1
|
Wang M, Sun Y, Zhao Y, Jiang X, Wang T, Xie J, Yu X, Guo S, Zhang Y, Chen X, Hong A. An FGF2-Derived Short Peptide Attenuates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Collagen Deposition and Epithelial-Mesenchymal Transition via the FGFR/MAPK Signaling Pathway. Int J Mol Sci 2025; 26:517. [PMID: 39859240 PMCID: PMC11764546 DOI: 10.3390/ijms26020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team. Using a bleomycin-induced pulmonary fibrosis mouse model, we observed that P5 alleviated fibrosis by inhibiting collagen deposition, as confirmed by CT scans and histological staining. In TGF-β-induced cell models, P5 effectively suppressed collagen deposition and epithelial-mesenchymal transition (EMT). Transcriptome analysis highlighted pathways related to receptor binding, extracellular matrix organization, and cell adhesion, with KEGG analysis confirming FGFR/MAPK signaling inhibition as the primary mechanism underlying its anti-fibrotic effects. In summary, our study demonstrates that P5 significantly attenuates pulmonary fibrosis through the inhibition of EMT, collagen deposition, and FGFR/MAPK signaling, providing a promising therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Mengwei Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Yuanmeng Sun
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Yanzhi Zhao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xinyi Jiang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Teng Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiuling Yu
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Shujun Guo
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Yu JB, Padanilam BJ, Kim J. Activation of Yes-Associated Protein Is Indispensable for Transformation of Kidney Fibroblasts into Myofibroblasts during Repeated Administration of Cisplatin. Cells 2024; 13:1475. [PMID: 39273045 PMCID: PMC11393901 DOI: 10.3390/cells13171475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts.
Collapse
Affiliation(s)
- Jia-Bin Yu
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Babu J. Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Sun C, Bai M, Jia Y, Tian X, Guo Y, Xu X, Guo Z. mRNA sequencing reveals the distinct gene expression and biological functions in cardiac fibroblasts regulated by recombinant fibroblast growth factor 2. PeerJ 2023; 11:e15736. [PMID: 37483983 PMCID: PMC10362857 DOI: 10.7717/peerj.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
After myocardial injury, cardiac fibroblasts (CFs) differentiate into myofibroblasts, which express and secrete extracellular matrix (ECM) components for myocardial repair, but also promote myocardial fibrosis. Recombinant fibroblast growth factor 2 (FGF2) protein drug with low molecular weight can promote cell survival and angiogenesis, and it was found that FGF2 could inhibit the activation of CFs, suggesting FGF2 has great potential in myocardial repair. However, the regulatory role of FGF2 on CFs has not been fully elucidated. Here, we found that recombinant FGF2 significantly suppressed the expression of alpha smooth muscle actin (α-SMA) in CFs. Through RNA sequencing, we analyzed mRNA expression in CFs and the differently expressed genes regulated by FGF2, including 430 up-regulated genes and 391 down-regulated genes. Gene ontology analysis revealed that the differentially expressed genes were strongly enriched in multiple biological functions, including ECM organization, cell adhesion, actin filament organization and axon guidance. The results of gene set enrichment analysis (GSEA) show that ECM organization and actin filament organization are down-regulated, while axon guidance is up-regulated. Further cellular experiments indicate that the regulatory functions of FGF2 are consistent with the findings of the gene enrichment analysis. This study provides valuable insights into the potential therapeutic role of FGF2 in treating cardiac fibrosis and establishes a foundation for further research to uncover the underlying mechanisms of CFs gene expression regulated by FGF2.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengru Bai
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yonglong Guo
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinhui Xu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Kletukhina S, Mutallapova G, Titova A, Gomzikova M. Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms231911212. [PMID: 36232511 PMCID: PMC9569825 DOI: 10.3390/ijms231911212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mechanism leading to the development of progressive IPF. Cell death provokes the migration, proliferation and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the repair of damaged lung tissue. This review considers the molecular mechanisms of the development of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as a promising cell-free therapy tool, so in this review we discuss the results available to date of the use of EVs-MSCs for lung tissue repair.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Mutallapova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Angelina Titova
- Morphology and General Pathology Department, Kazan Federal University, 420008 Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-917-8572269
| |
Collapse
|
6
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Habibi H, Suzuki A, Hayashi K, Salimi H, Hori Y, Orita K, Yabu A, Terai H, Nakamura H. Expression and function of fibroblast growth factor 1 in the hypertrophied ligamentum flavum of lumbar spinal stenosis. J Orthop Sci 2022; 27:299-307. [PMID: 33637374 DOI: 10.1016/j.jos.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis is one of the main pathologies caused by hypertrophy of the ligamentum flavum (LF), which leads to lumbar spinal stenosis (LSS). The fibroblast growth factor (FGF) family is a key mediator of fibrosis. However, acidic fibroblast growth factor (FGF-1) expression and function are not well understood in LF. This study sought to evaluate FGF-1 expression in the hypertrophied and non-hypertrophied human LF, and to investigate its function using primary human LF cell cultures. METHODS We obtained hypertrophied lumbar LF from LSS patients and non-hypertrophied lumbar LF from control patients during surgery. Immunohistochemistry and qPCR were performed to evaluate FGF-1 expression in LF tissue. The function of FGF-1 and transforming growth factor beta 1 (TGF-β1) was also investigated using primary LF cell culture. The effects on cell morphology and cell proliferation were examined using a crystal violet staining assay and MTT assay, respectively. Immunocytochemistry, western blotting, and qPCR were performed to evaluate the effect of FGF-1 on TGF-β1-induced myofibroblast differentiation and fibrosis. RESULTS Immunohistochemistry and qPCR showed higher FGF-1 expression in hypertrophied LF compared to control LF. Crystal violet staining and MTT assay revealed that FGF-1 decreases LF cell size and inhibits their proliferation in a dose-dependent manner, whereas TGF-β1 increases cell size and promotes proliferation. Immunocytochemistry and western blotting further demonstrated that TGF-β1 increases, while FGF-1 decreases, α-SMA expression in LF cells. Moreover, FGF-1 also caused downregulation of collagen type 1 and type 3 expression in LF cells. CONCLUSION FGF-1 is highly upregulated in the LF of LSS patients. Meanwhile, in vitro, FGF-1 exhibits antagonistic effects to TGF-β1 by inhibiting cell proliferation and decreasing LF cell size as well as the expression of fibrosis markers. These results suggest that FGF-1 has an anti-fibrotic role in the pathophysiology of LF hypertrophy.
Collapse
Affiliation(s)
- Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Recillas-Román S, Montaño M, Ruiz V, Pérez-Ramos J, Becerril C, Herrera I, Amador-Muñoz O, Martínez-Domínguez YM, Ramos C. Wood Smoke Extract Promotes Extracellular Matrix Remodeling in Normal Human Lung Fibroblasts. Int J Toxicol 2021; 40:506-516. [PMID: 34530646 DOI: 10.1177/10915818211044809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wood smoke (WS) contains many harmful compounds, including polycyclic aromatic hydrocarbons (PAHs). WS induces inflammation in the airways and lungs and can lead to the development of various acute and chronic respiratory diseases. Pulmonary fibroblasts are the main cells involved in the remodeling of the extracellular matrix (ECM) during the WS-induced inflammatory response. Although fibroblasts remain in a low proliferation state under physiological conditions, they actively participate in ECM remodeling during the inflammatory response in pathophysiological states. Consequently, we used normal human lung fibroblasts (NHLFs) to assess the potential effects of the PAHs-containing wood smoke extract (WSE) on the growth rate, total collagen synthesis, and the expression levels of collagen I and III, matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, and the transforming growth factor (TGF)-β1. We also assessed MMPs activity. The results showed that WSE induced a trimodal behavior in the growth rate curves in NHLFs; the growth rate increased with 0.5-1 % WSE and decreased with 2.5% WSE, without causing cell damage; 5-20% WSE inhibited the growth and induced cell damage. After 3 hours of exposure, 2.5% WSE induced an increase in total collagen synthesis and upregulation of TGF-β1, collagen I and III, MMP-1, TIMP-1, and TIMP-2 expression. However, MMP-2 expression was downregulated and MMP-9 was not expressed. The gelatinase activity of MMP-2 was also increased. These results suggest that WSE affects the ECM remodeling in NHLFs and indicate the potential involvement of PAHs in this process.
