1
|
Lopez-Leal F, Cabellos-Avelar T, Correa-Becerril DA, Juarez-Macias B, Cervantes-Diaz R, Reyes-Huerta RF, Juarez-Vega G, Gutierrez-Castaneda D, Castro-Jimenez TK, Bustos-Arriaga J, Maravillas-Montero JL, Perez-Lopez A. Blockade of the CCR3 receptor reduces neutrophil recruitment to the lung during acute inflammation. J Leukoc Biol 2024; 116:1198-1207. [PMID: 39298674 DOI: 10.1093/jleuko/qiae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophils represent one of the host's first lines of defense against invading pathogens. However, an aberrant activation can cause damage to the host. In the case of respiratory infections with viral or bacterial pathogens, one of the most common complications is the development of acute respiratory distress syndrome, in which neutrophil infiltration into the lung is a hallmark. Neutrophils gain expression of chemokine receptors under inflammatory conditions, and their activation can amplify the neutrophil responses. Earlier studies showed that neutrophils recruited to the lung mucosa during bacterial infection upregulate expression of CCR3 and ex vivo stimulation of CCR3 results in an increased neutrophil activation. Therefore, the modulation of effector functions or migration of neutrophils to target sites through chemokine receptors constitutes an opportunity for pharmacological intervention. We aimed to determine whether the blockade of the CCR3 using the specific antagonist SB-328437 reduces neutrophil recruitment and inflammation in the lung in the lipopolysaccharide (LPS)-induced lung injury model and influenza infection in mice. We found that neutrophils acquire CCR3 expression in the lung alveolar space. The intraperitoneal administration of SB-328437 reduced neutrophil recruitment to the lung alveolar space and reduced tissue damage in both the LPS-induced lung injury model and influenza infection. Moreover, treatment with SB-328437 reduced the percentage of neutrophils producing TNFα and neutrophil activation in the alveolar space. Together, these data suggest that CCR3 blockade might be a pharmacological strategy to prevent the aberrant neutrophil activation that results detrimental for the host but preserves sufficient effector response to control the pathogen.
Collapse
Affiliation(s)
- Fatima Lopez-Leal
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Tecilli Cabellos-Avelar
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Diego A Correa-Becerril
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Brenda Juarez-Macias
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Rodrigo Cervantes-Diaz
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Raul F Reyes-Huerta
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Guillermo Juarez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Daniel Gutierrez-Castaneda
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Tannya Karen Castro-Jimenez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Jose Bustos-Arriaga
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| | - Jose Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Araceli Perez-Lopez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalneplantla, Estado de México 54090, México
| |
Collapse
|
2
|
Kadushkin AG, Tahanovich AD, Movchan LV, Dziadzichkina VV, Levandovskaya OV, Shman TV. Nortriptyline overcomes corticosteroid resistance in NK and NKT-like cells from peripheral blood of patients with chronic obstructive pulmonary disease. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.75467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: An antidepressant nortriptyline potentiates glucocorticoid (GC) action with synergistic suppression of inflammatory mediator release, but the precise molecular mechanism is unknown.
Materials and methods: Peripheral blood cells from patients with chronic obstructive pulmonary disease (COPD) (n = 21) were incubated with nortriptyline (1 µM or 10 µM), budesonide (10 nM), or their combinations, followed by stimulation with phorbol myristate acetate (PMA) and ionomycin. Cytokine production, glucocorticoid receptor β (GRβ), histone deacetylase 2 (HDAC2) and histone H4 acetylation of K8 (HAT) expression, p65 NF-kB and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in NK (CD3-CD56+) and NKT-like (CD3+CD56+) cells were analyzed by flow cytometry.
Results: We observed that nortriptyline (10 µM) significantly attenuated the effects of PMA/ionomycin on the synthesis of interferon γ (IFNγ), interleukin 4 (IL-4), and IL-8, expression of GRβ and HAT, as well as p65 NF-kB and p38 MAPK phosphorylation in NK and NKT-like cells, whereas nortriptyline (1 µM) only inhibited IL-4 production by NK and NKT-like cells.
Discussion: The combination of nortriptyline (10 µM) and budesonide decreased IFNγ, tumor necrosis factor α, IL-4, IL-8, and GRβ expression, as well as phosphorylated p38 MAPK and p65 NF-κB levels by NK and NKT-like cells above that of budesonide alone. Furthermore, the same association of drugs enhanced HDAC2 expression in NK and NKT-like cells.
Conclusion: Collectively, our results show that nortriptyline might enhance GC function through modulation of HAT, HDAC2, GRβ, phospho-p38 MAPK expression. These data provide a strong rationale for combining nortriptyline with budesonide to treat COPD.
