. Although excess Fe2+ was slightly toxic to S. enterica serovar Typhimurium, we were unable to elicit a significant differential sensitivity in a wild-type versus a corA strain. We conclude that CorA does not transport Fe2+ and that the relationship, if any, between iron toxicity and corA is indirect.
Collapse
Affiliation(s)
- Krisztina M Papp
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | |
Collapse
|
39
|
Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2004; 2:820-32. [PMID: 15378046 DOI: 10.1038/nrmicro1004] [Citation(s) in RCA: 1122] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phagocyte-derived reactive oxygen and nitrogen species are of crucial importance for host resistance to microbial pathogens. Decades of research have provided a detailed understanding of the regulation, generation and actions of these molecular mediators, as well as their roles in resisting infection. However, differences of opinion remain with regard to their host specificity, cell biology, sources and interactions with one another or with myeloperoxidase and granule proteases. More than a century after Metchnikoff first described phagocytosis, and more than four decades after the discovery of the burst of oxygen consumption that is associated with microbial killing, the seemingly elementary question of how phagocytes inhibit, kill and degrade microorganisms remains controversial. This review updates the reader on these concepts and the topical questions in the field.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, 1959 North East Pacific Street, Box 357242, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
40
|
Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84:731-65. [PMID: 15269335 DOI: 10.1152/physrev.00034.2003] [Citation(s) in RCA: 573] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO synthase (NOS). NOS exists in three distinct isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO derived from the constitutive isoforms of NOS (nNOS and eNOS) and other NO-adduct molecules (nitrosothiols) have been shown to be modulators of bronchomotor tone. On the other hand, NO derived from iNOS seems to be a proinflammatory mediator with immunomodulatory effects. The concentration of this molecule in exhaled air is abnormal in activated states of different inflammatory airway diseases, and its monitoring is potentially a major advance in the management of, e.g., asthma. Finally, the production of NO under oxidative stress conditions secondarily generates strong oxidizing agents (reactive nitrogen species) that may modulate the development of chronic inflammatory airway diseases and/or amplify the inflammatory response. The fundamental mechanisms driving the altered NO bioactivity under pathological conditions still need to be fully clarified, because their regulation provides a novel target in the prevention and treatment of chronic inflammatory diseases of the airways.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Dept. of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Marc Peters-Golden
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109-0642, USA.
| |
Collapse
|
42
|
Gilchrist M, McCauley SD, Befus AD. Expression, localization, and regulation of NOS in human mast cell lines: effects on leukotriene production. Blood 2004; 104:462-9. [PMID: 15044250 DOI: 10.1182/blood-2003-08-2990] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a potent radical produced by nitric oxide synthase (NOS) and has pleiotrophic activities in health and disease. As mast cells (MCs) play a central role in both homeostasis and pathology, we investigated NOS expression and NO production in human MC populations. Endothelial NOS (eNOS) was ubiquitously expressed in both human MC lines and skin-derived MCs, while neuronal NOS (nNOS) was variably expressed in the MC populations studied. The inducible (iNOS) isoform was not detected in human MCs. Both growth factor-independent (HMC-1) and -dependent (LAD 2) MC lines showed predominant nuclear eNOS protein localization, with weaker cytoplasmic expression. nNOS showed exclusive cytoplasmic localization in HMC-1. Activation with Ca(2+) ionophore (A23187) or IgE-anti-IgE induced eNOS phosphorylation and translocation to the nucleus and nuclear and cytoplasmic NO formation. eNOS colocalizes with the leukotriene (LT)-initiating enzyme 5-lipoxygenase (5-LO) in the MC nucleus. The NO donor, S-nitrosoglutathione (SNOG), inhibited, whereas the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME), potentiated LT release in a dose-dependent manner. Thus, human MC lines produce NO in both cytoplasmic and nuclear compartments, and endogenously produced NO can regulate LT production by MCs.
Collapse
|
43
|
Janssen R, van der Straaten T, van Diepen A, van Dissel JT. Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes Infect 2003; 5:527-34. [PMID: 12758282 DOI: 10.1016/s1286-4579(03)00069-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Salmonella typhimurium is an intracellular pathogen that can survive and replicate in macrophages. One of the host defense mechanisms that S. typhimurium encounters upon infection is superoxide produced by the phagocytes' NADPH-oxidase. Salmonella has evolved numerous ways of coping with superoxide in the extracellular environment. In addition, Salmonella has to defend itself against superoxide produced as a by-product of aerobic respiration. Over the last decade, research on bacterial mutants has led to the identification of Salmonella strains that differ from their parental strain in susceptibility to superoxide in vitro. However, the consequences of such mutations for bacterial virulence are highly variable, indicating that superoxide sensitivity per se is not a characteristic that renders Salmonella less virulent. By discussing various bacterial mutants classified according to their in vitro sensitivity to superoxide, we will exemplify the complex mechanisms that Salmonella has evolved to cope with superoxide stress.
Collapse
Affiliation(s)
- Riny Janssen
- Department of Infectious Diseases, C5-P, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | |
Collapse
|