Collapse
Affiliation(s)
- Stephanie Recillas-Román
- Doctorate in Biological and Health Sciences, 27789Metropolitan Autonomous University-Xochimilco (UAM-X), Mexico City, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, 42635National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Julia Pérez-Ramos
- Department of Biological Systems, 27789Metropolitan Autonomous University-Xochimilco (UAM-X), Mexico City, Mexico
| | - Carina Becerril
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, 42635National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Iliana Herrera
- Laboratory of Pulmonary Biopathology INER- Faculty of Sciences, National Autonomous University of Mexico (UNAM), Mexico; Pulmonary Fibrosis Research Department, Ismael Cosío Villegas National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Omar Amador-Muñoz
- Group of Chemical Speciation of Atmospheric Organic Aerosols, Center for Atmospheric Sciences, 7180National Autonomous University of Mexico Mexico
| | - Y Margarita Martínez-Domínguez
- Group of Chemical Speciation of Atmospheric Organic Aerosols, Center for Atmospheric Sciences, 7180National Autonomous University of Mexico Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, 42635National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
9
|
Takeuchi S, Yamanouchi K, Sugihara H, Matsuwaki T, Nishihara M. Differentiation of skeletal muscle Mesenchymal progenitor cells to myofibroblasts is reversible. Anim Sci J 2020; 91:e13368. [PMID: 32285501 PMCID: PMC7216888 DOI: 10.1111/asj.13368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Accumulation of intramuscular adipose tissue (IMAT) and development of fibrous tissues due to accumulation of collagen both affect meat quality such as tenderness, texture, and flavor. Thus, it is important for the production of high‐quality meat to regulate the amount of adipose and fibrous tissues in skeletal muscle. IMAT is comprised of adipocytes, while collagens included in fibrous tissues are mainly produced by activated fibroblasts. Both adipocytes and fibroblasts are differentiated from their common ancestors, called mesenchymal progenitor cells (MPC). We previously established rat MPC clone, 2G11 cells. As several reports implicated the plasticity of fibroblast differentiation, in the present study, using 2G11 cells, we asked whether myofibroblasts differentiated from MPC are capable of re‐gaining adipogenic potential in vitro. By treating with bFGF, their αSMA expression was reduced and adipogenic potential was restored partially. Furthermore, by lowering cell density together with bFGF treatment, 2G11 cell‐derived myofibroblasts lost αSMA expression and showed the highest adipogenic potential, and this was along with their morphological change from flattened‐ to spindle‐like shape, which is typically observed with MPC. These results indicated that MPC‐derived myofibroblasts could re‐acquire adipogenic potential, possibly mediated through returning to an undifferentiated MPC‐like state.
Collapse
Affiliation(s)
- Shiho Takeuchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
11
|
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16:11-31. [PMID: 31792399 PMCID: PMC7913072 DOI: 10.1038/s41584-019-0324-5] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
TMT-Based Quantitative Proteomics Analysis Reveals Airborne PM 2.5-Induced Pulmonary Fibrosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 16:ijerph16010098. [PMID: 30602677 PMCID: PMC6339163 DOI: 10.3390/ijerph16010098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
Epidemiological and experimental studies have documented that long-term exposure to fine particulate matter (PM2.5) increases the risk of respiratory diseases. However, the details of the underlying mechanism remain unclear. In this study, male C57BL/6 mice were exposed to ambient PM2.5 (mean daily concentration ~64 µg/m³) for 12 weeks through a "real-world" airborne PM2.5 exposure system. We found that PM2.5 caused severe lung injury in mice as evidenced by histopathological examination. Then, tandem mass tag (TMT) labeling quantitative proteomic technology was performed to analyze protein expression profiling in the lungs from control and PM2.5-exposed mice. A total of 32 proteins were differentially expressed in PM2.5-exposed lungs versus the controls. Among these proteins, 24 and 8 proteins were up- and down-regulated, respectively. Gene ontology analysis indicated that PM2.5 exerts a toxic effect on lungs by affecting multiple biological processes, including oxidoreductase activity, receptor activity, and protein binding. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that extracellular matrix (ECM)⁻receptor interaction, phagosome, small cell lung cancer, and phosphatidylinositol 3-kinase(PI3K)-protein kinase B (Akt) signaling pathways contribute to PM2.5-induced pulmonary fibrosis. Taken together, these results provide a comprehensive proteomics analysis to further understanding of the molecular mechanisms underlying PM2.5-elicited pulmonary disease.
Collapse
|
13
|
Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72:112-127. [PMID: 29625182 PMCID: PMC6146058 DOI: 10.1016/j.matbio.2018.03.021] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic disease of the lung that is marked by progressive decline in pulmonary function and ultimately respiratory failure. Genetic and environmental risk factors have been identified that indicate injury to, and dysfunction of the lung epithelium is central to initiating the pathogenic process. Following injury to the lung epithelium, growth factors, matrikines and extracellular matrix driven signaling together activate a variety of repair pathways that lead to inflammatory cell recruitment, fibroblast proliferation and expansion of the extracellular matrix, culminating in tissue fibrosis. This tissue fibrosis then leads to changes in the biochemical and biomechanical properties of the extracellular matrix, which potentiate profibrotic mechanisms through a "feed-forward cycle." This review provides an overview of the interactions of the pathogenic mechanisms of IPF with a focus on epithelial-mesenchymal crosstalk and the extracellular matrix as a therapeutic target for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin C Hewlett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States.