Collapse
|
3
|
Li Z, Zeng M, Deng Y, Zhao J, Zhou X, Trudeau JB, Goldschmidt E, Moore JA, Chu H, Zhang W, Yin S, Liu Z, Di YP, Lee SE, Wenzel SE. 15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. J Allergy Clin Immunol 2019; 144:1228-1241.e9. [PMID: 31301373 PMCID: PMC6842430 DOI: 10.1016/j.jaci.2019.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND 15-Lipoxygenase 1 (15LO1) is expressed in airway epithelial cells in patients with type 2-high asthma in association with eosinophilia. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also associated with type 2 inflammation and eosinophilia. CCL26/eotaxin 3 has been reported to be regulated by 15LO1 in lower airway epithelial cells. However, its relation to 15LO1 in patients with CRSwNP or mechanisms for its activation are unclear. OBJECTIVE We sought to evaluate 15LO1 and CCL26 expression in nasal epithelial cells (NECs) from patients with CRSwNP and healthy control subjects (HCs) and determine whether 15LO1 regulates CCL26 in NECs through extracellular signal-regulated kinase (ERK) activation. METHODS 15LO1, CCL26, and phosphorylated ERK were evaluated in NECs from patients with CRSwNP and HCs. 15LO1/CCL26 and CCL26/cytokeratin 5 were colocalized by means of immunofluorescence. IL-13-stimulated NECs were cultured at an air-liquid interface with or without 15-lipoxygenase 1 gene (ALOX15) Dicer-substrate short interfering RNAs (DsiRNA) transfection, a specific 15LO1 enzymatic inhibitor, and 2 ERK inhibitors. Expression of 15LO1 and CCL26 mRNA and protein was analyzed by using quantitative RT-PCR, Western blotting, and ELISA. RESULTS 15LO1 expression was increased in nasal polyp (NP) epithelial cells compared with middle turbinate epithelial cells from patients with CRSwNP and HCs. 15LO1 expression correlated with CCL26 expression and colocalized with CCL26 expression in basal cells of the middle turbinate and NPs from patients with CRSwNP. In primary NECs in vitro, IL-13 induced 15LO1 and CCL26 expression. 15LO1 knockdown and inhibition decreased IL-13-induced ERK phosphorylation and CCL26 expression. ERK inhibition (alone) similarly decreased IL-13-induced CCL26. Phosphorylated ERK expression was increased in NECs from CRSwNP subjects and positively correlated with both 15LO1 and CCL26 expression. CONCLUSIONS 15LO1 expression is increased in NP epithelial cells and contributes to CCL26 expression through ERK activation. 15LO1 could be considered a novel therapeutic target for CRSwNP.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Ming Zeng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Yanhan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Jinming Zhao
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Xiuxia Zhou
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - John B Trudeau
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - John A Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, Pa
| | - Hongwei Chu
- Department of Medicine, National Jewish Health, Denver, Colo
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Peter Di
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, Pa.
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa.
| |
Collapse
|
4
|
Human lung tissue provides highly relevant data about efficacy of new anti-asthmatic drugs. PLoS One 2018; 13:e0207767. [PMID: 30500834 PMCID: PMC6267969 DOI: 10.1371/journal.pone.0207767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Subgroups of patients with severe asthma are insensitive to inhaled corticosteroids and require novel therapies on top of standard medical care. IL-13 is considered one of the key cytokines in the asthma pathogenesis, however, the effect of IL-13 was mostly studied in rodents. This study aimed to assess IL-13 effect in human lung tissue for the development of targeted therapy approaches such as inhibition of soluble IL-13 or its receptor IL-4Rα subunit. Precision-cut lung slices (PCLS) were prepared from lungs of rodents, non-human primates (NHP) and humans. Direct effect of IL-13 on human lung tissue was observed on inflammation, induction of mucin5AC, and airway constriction induced by methacholine and visualized by videomicroscopy. Anti-inflammatory treatment was evaluated by co-incubation of IL-13 with increasing concentrations of IL-13/IL-13 receptor inhibitors. IL-13 induced a two-fold increase in mucin5AC secretion in human bronchial tissue. Additionally, IL-13 induced release of proinflammatory cytokines eotaxin-3 and TARC in human PCLS. Anti-inflammatory treatment with four different inhibitors acting either on the IL-13 ligand itself (anti-IL-13 antibody, similar to Lebrikizumab) or the IL-4Rα chain of the IL-13/IL-4 receptor complex (anti-IL-4Rα #1, similar to AMG 317, and #2, similar to REGN668) and #3 PRS-060 (a novel anticalin directed against this receptor) could significantly attenuate IL-13 induced inflammation. Contrary to this, IL-13 did not induce airway hyperresponsiveness (AHR) in human and NHP PCLS, although it was effective in rodent PCLS. Overall, this study demonstrates that IL-13 stimulation induces production of mucus and biomarkers of allergic inflammation in human lung tissue ex-vivo but no airway hyperresponsiveness. The results of this study show a more distinct efficacy than known from animals models and a clear discrepancy in AHR induction. Moreover, it allows a translational approach in inhibitor profiling in human lung tissue.
Collapse
|
5
|
KIF3A knockdown sensitizes bronchial epithelia to apoptosis and aggravates airway inflammation in asthma. Biomed Pharmacother 2017; 97:1349-1355. [PMID: 29156524 DOI: 10.1016/j.biopha.2017.10.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND KIF3A expression was decreased in asthmatic child patients and animal. Impaired KIF3A expression resulted in increased Th2 inflammation in mice and apoptosis in renal tubular epithelium and photoreceptor cells. This work aimed to investigate the role of KIF3A in epithelium apoptosis and bronchial inflammation in asthma. METHODS After establishment of ovalbumin induced asthma, the mice were infected with KIF3A adenovirus through nasal cavity inhalation. KIF3A expression and apoptosis in epithelia of nasal mucosa and bronchia were determined using qRT-PCR, western blotting, immunohistochemistry and TUNEL staining. The mRNA expression of COX-2, IL-4, IL-5, IL-13, IL-6, IL-10 and TNF-α was also measured. In vitro, human bronchial epithelial cell line 16HBE 14o- was stimulated with IL-4, IL-13 and TNF-α, accompanied by KIF3A knockdown or overexpression using siRNA or KIF3A adenovirus respectively. Apoptosis, mRNA expression of CCL17, CCL26, IL-5 and IL-8, and protein expression of COX-2 and β-catenin were determined using flow cytometry, qRT-PCR and western blotting. RESULTS KIF3A expression was reduced in epithelia of nasal mucosa and bronchia of asthmatic mice, and overexpression of KIF3A ameliorated epithelial cell apoptosis and bronchial inflammation in asthmatic mice. In vitro, KIF3A knockdown significantly promoted epithelium apoptosis, facilitated the transcription of CCL17, CCL26, IL-5 and IL-8, and increased the protein levels of COX-2 and β-catenin translocation, whereas overexpression of KIF3A exhibited the opposite effect. CONCLUSION KIF3A plays an important role in epithelium apoptosis and bronchial inflammation in asthma, and may be a potential target for asthma treatment.