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
14
|
Koo HY, El-Baz LM, House SL, Cilvik SN, Dorry SJ, Shoukry NM, Salem ML, Hafez HS, Dulin NO, Ornitz DM, Guzy RD. Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J Pathol 2018; 246:54-66. [PMID: 29873400 PMCID: PMC6175645 DOI: 10.1002/path.5106] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/12/2018] [Accepted: 05/19/2018] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of pulmonary fibrosis. Mice lacking FGF2 have increased mortality and impaired epithelial recovery after bleomycin exposure, supporting a protective or reparative function following lung injury. To determine whether FGF2 overexpression reduces bleomycin-induced injury, we developed an inducible genetic system to express FGF2 in type II pneumocytes. Double-transgenic (DTG) mice with doxycycline-inducible overexpression of human FGF2 (SPC-rtTA;TRE-hFGF2) or single-transgenic controls were administered intratracheal bleomycin and fed doxycycline chow, starting at either day 0 or day 7. In addition, wild-type mice received intratracheal or intravenous recombinant FGF2, starting at the time of bleomycin treatment. Compared to controls, doxycycline-induced DTG mice had decreased pulmonary fibrosis 21 days after bleomycin, as assessed by gene expression and histology. This beneficial effect was seen when FGF2 overexpression was induced at day 0 or day 7 after bleomycin. FGF2 overexpression did not alter epithelial gene expression, bronchoalveolar lavage cellularity or total protein. In vitro studies using primary mouse and human lung fibroblasts showed that FGF2 strongly inhibited baseline and TGFβ1-induced expression of alpha smooth muscle actin (αSMA), collagen, and connective tissue growth factor. While FGF2 did not suppress phosphorylation of Smad2 or Smad-dependent gene expression, FGF2 inhibited TGFβ1-induced stress fiber formation and serum response factor-dependent gene expression. FGF2 inhibition of stress fiber formation and αSMA requires FGF receptor 1 (FGFR1) and downstream MEK/ERK, but not AKT signaling. In summary, overexpression of FGF2 protects against bleomycin-induced pulmonary fibrosis in vivo and reverses TGFβ1-induced collagen and αSMA expression and stress fiber formation in lung fibroblasts in vitro, without affecting either inflammation or epithelial gene expression. Our results suggest that in the lung, FGF2 is antifibrotic in part through decreased collagen expression and fibroblast to myofibroblast differentiation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hyun Young Koo
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - Lamis M.F. El-Baz
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
- Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Stacey L. House
- Washington University School of Medicine, Department of Emergency Medicine, St. Louis, MO, USA
| | - Sarah N. Cilvik
- Washington University School of Medicine, Department of Developmental Biology, St. Louis, MO, USA
| | - Samuel J. Dorry
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - Nahla M. Shoukry
- Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Mohamed L. Salem
- Tanta University, Center of Excellence in Cancer Research, Faculty of Science, Immunology & Biotechnology Department, Tanta, Egypt
| | - Hani S. Hafez
- Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Nickolai O. Dulin
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - David M. Ornitz
- Washington University School of Medicine, Department of Developmental Biology, St. Louis, MO, USA
| | - Robert D. Guzy
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Peterová E, Podmolíková L, Řezáčová M, Mrkvicová A. Fibroblast Growth Factor-1 Suppresses TGF-β-Mediated Myofibroblastic Differentiation of Rat Hepatic Stellate Cells. ACTA MEDICA (HRADEC KRÁLOVÉ) 2017; 59:124-132. [PMID: 28440215 DOI: 10.14712/18059694.2017.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Myofibroblast expansion is a critical event in the pathogenesis of liver fibrosis. The activation of hepatic stellate cells (HSC) to myofibroblast (MFB) results in the enhanced production of extracellular matrix (ECM). In this study, we explored the effect of acidic fibroblast growth factor (FGF-1) treatment on a transforming growth factor (TGF-β1) induced MFB conversion. We used HSC-T6 cell line, which represents well-established model of activated HSC. These cells strongly expressed α-smooth muscle actin (α-SMA) and fibronectin (FN-EDA) after stimulation with TGF-β1, which is a stimulus for MFB differentiation and ECM production. FGF-1 reduced proteins expression to levels comparable with untreated cells. Mild repression of secreted gelatinases was seen in culture media after FGF-1 treatment. The exposure of cells to collagen gel leads to changes in cell morphology and in expression of MFB markers. Lack of α-SMA in cells embedded to collagen gel was detected. When stimulated with TGF-β1, the cells increased expression of FN-EDA, but not α-SMA. Although the cells on plastic and in collagen gel show different properties, FGF-1 reduced expression of FN-EDA in both conditions. Disrupting TGF-β1 signalling pathway represents a potential strategy for the treatment of fibrosis. We showed that FGF-1 could antagonize signals initiated by TGF-β1.
Collapse
Affiliation(s)
- Eva Peterová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Lucie Podmolíková
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
16
|
Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM. Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 2017; 292:10364-10378. [PMID: 28487375 DOI: 10.1074/jbc.m117.791764] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive pulmonary scarring, decline in lung function, and often results in death within 3-5 five years after diagnosis. Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of IPF; however, the mechanism through which FGF signaling contributes to pulmonary fibrosis remains unclear. We hypothesized that FGF receptor (FGFR) signaling in fibroblasts is required for the fibrotic response to bleomycin. To test this, mice with mesenchyme-specific tamoxifen-inducible inactivation of FGF receptors 1, 2, and 3 (Col1α2-CreER; TCKO mice) were lineage labeled and administered intratracheal bleomycin. Lungs were collected for histologic analysis, whole lung RNA and protein, and dissociated for flow cytometry and FACS. Bleomycin-treated Col1α2-CreER; TCKO mice have decreased pulmonary fibrosis, collagen production, and fewer α-smooth muscle actin-positive (αSMA+) myofibroblasts compared with controls. Freshly isolated Col1α2-CreER; TCKO mesenchymal cells from bleomycin-treated mice have decreased collagen expression compared with wild type mesenchymal cells. Furthermore, lineage labeled FGFR-deficient fibroblasts have decreased enrichment in fibrotic areas and decreased proliferation. These data identify a cell autonomous requirement for mesenchymal FGFR signaling in the development of pulmonary fibrosis, and for the enrichment of the Col1α2-CreER-positive (Col1α2+) mesenchymal lineage in fibrotic tissue following bleomycin exposure. We conclude that mesenchymal FGF signaling is required for the development of pulmonary fibrosis, and that therapeutic strategies aimed directly at mesenchymal FGF signaling could be beneficial in the treatment of IPF.
Collapse
Affiliation(s)
- Robert D Guzy
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637, .,the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Ling Li
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Craig Smith
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Samuel J Dorry
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Hyun Young Koo
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Lin Chen
- the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - David M Ornitz
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| |
Collapse
|
17
|
Valatas V, Filidou E, Drygiannakis I, Kolios G. Stromal and immune cells in gut fibrosis: the myofibroblast and the scarface. Ann Gastroenterol 2017; 30:393-404. [PMID: 28655975 PMCID: PMC5479991 DOI: 10.20524/aog.2017.0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory scarring is the end-result of excessive extracellular matrix (ECM) accumulation and tissue architectural destruction. It represents a failure to effectively remodel ECM and achieve proper reinstitution and healing during chronic relapsing inflammatory processes. Scarring may affect the functionality of any organ, and in the case of inflammatory bowel disease (IBD)-associated fibrosis leads to stricture formation and often surgery to remove the affected bowel. The activated myofibroblast is the final effector cell that overproduces ECM under the influence of various mediators generated by an intense interplay of classic and non-classic immune cells. This review focuses on how proinflammatory mediators from various sources produced in different stages of intestinal inflammation can form profibrotic pathways that eventually lead to tissue scarring through sustained activation of myofibroblasts.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| |
Collapse
|
18
|
Xiao L, Dudley AC. Fine-tuning vascular fate during endothelial-mesenchymal transition. J Pathol 2017; 241:25-35. [PMID: 27701751 PMCID: PMC5164846 DOI: 10.1002/path.4814] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
In the heart and other organs, endothelial-mesenchymal transition (EndMT) has emerged as an important developmental process that involves coordinated migration, differentiation, and proliferation of the endothelium. In multiple disease states including cancer angiogenesis and cardiovascular disease, the processes that regulate EndMT are recapitulated, albeit in an uncoordinated and dysregulated manner. Members of the transforming growth factor beta (TGFβ) superfamily are well known to impart cellular plasticity during EndMT by the timely activation (or repression) of transcription factors and miRNAs in addition to epigenetic regulation of gene expression. On the other hand, fibroblast growth factors (FGFs) are reported to augment or oppose TGFβ-driven EndMT in specific contexts. Here, we have synthesized the currently understood roles of TGFβ and FGF signalling during EndMT and have provided a new, comprehensive paradigm that delineates how an autocrine and paracrine TGFβ/FGF axis coordinates endothelial cell specification and plasticity. We also provide new guidelines and nomenclature that considers factors such as endothelial cell heterogeneity to better define EndMT across different vascular beds. This perspective should therefore help to clarify why TGFβ and FGF can both cooperate with or oppose one another during the complex process of EndMT in both health and disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew C. Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA 22908, USA