Collapse
|
6
|
Agrawal A. Dendritic Cell-Airway Epithelial Cell Cross-Talk Changes with Age and Contributes to Chronic Lung Inflammatory Diseases in the Elderly. Int J Mol Sci 2017; 18:ijms18061206. [PMID: 28587289 PMCID: PMC5486029 DOI: 10.3390/ijms18061206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
Age-associated dysregulated immune and inflammatory responses are one of the major factors responsible for the prevalence of chronic respiratory diseases in the older population. Pulmonary dendritic cells (DCs) are present below the airway epithelial cells (AECs) and are critical in initiating effective immune responses to harmful pathogens while maintaining tolerance against harmless antigens. The interaction between DCs and AECs plays a crucial role in lung immunity at homeostasis and during infections. The functions of both DCs and AECs are impacted with age. The present report reviews how the potential crosstalk between pulmonary DCs and AECs is dysregulated in the elderly impairing the capacity to maintain tolerance at the respiratory surfaces, which results in severe and chronic respiratory inflammatory diseases. We also discuss how such DC-AECs crosstalk will provide insight into the mechanisms underlying the increased susceptibility of the elderly to pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol 2016; 189:29-33. [PMID: 27664933 DOI: 10.1016/j.clim.2016.09.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
Eotaxins are C-C motif chemokines first identified as potent eosinophil chemoattractants. They facilitate eosinophil recruitment to sites of inflammation in response to parasitic infections as well as allergic and autoimmune diseases such as asthma, atopic dermatitis, and inflammatory bowel disease. The eotaxin family currently includes three members: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26). Despite having only ~30% sequence homology to one another, each was identified based on its ability to bind the chemokine receptor, CCR3. Beyond their role in innate immunity, recent studies have shown that CCL11 and related molecules may directly contribute to degenerative processes in the central nervous system (CNS). CCL11 levels increase in the plasma and cerebrospinal fluid of both mice and humans as part of normal aging. In mice, these increases are associated with declining neurogenesis and impaired cognition and memory. In humans, elevated plasma levels of CCL11 have been observed in Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and secondary progressive multiple sclerosis when compared to age-matched, healthy controls. Since CCL11 is capable of crossing the blood-brain barrier of normal mice, it is plausible that eotaxins generated in the periphery may exert physiological and pathological actions in the CNS. Here, we briefly review known functions of eotaxin family members during innate immunity, and then focus on whether and how these molecules might participate in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Larose MC, Chakir J, Archambault AS, Joubert P, Provost V, Laviolette M, Flamand N. Correlation between CCL26 production by human bronchial epithelial cells and airway eosinophils: Involvement in patients with severe eosinophilic asthma. J Allergy Clin Immunol 2015; 136:904-13. [PMID: 25936567 DOI: 10.1016/j.jaci.2015.02.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/13/2015] [Accepted: 02/17/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND High pulmonary eosinophil counts are associated with asthma symptoms and severity. Bronchial epithelial cells (BECs) produce CC chemokines, notably CCL26 (eotaxin-3), which recruits and activates eosinophils from asthmatic patients. This suggests that CCL26 production by BECs might be involved in persistent eosinophilia in patients with severe asthma despite treatment with high corticosteroid doses. OBJECTIVE We sought to determine whether CCL26 levels correlate with eosinophilia and asthma severity. METHODS Human CC chemokine expression was assessed by means of quantitative PCR or a quantitative PCR array in vehicle- or IL-13-treated BECs. CCL26 was quantitated by means of ELISA. Immunohistochemistry analyses of CCL26 and major basic protein were done on bronchial biopsy specimens. RESULTS IL-13 selectively induced CCL26 expression by BECs. This increase was time-dependent and more prominent in BECs from patients with severe eosinophilic asthma. CCL26 levels measured in supernatants of IL-13-stimulated BECs also increased with asthma severity as follows: patients with severe eosinophilic asthma > patients with mild asthma ≈ healthy subjects. Immunohistochemistry analyses of bronchial biopsy specimens confirmed increased levels of CCL26 in the epithelium of patients with mild and those with severe eosinophilic asthma. Tissue eosinophil counts did not correlate with CCL26 staining. However, sputum CCL26 levels significantly correlated with sputum eosinophil counts (P < .0001), suggesting that CCL26 participates in the movement of eosinophils from the tissues to the airway lumen. CONCLUSIONS These results show a relation between CCL26 production by IL-13-stimulated BECs, sputum eosinophil counts, and asthma severity. They also suggest a role for CCL26 in the sustained inflammation observed in patients with severe eosinophilic asthma and reveal CCL26 as a potential target for treating patients with eosinophilic asthma that are refractory to classic therapies.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Jamila Chakir
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Véronique Provost
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
9
|
Lucendo AJ. Cellular and molecular immunological mechanisms in eosinophilic esophagitis: an updated overview of their clinical implications. Expert Rev Gastroenterol Hepatol 2014; 8:669-85. [PMID: 24742298 DOI: 10.1586/17474124.2014.909727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis (EoE) is a pathophysiologically complex disorder driven by distinct, multiple mechanisms involving a large number of cells, molecules, and genes. Associated with food allergy from its initial descriptions, a key role for the Th2-type cytokines IL-5 and IL-13 in recruiting and activating eosinophils has been described. Epithelial cells have been recognized as major effectors in initiating EoE, both through their recruitment of iNKT cells towards the esophageal epithelium, which constitutes a major cytokine source, and through the release of eotaxin-3 and other chemoattractants. Epithelial and mesenchymal-released TSLP is a key regulator for which a connecting role between the adaptive and innate mucosal-associated immune response has been suggested. Finally, activated eosinophil- and mast cell-derived TGF β1 secretion is crucial in EoE-associated tissue remodeling.
Collapse
Affiliation(s)
- Alfredo J Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Ciudad Real, Spain
| |
Collapse
|
10
|
Belikoff BG, Vaickus LJ, Sitkovsky M, Remick DG. A2B adenosine receptor expression by myeloid cells is proinflammatory in murine allergic-airway inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3707-13. [PMID: 22956582 PMCID: PMC3448803 DOI: 10.4049/jimmunol.1201207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asthma is a chronic condition with high morbidity and healthcare costs, and cockroach allergens are an established cause of urban pediatric asthma. A better understanding of cell types involved in promoting lung inflammation could provide new targets for the treatment of chronic pulmonary disease. Because of its role in regulating myeloid cell-dependent inflammatory processes, we examined A(2B) R expression by myeloid cells in a cockroach allergen model of murine asthma-like pulmonary inflammation. Both systemic and myeloid tissue-specific A(2B) R deletion significantly decreased pulmonary inflammatory cell recruitment, airway mucin production, and proinflammatory cytokine secretion after final allergen challenge in sensitized mice. A(2B) R deficiency resulted in a dramatic reduction on Th2-type airways responses with decreased pulmonary eosinophilia without augmenting neutrophilia, and decreased lung IL-4, IL-5, and IL-13 production. Chemokine analysis demonstrated that eotaxin 1 and 2 secretion in response to repeated allergen challenge is myeloid cell A(2B) R dependent. In contrast, there were no differences in the levels of the CXC chemokines keratinocyte-derived chemokine and MIP-2 in the myeloid cell A(2B) R-deficient mice, strengthening A(2B) R involvement in the development of Th2-type airways inflammation. Proinflammatory TNF-α, IFN-γ, and IL-17 secretion were also reduced in systemic and myeloid tissue-specific A(2B) R deletion mouse lines. Our results demonstrate Th2-type predominance for A(2B) R expression by myeloid cells as a mechanism of development of asthma-like pulmonary inflammation.
Collapse
Affiliation(s)
- Bryan G. Belikoff
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Louis J. Vaickus
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Daniel G. Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| |
Collapse
|
11
|
Josephson MB, Jiao J, Xu S, Hu A, Paranjape C, Grunstein JS, Grumbach Y, Nino G, Kreiger PA, McDonough J, Grunstein MM. IL-13-induced changes in endogenous glucocorticoid metabolism in the lung regulate the proasthmatic response. Am J Physiol Lung Cell Mol Physiol 2012; 303:L382-90. [PMID: 22773690 DOI: 10.1152/ajplung.00125.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endogenous glucocorticoid (GC) activation is regulated by the intracellular GC-activating and -inactivating enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD)1 and 11β-HSD2, respectively, that catalyze interconversion of inert cortisone and its bioactive metabolite cortisol. Because endogenous GCs are critically implicated in suppressing the asthmatic state, this study examined the roles of the 11β-HSD enzymes in regulating GC activation and bronchoprotection during proasthmatic stimulation. Airway hyperresponsiveness to methacholine and inflammation were assessed in rabbits following inhalation of the proasthmatic/proinflammatory cytokine IL-13 with and without pretreatment with the 11β-HSD inhibitor carbenoxolone (CBX). Additionally, IL-13-induced changes in 11β-HSD isozyme expression and GC metabolism were examined in epithelium-intact and -denuded tracheal segments and peripheral lung tissues. Finally, the effects of pretreatment with CBX or 11β-HSD2-targeted siRNAs were investigated with respect to cortisol prevention of IL-13-induced airway constrictor hyperresponsiveness and eotaxin-3 production by airway epithelial cells. IL-13-exposed rabbits exhibited airway hyperresponsiveness, inflammation, and elevated bronchoalveolar lung fluid levels of eotaxin-3. These responses were inhibited by pretreatment with CBX, suggesting a permissive proasthmatic role for 11β-HSD2. Supporting this concept, extended studies demonstrated that 1) IL-13-treated tracheal epithelium and peripheral lung tissues exhibit upregulated 11β-HSD2 activity, 2) the latter impairs cortisone-induced cortisol accumulation and the ability of administered cortisol to prevent both IL-13-induced heightened airway contractility and eotaxin-3 release from epithelial cells, and 3) these proasthmatic responses are prevented by cortisol administration in the presence of 11β-HSD2 inhibition. Collectively, these data demonstrate that the proasthmatic effects of IL-13 are enabled by impaired endogenous GC activation in the lung that is attributed to upregulation of 11β-HSD2 in the pulmonary epithelium.