- Emily Couric Cancer Center, The University of Virginia
| |
Collapse
|
19
|
El Agha E, Seeger W, Bellusci S. Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Dev Dyn 2016; 246:235-244. [PMID: 27783451 DOI: 10.1002/dvdy.24468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of polypeptides that are involved in many biological processes, ranging from prenatal cell-fate specification and organogenesis to hormonal and metabolic regulation in postnatal life. During embryonic development, these growth factors are important mediators of the crosstalk among ectoderm-, mesoderm-, and endoderm-derived cells, and they instruct the spatial and temporal growth of organs and tissues such as the brain, bone, lung, gut, and others. The involvement of FGFs in postnatal lung homeostasis is a growing field, and there is emerging literature about their roles in lung pathophysiology. In this review, the involvement of FGF signaling in a wide array of lung diseases will be summarized. Developmental Dynamics 246:235-244, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
20
|
Kim KK, Sisson TH, Horowitz JC. Fibroblast growth factors and pulmonary fibrosis: it's more complex than it sounds. J Pathol 2016; 241:6-9. [PMID: 27757968 DOI: 10.1002/path.4825] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Lung fibrosis results from the cumulative effect of dysfunctional wound repair involving multiple cell types, including fibroblasts, epithelial cells, and macrophages responding to an array of soluble and matrix-mediated stimuli. Recent studies have shown that a tyrosine kinase inhibitor that targets FGF, VEGF, and PDGF receptors can slow the rate of decline in pulmonary function in patients with idiopathic pulmonary fibrosis. However, each of these growth factor families is comprised of multiple ligands and receptors with pleiotropic activities on different cell types such that their broad inhibition might have both pro-fibrotic and anti-fibrotic effects, limiting the potential therapeutic efficacy. Continued investigation and delineation of specific roles of individual proteins and receptors on different cell types hold promise for targeting specific pathways with precision and optimizing the potential efficacy of future approaches to lung fibrosis therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 1150 W Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Thomas H Sisson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 1150 W Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 1150 W Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| |
Collapse
|
21
|
Shimbori C, Bellaye PS, Xia J, Gauldie J, Ask K, Ramos C, Becerril C, Pardo A, Selman M, Kolb M. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. J Pathol 2016; 240:197-210. [DOI: 10.1002/path.4768] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Chiko Shimbori
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
| | - Pierre-Simon Bellaye
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
| | - Jiaji Xia
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
| | - Jack Gauldie
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Carlos Ramos
- Instituto Nacional de Enfermedades Respiratorias; México DF México Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias; México DF México Mexico
| | - Annie Pardo
- Facultad de Ciencias; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias; México DF México Mexico
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
22
|
Peterová E, Mrkvicová A, Podmolíková L, Řezáčová M, Kanta J. The role of cytokines TGF-beta1 and FGF-1 in the expression of characteristic markers of rat liver myofibroblasts cultured in three-dimensional collagen gel. Physiol Res 2016; 65:661-672. [PMID: 27429124 DOI: 10.33549/physiolres.933092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rat liver myofibroblasts (MFB) are the key cells involved in the deposition of extracellular matrix in fibrotic liver. They were isolated by repeated passaging of non-parenchymal cell fraction and cultured in 3-dimensional (3D) collagen gel mimicking tissue. The transfer of MFB from plastic dishes to collagen resulted in the change in their shape from large and spread to slender with long extensions. The expression of transforming growth factor-beta1 (TGF-beta1) and of MFB markers, alpha-smooth muscle actin (alpha-SMA) and cellular fibronectin (EDA-FN), on protein level was significantly decreased in collagen gel. The gel did not change the expression of metalloproteinase MMP-2 but activated the proenzyme. The experiments with inhibitors of metabolic pathways showed that EDA-FN and alpha-SMA were differently regulated. The expression of EDA-FN required functional TGF-beta1 receptors and was also dependent on the activity of protein kinases MEK1 and MEK2. alpha-SMA expression was primarily determined by the 3D environment. Fibroblast growth factor-1 (FGF-1) in combination with heparin decreased the expression of alpha-SMA and increased the expression of EDA-FN in the cells on plastic. The cellular environment may influence the cells per se and may modify the action of other agents.
Collapse
Affiliation(s)
- E Peterová
- Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
23
|
Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of Lung Fibrosis Resolution. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1066-77. [PMID: 27021937 DOI: 10.1016/j.ajpath.2016.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/09/2023]
Abstract
Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California; Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - Simon Wong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California
| | - Carmen A Taype
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California-San Diego, La Jolla, California
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
24
|
Joannes A, Brayer S, Besnard V, Marchal-Sommé J, Jaillet M, Mordant P, Mal H, Borie R, Crestani B, Mailleux AA. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 2016; 310:L615-29. [PMID: 26773067 DOI: 10.1152/ajplung.00185.2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor β1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo.
Collapse
Affiliation(s)
- Audrey Joannes
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Stéphanie Brayer
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Valérie Besnard
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Joëlle Marchal-Sommé
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Madeleine Jaillet
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| | - Pierre Mordant
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et Vasculaire, and
| | - Hervé Mal
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France
| | - Raphael Borie
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A
| | - Bruno Crestani
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A,
| | - Arnaud A Mailleux
- INSERM U1152, DHU FIRE, Labex Inflamex, Université Paris Diderot, Sorbonne Paris Cité
| |
Collapse
|
25
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
26
|
Ruiz-Camp J, Morty RE. Divergent fibroblast growth factor signaling pathways in lung fibroblast subsets: where do we go from here? Am J Physiol Lung Cell Mol Physiol 2015; 309:L751-5. [PMID: 26342090 DOI: 10.1152/ajplung.00298.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023] Open
Abstract
Lung fibroblasts play a key role in postnatal lung development, namely, the formation of the alveolar gas exchange units, through the process of secondary septation. Although evidence initially highlighted roles for fibroblasts in the production and remodeling of the lung extracellular matrix, more recent studies have described the presence of different fibroblast subsets in the developing lung. These subsets include myofibroblasts and lipofibroblasts and their precursors. These cells are believed to play different roles in alveologenesis and are localized to different regions of the developing septa. The precise roles played by these different fibroblast subsets remain unclear. Understanding the signaling pathways that control the discrete functions of these fibroblast subsets would help to clarify the roles and the regulation of lung fibroblasts during lung development. Here, we critically evaluate a recent report that described divergent fibroblast growth factor (FGF) signaling pathways in two different subsets of lung fibroblasts that express different levels of green fluorescent protein (GFP) driven by the platelet-derived growth factor receptor-α promoter. The GFP expression was used as a surrogate for lipofibroblasts (GFP(low)) and myofibroblasts (GFP(high)). It was suggested that Fgf10/Fgf1 and Fgf18/Fgfr3 autocrine pathways may be operative in GFP(low) and GFP(high) cells, respectively, and that these pathways might regulate the proliferation and migration of different fibroblast subsets during alveologenesis. These observations lay important groundwork for the further exploration of FGF function during normal lung development, as well as in aberrant lung development associated with bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
27
|
Mori S, Kodaira M, Ito A, Okazaki M, Kawaguchi N, Hamada Y, Takada Y, Matsuura N. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells. PLoS One 2015; 10:e0137486. [PMID: 26334633 PMCID: PMC4559424 DOI: 10.1371/journal.pone.0137486] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGF) secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2). We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.
Collapse
Affiliation(s)
- Seiji Mori
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Moe Kodaira
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Ayano Ito
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Mika Okazaki
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Naomasa Kawaguchi
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Yoshinosuke Hamada
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Yoshikazu Takada
- Departments of Dermatology, Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, 95817, United States of America
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 520 Wu-Hsing Street, Taipei, 11031, Taiwan, R.O.C
- * E-mail: (YT); (NM)
| | - Nariaki Matsuura
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
- * E-mail: (YT); (NM)
| |
Collapse
|
28
|
Inomata M, Nishioka Y, Azuma A. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis. CORE EVIDENCE 2015; 10:89-98. [PMID: 26346347 PMCID: PMC4555978 DOI: 10.2147/ce.s82905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis. The molecular mechanisms involved in the progression of IPF are not fully understood; however, the platelet-derived growth factor (PDGF)/PDGF receptor pathway is thought to play a critical role in fibrogenesis of the lungs. Other growth factors, including fibroblast growth factor and vascular endothelial growth factor, are also thought to contribute to the pathogenesis of pulmonary fibrosis. Nintedanib is an inhibitor of multiple tyrosine kinases, including receptors for PDGF, fibroblast growth factor, and vascular endothelial growth factor. In the Phase II TOMORROW trial, treatment with 150 mg of nintedanib twice daily showed a trend to slow the decline in lung function and significantly decrease acute exacerbations in patients with IPF, while showing an acceptable safety profile. The Phase III INPULSIS trials demonstrated a significant decrease in the annual rate of decline in forced vital capacity in IPF patients treated with 150 mg nintedanib twice daily. In the INPULSIS-2 trial, the time to the first acute exacerbation significantly increased in IPF patients who were treated with 150 mg of nintedanib twice daily. Pirfenidone, another antifibrotic drug, was shown to limit the decline in pulmonary function in patients with IPF in the ASCEND trial. Combination therapy with nintedanib and pirfenidone is anticipated, although further evaluation of its long-term safety is needed. There is limited evidence for the safety of the combination therapy although a Phase II trial conducted in Japan demonstrated that combination therapy with nintedanib and pirfenidone was tolerable for 1 month. Available antifibrotic agents (ie, pirfenidone and N-acetylcysteine) have limited efficacy as single therapies for IPF; therefore, further study of combination therapy with antifibrotic agents is needed.
Collapse
Affiliation(s)
- Minoru Inomata
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo
| |
Collapse
|
29
|
Huang SU, Yoon JJ, Ismail S, McGhee JJ, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury. Cell Biol Int 2015; 39:1274-87. [PMID: 26094955 DOI: 10.1002/cbin.10501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022]
Abstract
The cornea is the initial refractive interface of the eye. Its transparency is critical for clear vision and is maintained by stem cells which also act to repair injury inflicted by external insults, such as chemical and thermal burns. Damage to the epithelium compromises its clarity and can reduce or eliminate the stem cell population, diminishing the ability for self-repair. This condition has been termed "limbal stem cell deficiency"; severe cases can lead to corneal blindness. Sphere-forming cells isolated from peripheral cornea are a potential source of stem and progenitor cells for corneal repair. When provided with appropriate substrate, these spheres have the ability to adhere and for cells to migrate outwards akin to that of their natural environment. Direct compression injury and remote scratch injury experiments were conducted on the sphere cells to gauge their wound healing capacity. Measures of proliferation, differentiation, and migration were assessed by immunohistochemical detection of EdU incorporation, α-smooth muscle actin expression and confocal image analysis, respectively. Both modes of injury were observed to draw responses from the spheres indicating wound healing processes. Direct wounding induced a rapid, but transient increase in expression of α-SMA, a marker of corneal myofibroblasts, followed by a proliferative and increasing migratory response. The spheres were observed to respond to remote injury as entire units, with no directional response seen for targeted repair over the scratch injury area. These results give strength to the future use of these peripheral corneal spheres as transplantable units for the regeneration of corneal tissue.
Collapse
Affiliation(s)
- Stephanie U Huang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jinny J Yoon
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Salim Ismail
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer J McGhee
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Sherwin
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
MacKenzie B, Korfei M, Henneke I, Sibinska Z, Tian X, Hezel S, Dilai S, Wasnick R, Schneider B, Wilhelm J, El Agha E, Klepetko W, Seeger W, Schermuly R, Günther A, Bellusci S. Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 2015; 16:83. [PMID: 26138239 PMCID: PMC4495640 DOI: 10.1186/s12931-015-0242-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Recent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts. Methods FGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed. Results Whole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects. Conclusions Strong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0242-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Martina Korfei
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Ingrid Henneke
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Zaneta Sibinska
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Xia Tian
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Stefanie Hezel
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Salma Dilai
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Roxana Wasnick
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Beate Schneider
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jochen Wilhelm
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Elie El Agha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, General Hospital University Vienna, Vienna, Austria
| | - Werner Seeger
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Ralph Schermuly
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany.,AGAPLESION Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany. .,German Center for Lung Research, Greifenstein, Germany. .,Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. .,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation.
| |
Collapse
|
31
|
Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1434-45. [PMID: 25745043 PMCID: PMC4416110 DOI: 10.1183/09031936.00174914] [Citation(s) in RCA: 639] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease characterised by fibrosis of the lung parenchyma and loss of lung function. Although the pathogenic pathways involved in IPF have not been fully elucidated, IPF is believed to be caused by repetitive alveolar epithelial cell injury and dysregulated repair, in which there is uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts, which excessively deposit extracellular matrix (ECM) proteins in the interstitial space. A number of profibrotic mediators including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor-β are believed to play important roles in the pathogenesis of IPF. Nintedanib is a potent small molecule inhibitor of the receptor tyrosine kinases PDGF receptor, FGF receptor and vascular endothelial growth factor receptor. Data from in vitro studies have shown that nintedanib interferes with processes active in fibrosis such as fibroblast proliferation, migration and differentiation, and the secretion of ECM. In addition, nintedanib has shown consistent anti-fibrotic and anti-inflammatory activity in animal models of lung fibrosis. These data provide a strong rationale for the clinical efficacy of nintedanib in patients with IPF, which has recently been demonstrated in phase III clinical trials. Nintedanib interferes with processes active in fibrosis, e.g. fibroblast proliferation, migration anddifferentiationhttp://ow.ly/Iae9z
Collapse
Affiliation(s)
- Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eva Wex
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Susanne Stowasser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | | |
Collapse
|
32
|
Yang X, Chen B, Liu T, Chen X. Reversal of myofibroblast differentiation: a review. Eur J Pharmacol 2014; 734:83-90. [PMID: 24742377 DOI: 10.1016/j.ejphar.2014.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
Abstract
It has long been considered that fibrosis and fibroblast-to-myofibroblast differentiation are irreversible processes. However, recent data obtained indicates that tissue fibrosis and fibroblast-to-myofibroblast differentiation can indeed be reversed, which offers the possibility of a new therapeutic approach for fibrotic disorders. Here, we discuss the origin of the myofibroblasts and different aspects of their differentiation, especially the key mediators and TGFβ-induced signaling pathways. We also report here a few factors involved in myofiroblast dedifferentiation and several compounds which can reverse the established dedifferentiated myofibroblast, as examples that provide the reader a glimpse of the current trends of approach for discovering useful anti-fibrotic drugs.