Collapse
Affiliation(s)
- Maureen B Josephson
- Div. of Pulmonary Medicine, Abramson Research Bldg., Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Obesity-independent association of human adenovirus Ad37 seropositivity with nonalcoholic fatty liver disease. J Clin Gastroenterol 2012; 46:e46-54. [PMID: 22476041 DOI: 10.1097/mcg.0b013e31824b225c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Adenoviruses Ad36 and Ad37 increase adiposity in animals and are associated with obesity in humans; effects on the liver have been reported. The association of Adenovirus Ad36 seropositivity (Ad36+) with obesity but not with the severity of nonalcoholic fatty liver disease (NAFLD) has been previously shown. We investigate whether nondiabetic Ad37+ patients show a different prevalence of NAFLD and ultrasound Bright Liver score. PATIENTS A total of 268 adult nondiabetic patients (146 men, 122 women) were included after lifestyle counseling including a personalized Mediterranean diet, increase in physical activity, and smoking withdrawal. After an Ad37+/Ad36+ assay, overweight obesity, insulin resistance, C-reactive protein, and bright liver prevalence and severity were compared according to Ad37+. RESULTS Sixty-five of 268 patients were Ad37+ and 82/268 patients were both Ad37 seronegative (Ad37-) and Ad36-. The prevalence of obesity, defined as body mass index≥30, was not significantly different in Ad37+ (11/65; 16.9%) vs. Ad37- (15/82; 18.2%) patients; Bright Liver was present in 22/65 (33.8%) Ad37+ patients vs. 13/82 (15.8%) Ad37- patients (P<0.019). By odds ratio (OR), a consistent risk for NAFLD was associated with Ad37+, greater insulin resistance, and C-reactive protein. By a predictive multiple linear regression model, 40.0% of variance toward NAFLD and 50.4% toward the severity of Bright Liver score was explained significantly and independently by Ad37+ and by body mass index. CONCLUSIONS Ad37+ status in nondiabetic patients on an appropriate diet is significantly associated with NAFLD; because fatty liver improves even without weight loss by a "healthy" diet, and not only by lower food caloric intake, Ad37+ may be an adjunctive hallmark of an unfavorable clinical-metabolic profile, if not a causative factor of NAFLD.
Collapse
|
13
|
Maeda Y, Chen G, Xu Y, Haitchi HM, Du L, Keiser AR, Howarth PH, Davies DE, Holgate ST, Whitsett JA. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am J Respir Crit Care Med 2011; 184:421-9. [PMID: 21562130 DOI: 10.1164/rccm.201101-0106oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Airway mucous cell metaplasia and chronic inflammation are pathophysiological features that influence morbidity and mortality associated with asthma and other chronic pulmonary disorders. Elucidation of the molecular mechanisms regulating mucous metaplasia and hypersecretion provides the scientific basis for diagnostic and therapeutic opportunities to improve the care of chronic pulmonary diseases. OBJECTIVES To determine the role of the airway epithelial–specific transcription factor NK2 homeobox 1 (NKX2-1, also known as thyroid transcription factor-1 [TTF-1]) in mucous cell metaplasia and lung inflammation. METHODS Expression of NKX2-1 in airway epithelial cells from patients with asthma was analyzed. NKX2-1 +/-gene targeted or transgenic mice expressing NKX2-1 in conducting airway epithelial cells were sensitized to the aeroallergen ovalbumin. In vitro studies were used to identify mechanisms by which NKX2-1 regulates mucous cell metaplasia and inflammation. MEASUREMENTS AND MAIN RESULTS NKX2-1 was suppressed in airway epithelial cells from patients with asthma. Reduced expression of NKX2-1 in heterozygous NKX2-1 +/- gene targeted mice increased mucous metaplasia in the small airways after pulmonary sensitization to ovalbumin. Conversely, mucous cell metaplasia induced by aeroallergen was inhibited by expression of NKX2-1 in the respiratory epithelium in vivo. Genome-wide mRNA analysis of lung tissue from ovalbumin-treated mice demonstrated that NKX2-1 inhibited mRNAs associated with mucous metaplasia and Th2-regulated inflammation,including Spdef, Ccl17, and Il13. In vitro, NKX2-1 inhibited SPDEF, a critical regulator of airway mucous cell metaplasia,and the Th2 chemokine CCL26. CONCLUSIONS The present data demonstrate a novel function for NKX2-1 in a gene network regulating mucous cell metaplasia and allergic inflammation in the respiratory epithelium.