Collapse
Affiliation(s)
- XiaoHong Yang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China
| | - XiaoHong Chen
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
33
|
Sisco PN, Wilson CG, Chernak D, Clark JC, Grzincic EM, Ako-Asare K, Goldsmith EC, Murphy CJ. Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: a mechanism for nanoparticle regulation of cell phenotype? PLoS One 2014; 9:e86670. [PMID: 24516536 PMCID: PMC3916299 DOI: 10.1371/journal.pone.0086670] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022] Open
Abstract
Cell behavior in the presence of nanomaterials is typically explored through simple viability assays, but there is mounting evidence that nanomaterials can have more subtle effects on a variety of cellular functions. Previously our lab demonstrated that gold nanorods functionalized with polyelectrolyte multi-layers inhibited rat cardiac fibroblast-mediated remodeling of type I collagen scaffolds by altering fibroblast phenotype and the mechanical properties of the collagen network. In this work, we examine a possible mechanism for these effects: adsorption of cellular proteins by the nanorods. Mass spectrometric and gel electrophoresis of media collected from cultured cells suggests that a number of proteins, some of which mediate cell-cell and cell-matrix interactions, adsorb onto the surface of these nanoparticles in vitro. Polyethylene glycol coating of the nanorods largely mitigates protein adsorption and fibroblast-mediated collagen remodeling. These results suggest that adsorption of proteins by nanorods could have a significant effect on cell functions, including fibroblast-mediated matrix remodeling.
Collapse
Affiliation(s)
- Patrick N. Sisco
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher G. Wilson
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Davin Chernak
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jessica C. Clark
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Elissa M. Grzincic
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kayla Ako-Asare
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Edie C. Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail: (ECG); (CJM)
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (ECG); (CJM)
| |
Collapse
|
34
|
Schuliga M, Javeed A, Harris T, Xia Y, Qin C, Wang Z, Zhang X, Lee PVS, Camoretti-Mercado B, Stewart AG. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir Cell Mol Biol 2013; 48:346-53. [PMID: 23239497 PMCID: PMC3604085 DOI: 10.1165/rcmb.2012-0151oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022] Open
Abstract
In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-β (TGF-β)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-β-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β-receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.
Collapse
Affiliation(s)
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan; and
| | | | | | | | - Zhexing Wang
- Department of Chemical and Biomolecular Engineering, and
| | - Xuehua Zhang
- Department of Chemical and Biomolecular Engineering, and
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
35
|
Micera A, Puxeddu I, Balzamino BO, Bonini S, Levi-Schaffer F. Chronic nerve growth factor exposure increases apoptosis in a model of in vitro induced conjunctival myofibroblasts. PLoS One 2012; 7:e47316. [PMID: 23071784 PMCID: PMC3468503 DOI: 10.1371/journal.pone.0047316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023] Open
Abstract
In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB) migrate and differentiate into myofibroblasts (myoFB), contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF), often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkA(NGFR)) and/or the pan-neurotrophin glycoprotein receptor (p75(NTR)). Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB) was developed and characterized for cell viability/proliferation as well as αSMA, p75(NTR) and trkA(NGFR) expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75(NTR)/trkA(NGFR), αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75(NTR), associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75(NTR) expressing myoFB, an effect counteracted by the specific trkA(NGFR) and/or p75(NTR) inhibitors. Focused single p75(NTR) and double trkA(NGFR)/p75(NTR) knocking-down experiments highlighted the role of p75(NTR) in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75(NTR). The trkA(NGFR)/p75(NTR) ratio in favor of p75(NTR) characterizes this process. Due to the lack of effective pharmacological agents for balanced tissue repairs, these new findings suggest that NGF might be a suitable therapeutic tool in conditions with impaired tissue healing.
Collapse
Affiliation(s)
| | - Ilaria Puxeddu
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Stefano Bonini
- Department of Ophthalmology, University Campus Bio-Medico, Rome, Italy
| | - Francesca Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2126-37. [PMID: 23031257 DOI: 10.1016/j.ajpath.2012.08.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/24/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis.
Collapse
|
37
|
Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, Gajda M, Friedrich K, Wunderlich H, Östman A, Petersen I, Berndt A. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol 2012; 138:847-60. [DOI: 10.1007/s00418-012-0998-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
|
38
|
Zhang Y, Yang J, Jiang S, Fang C, Xiong L, Cheng H, Xia Y. The Lupus-derived Anti-double-stranded DNA IgG Contributes to Myofibroblast-like Phenotype in Mesangial Cells. J Clin Immunol 2012; 32:1270-8. [DOI: 10.1007/s10875-012-9724-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/11/2012] [Indexed: 02/05/2023]
|
39
|
Cisneros J, Hagood J, Checa M, Ortiz-Quintero B, Negreros M, Herrera I, Ramos C, Pardo A, Selman M. Hypermethylation-mediated silencing of p14(ARF) in fibroblasts from idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 303:L295-303. [PMID: 22707614 DOI: 10.1152/ajplung.00332.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. A conspicuous feature is the formation and persistence of fibroblastic/myofibroblastic foci throughout the lung parenchyma. Mechanisms remain unknown, but data indicate that fibroblasts acquire an antiapoptotic phenotype. We hypothesized that transcriptional silencing of proapoptotic genes may be implicated, and accordingly we evaluated the epigenetic regulation of p14(ARF). The expression of p14(ARF) was analyzed by RT-PCR in IPF (n = 8) and normal derived fibroblasts (n = 4) before and after treatment with 5-aza-2'-deoxycytidine (5-aza) and trichostatin A (TSA). p14(ARF) gene promoter methylation was determined by methylation-specific PCR (MS-PCR) and by DNA digestion with endonuclease McrBc, which cleaves 50% of methylated CpG. Apoptosis was evaluated by Annexin-V and nuclear staining. p14(ARF) expression was significantly decreased in four of the eight IPF fibroblasts lines, which was restored after 5-aza treatment. No changes were found with TSA. MS-PCR of bisulfite-treated genomic DNA showed a correlation between the reduced expression of p14(ARF) and the presence of hypermethylated promoter. No amplification was observed in the DNA treated with the McrBc enzyme, corroborating promoter hypermethylation. p14(ARF)-hypermethylated IPF fibroblasts were significantly more resistant to staurosporine-and S-nitrosoglutathione-induced apoptosis compared with normal and nonmethylated IPF fibroblasts (P < 0.01) and showed reduced levels of p53. Resistance to apoptosis was provoked in fibroblasts when p14(ARF) expression was inhibited by siRNA (P < 0.05). These findings demonstrate that many IPF fibroblasts have reduced expression of the proapoptotic p14(ARF) attributable to promoter hypermethylation and indicate that epigenetic mechanisms may underlie their resistance to apoptosis.