Collapse
Affiliation(s)
- Yutaka Maeda
- Perinatal Institute, Divisions of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Punia N, Smith S, Thomson JV, Irshad A, Nair P, Sehmi R. Interleukin-4 and interleukin-13 prime migrational responses of haemopoietic progenitor cells to stromal cell-derived factor-1α. Clin Exp Allergy 2011; 42:255-64. [PMID: 22092872 DOI: 10.1111/j.1365-2222.2011.03889.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND Lung-homing of progenitor cells is associated with inflammatory and remodelling changes in asthma. Factors that modulate the increased traffic of progenitor cells to the site of inflammation in asthma remain to be defined. Interleukin (IL)-4 and IL-13 are Th2 cytokines that are key regulators of asthma pathology. OBJECTIVE We investigated the role of IL-4 and IL-13 in modulating the trans-migrational responses of haemopoietic progenitor cells (HPC). METHODS HPC were enriched from cord blood (CB) and peripheral blood (PB) samples. Migration of HPC was assessed using transwell migration assays, and responding cells were enumerated by flow cytometry. RESULTS IL-4 and IL-13 primed migration of CB- and PB-derived HPC (CD34(+) 45(+) cells) to stromal cell-derived factor-1α (SDF-1α), in vitro. However, these cytokines had no effect on migrational responses of eosinophil-lineage committed progenitors (CD34(+) 45(+) IL-5Rα(+) cells) or mature eosinophils to SDF-1α. For HPC, priming effects of IL-4 (0.1 ng/mL) and IL-13 (0.1 ng/mL) were detectable within 1 h and optimal at 18-h post-incubation, and IL-4 was the more effective priming agent. Pre-incubation with IL-4 or IL-13 had no effect on the intensity of cell surface expression of SDF-1α receptor, CXCR4. Disruption of cell membrane cholesterol content by pre-incubation with polyene antibiotics inhibited IL-4 priming of SDF-1α stimulated migration of HPC indicating that increased incorporation of CXCR4 into membrane lipid rafts mediated the cytokine primed migrational response of HPC. This was confirmed by confocal fluorescent microscopy. CONCLUSIONS AND CLINICAL RELEVANCE IL-4 and IL-13 prime the migrational response of HPC to SDF-1α by enhancing the incorporation of CXCR4 into lipid rafts. The priming effect of these cytokines is specific to primitive HPC. These data suggest that increased local production of IL-4 and IL-13 within the lungs may promote increased SDF-1α mediated homing of HPC to the airways in asthma.
Collapse
Affiliation(s)
- N Punia
- Firestone Institute for Respiratory Health, Asthma Research Group, St Joseph's Healthcare, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Errahali YJ, Taka E, Abonyo BO, Heiman AS. CCL26-targeted siRNA treatment of alveolar type II cells decreases expression of CCR3-binding chemokines and reduces eosinophil migration: implications in asthma therapy. J Interferon Cytokine Res 2011; 29:227-39. [PMID: 19203252 DOI: 10.1089/jir.2008.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The underlying inflammation present in chronic airway diseases is orchestrated by increased expression of CC chemokines that selectively recruit leukocyte populations into the pulmonary system. Human CCL26 signals through CC chemokine receptor 3 (CCR3), is dramatically upregulated in challenged asthmatics, and stimulates recruitment of eosinophils (EOSs) and other leukocytes. CCL26 participates in regulation of its receptor CCR3 and modulates expression of a variety of chemokines in alveolar type II cells. Utilizing the A549 alveolar type II epithelial cell culture model, we carried out studies to test the hypothesis that CCL26-siRNA treatment of these cells would ameliorate Th2-driven release of the eotaxins and other CCR3 ligands that would, in turn, decrease recruitment and activation of EOSs. Results demonstrate that CCL26-siRNA treatments decreased interleukin-4-induced CCL26 and CCL24 expression by >70%. CCL26-directed small-interfering RNA (siRNA) treatments significantly decreased release of CCL5 (RANTES), CCL15 (MIP-1δ), CCL8 (MCP-2), and CCL13 (MCP-4). In bioactivity assays it was shown that EOS migration and activation were reduced up to 80% and 90%, respectively, when exposed to supernatants of CCL26-siRNA-treated cells. These results provide evidence that CCL26 may be an appropriate target for development of new therapeutic agents designed to alleviate the underlying inflammation associated with chronic diseases of the airways.
Collapse
Affiliation(s)
- Younes J Errahali
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | | | | | | |
Collapse
|
16
|
Chou DL, Gerriets JE, Schelegle ES, Hyde DM, Miller LA. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa. Toxicol Appl Pharmacol 2011; 257:309-18. [PMID: 21945493 DOI: 10.1016/j.taap.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/27/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
Abstract
Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone+HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone+HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone+HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa.
Collapse
Affiliation(s)
- Debbie L Chou
- California National Primate Research Center, UC Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
17
|
Li B, Dong C, Wang G, Zheng H, Wang X, Bai C. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8. J Cell Physiol 2011; 226:2398-405. [PMID: 21660963 DOI: 10.1002/jcp.22577] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.
Collapse
Affiliation(s)
- Bo Li
- Department of Pulmonary Medicine, Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
18
|
Feng S, Chen W, Cao D, Bian J, Gong FY, Cheng W, Cheng S, Xu Q, Hua ZC, Yin W. Involvement of Na(+), K (+)-ATPase and its inhibitors in HuR-mediated cytokine mRNA stabilization in lung epithelial cells. Cell Mol Life Sci 2011; 68:109-24. [PMID: 20614158 PMCID: PMC11115110 DOI: 10.1007/s00018-010-0444-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/02/2023]
Abstract
Increasing evidence demonstrates that Na(+), K(+)-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na(+), K(+)-ATPase inhibitors to explore the possible involvement of Na(+), K(+)-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na(+), K(+)-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na(+), K(+)-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3'-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na(+), K(+)-ATPase, as well as its inhibitors in inflammation.