Collapse
Affiliation(s)
- José Cisneros
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, México
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shen ZJ, Braun RK, Hu J, Xie Q, Chu H, Love RB, Stodola LA, Rosenthal LA, Szakaly RJ, Sorkness RL, Malter JS. Pin1 protein regulates Smad protein signaling and pulmonary fibrosis. J Biol Chem 2012; 287:23294-305. [PMID: 22613712 DOI: 10.1074/jbc.m111.313684] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstitial pulmonary fibrosis is caused by the excess production of extracellular matrix (ECM) by Fb in response to TGF-β1. Here, we show that the peptidyl-prolyl isomerase Pin1 modulates the production of many pro- and antifibrogenic cytokines and ECM. After acute, bleomycin injury, Pin1(-/-) mice showed reduced, pulmonary expression of collagens, tissue inhibitors of metalloproteinases, and fibrogenic cytokines but increased matrix metalloproteinases, compared with WT mice, despite similar levels of inflammation. In primary fibroblasts, Pin1 was required for TGF-β-induced phosphorylation, nuclear translocation, and transcriptional activity of Smad3. In Pin1(-/-) cells, inhibitory Smad6 was found in the cytoplasm rather than nucleus. Smad6 knockdown in Pin1(-/-) fibroblasts restored TGF-β-induced Smad3 activation, translocation, and target gene expression. Therefore, Pin1 is essential for normal Smad6 function and ECM production in response to injury or TGF-β and thus may be an attractive therapeutic target to prevent excess scarring in diverse lung diseases.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ramírez G, Hagood JS, Sanders Y, Ramírez R, Becerril C, Segura L, Barrera L, Selman M, Pardo A. Absence of Thy-1 results in TGF-β induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts. J Transl Med 2011; 91:1206-18. [PMID: 21577212 PMCID: PMC5683845 DOI: 10.1038/labinvest.2011.80] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fibroblasts differ in a variety of phenotypic features, including the expression of Thy-1 a glycophosphatidylinositol-linked glycoprotein. Fibroblasts in idiopathic pulmonary fibrosis (IPF) are Thy-1 negative, whereas most fibroblasts from normal lungs are Thy-1 positive. However, the functional consequences of the absence of Thy-1 are not fully understood. We analyzed the expression of Thy-1 in several primary fibroblasts lines derived from IPF, hypersensitivity pneumonitis (HP), and normal human lungs. We found that a high proportion, independently of their origin, expressed Thy-1 in vitro. We identified a primary culture of HP fibroblasts, which did not express Thy-1, and compared several functional activities between Thy-1 (-) and Thy-1 (+) fibroblasts. Thy-1 (-) fibroblasts were smaller (length: 41.3±20.8 μ versus 83.1±40 μ), showed increased proliferative capacity and enhanced PDGF-induced transmigration through collagen I (59.9% versus 42.2% over control under basal conditions, P<0.01). Likewise, Thy-1 (-) fibroblasts either spontaneously or after TGF-β stimulation demonstrated stronger contraction of collagen matrices (eg, 0.17±0.03 versus 0.6±0.05 cm² after TGF-β stimulation at 24 h; P<0.01). Thy-1 (-) lung fibroblasts stimulated with TGF-β1 expressed MMP-9, an enzyme that is usually not produced by lung fibroblasts. TGFβ-induced MMP-9 expression was reversible upon re-expression of Thy-1 after transfection with full-length Thy-1. β-glycan, a TGF-β receptor antagonist abolished MMP-9 expression. TGF-β1-induced MMP-9 in Thy-1 (-) fibroblasts depended on the activation of ERK1/2 signaling pathway. Finally, we demonstrated that fibroblasts from IPF fibroblastic foci, which do not express Thy-1 exhibit strong staining for immunoreactive MMP-9 protein in vivo. These findings indicate that loss of Thy-1 in human lung fibroblasts induces a fibrogenic phenotype.
Collapse
Affiliation(s)
- Gustavo Ramírez
- Facultad de Ciencias, Universidad Nacional Autónoma de México,Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF, México
| | - James S. Hagood
- University of California-San Diego, La Jolla, CA and Rady Children’s Hospital, San Diego, CA
| | | | | | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF, México
| | - Lourdes Segura
- Facultad de Ciencias, Universidad Nacional Autónoma de México
| | - Lourdes Barrera
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México
| |
Collapse
|
42
|
Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Öberg Å, Van Guelpen B, Rutegård J, Stenling R, Palmqvist R. Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1387-94. [PMID: 21356388 DOI: 10.1016/j.ajpath.2010.12.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 01/08/2023]
Abstract
Cancer-associated fibroblasts expressing fibroblast activation protein (FAP) have been implicated in the invasive behavior of colorectal cancer. In this study, we use FAP expression as a marker of fibroblast activation and analyze the effect of activated fibroblasts on colorectal cancer migration and invasion in experimental cell studies. We also investigated the expression pattern of FAP in cancer-associated fibroblasts during transformation from benign to malignant colorectal tumors. In immunohistochemical analyses, FAP was expressed in fibroblasts in all colorectal cancer samples examined, whereas all normal colon, hyperplastic polyps, or adenoma samples were negative. In in vitro studies, conditioned medium from colon cancer cells, but not adenoma cells, activated fibroblasts by inducing FAP expression. These activated fibroblasts increased the migration and invasion of colon cancer cells in Boyden chamber experiments and in a three-dimensional cell culture model. We identify fibroblast growth factor 1/fibroblast growth factor receptor 3 (FGF1/FGFR-3) signaling as mediators leading to the increased migration and invasion. Activated fibroblasts increase their expression of FGF1, and by adding a fibroblast growth factor receptor inhibitor, as well as an FGF1-neutralizing antibody, we reduced the migration of colon cancer cells. Our findings provide evidence of a possible molecular mechanism involved in the cross talk between cancer cells and fibroblasts leading to cancer cell invasion.
Collapse
Affiliation(s)
- Maria L Henriksson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lam AP, Flozak AS, Russell S, Wei J, Jain M, Mutlu GM, Budinger GRS, Feghali-Bostwick CA, Varga J, Gottardi CJ. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 2011; 45:915-22. [PMID: 21454805 DOI: 10.1165/rcmb.2010-0113oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary fibrosis is a disease that results in loss of normal lung architecture, but the signaling events that drive tissue destruction are incompletely understood. Wnt/β-catenin signaling is important in normal lung development, but whether abnormal signaling occurs in lung fibrosis due to systemic sclerosis and the consequences of β-catenin signaling toward the fibrogenic phenotype remain poorly defined. In this study, we show nuclear β-catenin accumulation in fibroblastic foci from lungs of patients with systemic sclerosis-associated advanced pulmonary fibrosis. Forced activation of β-catenin signaling in three independently derived sources of normal human lung fibroblasts promotes proliferation and migratory activities but is not sufficient to activate classic markers of fibroblast activation, such as TGF-β, type 1 collagen, α-smooth muscle actin, and connective tissue growth factor. These findings indicate that activation of β-catenin signaling in pulmonary fibroblasts may be a common feature of lung fibrosis, contributing to fibroproliferative and migratory activities associated with the disease.