Collapse
Affiliation(s)
- Su Feng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Chen
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Dan Cao
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Jinjun Bian
- Department of Anesthesia and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, 200433 China
| | - Fang-Yuan Gong
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Shun Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Qiang Xu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Zi-Chun Hua
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
19
|
Kim BS, Uhm TG, Lee SK, Lee SH, Kang JH, Park CS, Chung IY. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. THE JOURNAL OF IMMUNOLOGY 2010; 185:6866-75. [PMID: 21041734 DOI: 10.4049/jimmunol.1001037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GATA-1, a zinc finger-containing transcription factor, regulates not only the differentiation of eosinophils but also the expression of many eosinophil-specific genes. In the current study, we dissected CCR3 gene expression at the molecular level using several cell types that express varying levels of GATA-1 and CCR3. Chromatin immunoprecipitation analysis revealed that GATA-1 preferentially bound to sequences in both exon 1 and its proximal intron 1. A reporter plasmid assay showed that constructs harboring exon 1 and/or intron 1 sequences retained transactivation activity, which was essentially proportional to cellular levels of endogenous GATA-1. Introduction of a dominant-negative GATA-1 or small interfering RNA of GATA-1 resulted in a decrease in transcription activity of the CCR3 reporter. Both point mutation and EMSA analyses demonstrated that although GATA-1 bound to virtually all seven putative GATA elements present in exon 1-intron 1, the first GATA site in exon 1 exhibited the highest binding affinity for GATA-1 and was solely responsible for GATA-1-mediated transactivation. The fourth and fifth GATA sites in exon 1, which were postulated previously to be a canonical double-GATA site for GATA-1-mediated transcription of eosinophil-specific genes, appeared to play an inhibitory role in transactivation, albeit with a high affinity for GATA-1. Furthermore, mutation of the seventh GATA site (present in intron 1) increased transcription, suggesting an inhibitory role. These data suggest that GATA-1 controls CCR3 transcription by interacting dynamically with the multiple GATA sites in the regulatory region of the CCR3 gene.
Collapse
Affiliation(s)
- Byung Soo Kim
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Trovato GM, Martines GF, Garozzo A, Tonzuso A, Timpanaro R, Pirri C, Trovato FM, Catalano D. Ad36 adipogenic adenovirus in human non-alcoholic fatty liver disease. Liver Int 2010; 30:184-90. [PMID: 19840251 DOI: 10.1111/j.1478-3231.2009.02127.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Infection with specific pathogens may lead to increased adiposity. The human adenovirus 36 (Ad36) is a relatively new factor in promoting adipogenesis. It seems to improve the metabolic profile, expanding adipose tissue and enhancing insulin sensitivity in animal models. The aim of this study was to investigate whether any association or predictor effect of Ad36 seropositivity is present in non-alcoholic fatty liver disease (NAFLD), a condition associated with obesity and insulin resistance (IR). METHODS Sixty-five NAFLD patients and 114 controls were investigated. Ultrasound bright liver score (BLS), body composition, IR evaluated by homeostasis model assessment of insulin resistance index (HOMA or HOMA-IR) and serum neutralization assay for antibodies to Ad36 were assessed. RESULTS Ad36-seropositive patients have a lower risk of bright liver [OR 0.505 (95% confidence interval (CI) 0.265-0.962)]; greater IR leads to a higher risk of bright liver [OR 9.673 (95% CI 4.443-21.058)]. Among NAFLD, Ad36-seropositive vs. Ad36-seronegative patients did not show a significant IR difference. Ad36-seropositive NAFLD patients, with the same levels of HOMA and BLS, had greater body mass index and body fat mass, in comparison with seronegative NAFLD patients. By a multiple linear regression model, BLS was explained by HOMA (beta 0.513; P<0.0001), high density lipoprotein cholesterol (beta-0.219, P<0.006) and Ad36 seropositivity (beta-0.202, P<0.005); Ad36 seropositivity did not explain HOMA in the other multiple logistic regression model. CONCLUSIONS Ad36 seropositivity is not associated with a significant difference of IR in NAFLD patients, but is associated with a greater adiposity. Ad36 seropositivity is associated with a lower occurrence of NAFLD and bright liver, which, conceivably, is not directly mediated by IR.
Collapse
Affiliation(s)
- Guglielmo M Trovato
- Department of Internal Medicine, Clinica di Medicina Interna e Terapia Medica, Facoltà di Medicina e Chirurgia, Università di Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ben-Yehuda C, Bader R, Puxeddu I, Levi-Schaffer F, Breuer R, Berkman N. Airway eosinophil accumulation and eotaxin-2/CCL24 expression following allergen challenge in BALB/c mice. Exp Lung Res 2008; 34:467-79. [PMID: 18850374 DOI: 10.1080/01902140802220625] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Eotaxin-1/CCL11 is important for early eosinophil recruitment to the airways of asthmatics. In order to clarify whether eotaxin-2/CCL24 accounts for prolonged airway eosinophilia, the authors determined the expression of CCL11 and CCL24 in lung tissue and bronchoalveolar lavage (BAL) as well as eosinophil infiltration over 14 days in BALB/c mice sensitised (intraperitonealy) and challenged (inhalations) with ovalbumin (OVA). Allergen exposure induced perivascular, peribronchial, and BAL eosinophilia for up to 7 days. CCL11 and CCL24 were highly expressed in lung tissue from 6 and up to 72 hours. Peak expression of CCL11 protein was 1557 +/- 109 pg/mL for OVA (mean +/- SEM) versus 404 +/- 73 pg/mL in controls (SAL) (P < .001) and 1690 +/- 54 versus 455 +/- 165 pg/mL for CCL24 (P < .01). In BAL, only eotaxin-2/CCL24 was significantly increased (1623 +/- 85 pg/mL for OVA versus 157 +/- 22 pg/mL for SAL, P < .01). Peak eosinophilia and CCL24 expression occurred later in BAL than in lung tissue. These data suggest that both CCL11 and CCL24 are important for recruitment of eosinophils to perivascular and peribronchial tissue seen up to 72 hours. This finding implies redundancy between these chemokines rather than differentially regulated expression over time. In contrast, only CCL24 seems important for recruitment of eosinophils into BAL. Specific inhibition of CCL11 alone is therefore unlikely to inhibit eosinophil recruitment to the airways.
Collapse
Affiliation(s)
- Chana Ben-Yehuda
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Post-transcriptional silencing of CCR3 downregulates IL-4 stimulated release of eotaxin-3 (CCL26) and other CCR3 ligands in alveolar type II cells. Cytokine 2008; 44:342-51. [PMID: 19038554 DOI: 10.1016/j.cyto.2008.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 09/22/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
Trafficking and inflammation in airway diseases are, in part, modulated by members of the CC chemokine family, eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26), which transduce signals through their CCR3 receptor. In this context, we hypothesized that transfecting alveolar type II epithelial cells with CCR3-targeted siRNA or antisense (AS-ODN) sequences will downregulate cellular synthesis and release of the primary CCR3 ligands CCL26 and CCL24 and will modulate other CCR3 ligands. The human A549 alveolar type II epithelium-like cell culture model was used for transfection and subsequent effects on CCR3 agonists. siRNAs were particularly effective. PCR showed a 60-80% decrease in mRNA and immunoblots showed up to 75-84% reduction of CCR3 in siRNA treated cells. CCR3-siRNA treatments reduced IL-4 stimulated CCL26 release and constitutive CCL24 release by 65% and 80%, respectively. Release of four additional CCR3 agonists RANTES, MCP-2, MCP-3 and MCP-4 was also significantly reduced by CCR3-siRNA treatments of the alveolar type II cells. Activation of eosinophils, assessed as superoxide anion generation, was reduced when eosinophils were treated with supernatants of A549 cells pretreated with CCR3-targeted siRNAs or AS-ODNs. Collectively, the data suggest that post-transcriptional regulation of CCR3 receptors may be a potential therapeutic approach for interrupting proinflammatory signaling.
Collapse
|
23
|
Kuperman DA, Schleimer RP. Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med 2008; 8:384-92. [PMID: 18691065 DOI: 10.2174/156652408785161032] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-4 and IL-13 share many biological activities. To some extent, this is because they both signal via a shared receptor, IL-4Ralpha. Ligation of IL-4Ralpha results in activation of Signal Transducer and Activator of Transcription factor 6 (STAT6) and Insulin Receptor Substrate (IRS) molecules. In T- and B-cells, IL-4Ralpha signaling contributes to cell-mediated and humoral aspects of allergic inflammation. It has recently become clear that IL-4 and IL-13 produced in inflamed tissues activate signaling in normally resident cells of the airway. The purpose of this review is to critically evaluate the contributions of IL-4- and IL-13-induced tissue responses, especially those mediated by STAT6, to some of the pathologic features of asthma including eosinophilic inflammation, airway hyperresponsiveness, subepithelial fibrosis and excessive mucus production. We also review the functions of some recently identified IL-4- and/or IL-13-induced mediators that provide some detail on molecular mechanisms and suggest an important contribution to host defense.
Collapse
Affiliation(s)
- Douglas A Kuperman
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Allergy-Immunology, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
24
|
Wang K, Shen HH, Li W, Huang HQ. Human C-C chemokine receptor 3 monoclonal antibody inhibits pulmonary inflammation in allergic mice. Acta Pharmacol Sin 2007; 28:1791-6. [PMID: 17959030 DOI: 10.1111/j.1745-7254.2007.00635.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To evaluate the effect of C-C chemokine receptor 3 (CCR3) blockade on pulmonary inflammation and mucus production in allergic mice. METHODS We used the synthetic peptide of the CCR3 NH2-terminal as the immunizing antigen and generated murine monoclonal antibody against the human CCR3. In addition, the generated antibody was administered to mice sensitized and challenged with ovalbumin. The inflammatory cells in bronchoalveolar lavage, cytokine levels, pulmonary histopathology, and mucus secretion were examined. RESULTS The Western blotting analysis indicated that the generated antibody bound to CCR3 specifically. The allergic mice treated with the antihuman CCR3 antibody exhibited a significant reduction of pulmonary inflammation accompanied with the alteration of cytokine. CONCLUSION The antibody we generated was specific to CCR3. The inhibition of airway inflammation and mucus overproduction by the antibody suggested that the blockade of CCR3 is an appealing therapeutical target for asthma. The present research may provide an experimental basis for the further study of this agent.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310009, China.
| | | | | | | |
Collapse
|
25
|
Abonyo BO, Lebby KD, Tonry JH, Ahmad M, Heiman AS. Modulation of eotaxin-3 (CCL26) in alveolar type II epithelial cells. Cytokine 2007; 36:237-44. [PMID: 17350279 DOI: 10.1016/j.cyto.2007.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/20/2006] [Accepted: 01/16/2007] [Indexed: 11/17/2022]
Abstract
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.
Collapse
Affiliation(s)
- Barack O Abonyo
- Florida A & M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA.
| | | | | | | | | |
Collapse
|
26
|
Current World Literature. Curr Opin Allergy Clin Immunol 2006. [DOI: 10.1097/01.all.0000244802.79475.bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|