Collapse
Affiliation(s)
- Anna P Lam
- Department of Medicine, Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Selman M, Pardo A, Richeldi L, Cerri S. Emerging drugs for idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2011; 16:341-62. [DOI: 10.1517/14728214.2011.565049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Akasaka Y, Ono I, Kamiya T, Ishikawa Y, Kinoshita T, Ishiguro S, Yokoo T, Imaizumi R, Inomata N, Fujita K, Akishima-Fukasawa Y, Uzuki M, Ito K, Ishii T. The mechanisms underlying fibroblast apoptosis regulated by growth factors during wound healing. J Pathol 2010; 221:285-99. [PMID: 20527022 DOI: 10.1002/path.2710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While investigating the mechanisms underlying cell death during wound healing processes, we uncovered the pro-apoptotic effects of basic fibroblast growth factor (bFGF) on granulation tissue fibroblasts following pretreatment with transforming growth factor (TGF)-beta1 in vitro. bFGF induced caspase-3 activation and apoptosis in TGF-beta1-pretreated granulation tissue-derived fibroblasts (GF-1) following bFGF treatment for 48 and 96 h. In contrast, fibroblasts that had been treated in the same manner and that originated from the uninjured dermis did not display apoptosis, indicating that the mechanisms underlying apoptosis events in fibroblasts that originate from normal dermal and wound tissues differ. In this process, we also found that bFGF inhibited Akt phosphorylation at serine 473 and induced a rapid loss of phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 in pretreated GF-1 cells, an event that coincided with the dissociation of phosphorylated FAK from the focal adhesions. Therefore, inhibition of survival signals relayed via the disrupted focal adhesion structures and inactivated Akt following bFGF treatment may lead to apoptosis in GF-1 cells pretreated with TGF-beta1. Pretreatment of GF-1 with TGF-beta1 followed by the addition of bFGF resulted in significantly greater inhibition of phosphorylation of Akt and FAK compared to treatment with TGF-beta1 or bFGF alone. The combinatorial treatment also led to proteolysis of FAK and inhibition of FAK and Akt protein expression in GF-1 cells. These findings demonstrated a significant role for the two cytokines in apoptosis of granulation tissue fibroblasts during wound healing. In vivo studies also confirmed a marked decline in phosphorylation and protein expression of Akt and FAK in bFGF-injected skin wounds. These results led to the hypothesis that temporal activation of TGF-beta1 and bFGF at the injury site promotes apoptosis in granulation tissue fibroblasts, an event that is critical for the termination of proliferative granulation tissue formation.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Department of Pathology, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ohta-City, Tokyo, 143-8540, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Popova AP, Bozyk PD, Goldsmith AM, Linn MJ, Lei J, Bentley JK, Hershenson MB. Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells. Am J Physiol Lung Cell Mol Physiol 2010; 298:L735-43. [PMID: 20190033 PMCID: PMC2886615 DOI: 10.1152/ajplung.00347.2009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/21/2010] [Indexed: 02/07/2023] Open
Abstract
We have isolated mesenchymal stem cells (MSCs) from tracheal aspirates of premature infants with respiratory distress. We examined the capacity of MSCs to differentiate into myofibroblasts, cells that participate in lung development, injury, and repair. Gene expression was measured by array, qPCR, immunoblot, and immunocytochemistry. Unstimulated MSCs expressed mRNAs encoding contractile (e.g., ACTA2, TAGLN), extracellular matrix (COL1A1 and ELN), and actin-binding (DBN1, PXN) proteins, consistent with a myofibroblast phenotype, although there was little translation into immunoreactive protein. Incubation in serum-free medium increased contractile protein (ACTA2, MYH11) gene expression. MSC-conditioned medium showed substantial levels of TGF-beta1, and treatment of serum-deprived cells with a type I activin receptor-like kinase inhibitor, SB-431542, attenuated the expression of genes encoding contractile and extracellular matrix proteins. Treatment of MSCs with TGF-beta1 further induced the expression of mRNAs encoding contractile (ACTA2, MYH11, TAGLN, DES) and extracellular matrix proteins (FN1, ELN, COL1A1, COL1A2), and increased the protein expression of alpha-smooth muscle actin, myosin heavy chain, and SM22. In contrast, human bone marrow-derived MSCs failed to undergo TGF-beta1-induced myofibroblastic differentiation. Finally, primary cells from tracheal aspirates behaved in an identical manner as later passage cells. We conclude that human neonatal lung MSCs demonstrate an mRNA expression pattern characteristic of myofibroblast progenitor cells. Autocrine production of TGF-beta1 further drives myofibroblastic differentiation, suggesting that, in the absence of other signals, fibrosis represents the "default program" for neonatal lung MSC gene expression. These data are consistent with the notion that MSCs play a key role in neonatal lung injury and repair.
Collapse
Affiliation(s)
- Antonia P Popova
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109-5688, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ramos C, Becerril C, Montaño M, García-De-Alba C, Ramírez R, Checa M, Pardo A, Selman M. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol 2010; 299:L222-31. [PMID: 20495078 DOI: 10.1152/ajplung.00070.2010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the expansion of the fibroblast/myofibroblast population and aberrant remodeling. However, the origin of mesenchymal cells in this disorder is still under debate. Recent evidence indicates that epithelial-mesenchymal transition (EMT) induced primarily by TGF-beta1 plays an important role; however, studies regarding the opposite process, mesenchymal-epithelial transition, are scanty. We have previously shown that fibroblast growth factor-1 (FGF-1) inhibits several profibrogenic effects of TGF-beta1. In this study, we examined the effects of FGF-1 on TGF-beta1-induced EMT. A549 and RLE-6TN (human and rat) alveolar epithelial-like cell lines were stimulated with TGF-beta1 for 72 h, and then, in the presence of TGF-beta1, were cultured with FGF-1 plus heparin for an additional 48 h. After TGF-beta1 treatment, epithelial cells acquired a spindle-like mesenchymal phenotype with a substantial reduction of E-cadherin and cytokeratins and concurrent induction of alpha-smooth muscle actin measured by real-time PCR, Western blotting, and immunocytochemistry. FGF-1 plus heparin reversed these morphological changes and returned the epithelial and mesenchymal markers to control levels. Signaling pathways analyzed by selective pharmacological inhibitors showed that TGF-beta1 induces EMT through Smad pathway, while reversion by FGF-1 occurs through MAPK/ERK kinase pathway, resulting in ERK-1 phosphorylation and Smad2 dephosphorylation. These findings indicate that TGF-beta1-induced EMT is reversed by FGF-1 and suggest therapeutic approaches to target this process in IPF.
Collapse
Affiliation(s)
- Carlos Ramos
- Instituto Nacional de Enfermedades Respiratorias, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ramos C, Cisneros J, Gonzalez-Avila G, Becerril C, Ruiz V, Montaño M. Increase of Matrix Metalloproteinases in Woodsmoke-Induced Lung Emphysema in Guinea Pigs. Inhal Toxicol 2009; 21:119-32. [DOI: 10.1080/08958370802419145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Hoyles RK, Khan K, Shiwen X, Howat SL, Lindahl GE, Leoni P, du Bois RM, Wells AU, Black CM, Abraham DJ, Denton CP. Fibroblast-specific perturbation of transforming growth factor β signaling provides insight into potential pathogenic mechanisms of scleroderma-associated lung fibrosis: Exaggerated response to alveolar epithelial injury in a novel mouse model. ACTA ACUST UNITED AC 2008; 58:1175-88. [DOI: 10.1002/art.23379] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Gabr AA, Reed M, Newman DR, Pohl J, Khosla J, Sannes PL. Alterations in cytoskeletal and immune function-related proteome profiles in whole rat lung following intratracheal instillation of heparin. Respir Res 2007; 8:36. [PMID: 17488504 PMCID: PMC1876226 DOI: 10.1186/1465-9921-8-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/08/2007] [Indexed: 01/07/2023] Open
Abstract
Background Heparin has been shown to modify fundamental biologic processes ranging from blood coagulation and cell proliferation to fibrogenesis and asthma. The goal of this study was to identify specific or broad biologic responses of the rat lung to intratracheal instillation of heparin by targeted proteomic analysis. Methods Rats were given either aerosolized 500 μg heparin in 250 μl saline or saline alone. Lungs were harvested at 0, 24, or 96 hours post-treatment and isolated proteins analyzed by two-dimensional gel electrophoresis. Proteins which increased and decreased significantly in treated groups above controls were then selected for identification by mass spectrometry. Results Although heparin treatments resulted in a general reduction in cytosolic protein expression, there were significant increases within members of discrete groups of proteins. At 24 hours, proteins which function in cytoskeletal organization and in calcium signaling were up-regulated between 2- and 27-fold above baseline and untreated controls. Increased proteins include annexins V and VI, septin 2, capping G protein, actin-related protein 3, moesin, RhoGDP dissociation inhibitor, and calcyclin. A group of proteins relating to immune response and tumor suppressor function were either up-regulated (tumor suppressor p30/hyaluronic acid binding protein-1, Parkinson disease protein 7, proteosome 28 subunit/interferon-γ inducible protein, and proteosome subunit macropain α-1) or strongly down-regulated (transgelin). At 96 hours, most proteins that had increased at 24 hours remained elevated but to a much lesser degree. Conclusion These cumulative observations demonstrate that whole lung heparin treatment results in significant up-regulation of selected groups of proteins, primarily those related to cytoskeletal reorganization and immune function, which may prove to be relevant biomarkers useful in analysis of lung exposures/treatments as well as in system biology studies.
Collapse
Affiliation(s)
- Amir A Gabr
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mathew Reed
- Microchemical and Proteomics Facility, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donna R Newman
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jan Pohl
- Microchemical and Proteomics Facility, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jody Khosla
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Philip L Sannes
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|