1
|
Depicolzuane L, Phelps DS, Floros J. Surfactant Protein-A Function: Knowledge Gained From SP-A Knockout Mice. Front Pediatr 2021; 9:799693. [PMID: 35071140 PMCID: PMC8777267 DOI: 10.3389/fped.2021.799693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023] Open
Abstract
Pulmonary surfactant proteins have many roles in surfactant- related functions and innate immunity. One of these proteins is the surfactant protein A (SP-A) that plays a role in both surfactant-related processes and host defense and is the focus in this review. SP-A interacts with the sentinel host defense cell in the alveolus, the alveolar macrophage (AM), to modulate its function and expression profile under various conditions, as well as other alveolar epithelial cells such as the Type II cell. Via these interactions, SP-A has an impact on the alveolar microenvironment. SP-A is also important for surfactant structure and function. Much of what is understood of the function of SP-A and its various roles in lung health has been learned from SP-A knockout (KO) mouse experiments, as reviewed here. A vast majority of this work has been done with infection models that are bacterial, viral, and fungal in nature. Other models have also been used, including those of bleomycin-induced lung injury and ozone-induced oxidative stress either alone or in combination with an infectious agent, bone marrow transplantation, and other. In addition, models investigating the effects of SP-A on surfactant components or surfactant structure have contributed important information. SP-A also appears to play a role in pathways involved in sex differences in response to infection and/or oxidative stress, as well as at baseline conditions. To date, this is the first review to provide a comprehensive report of the functions of SP-A as learned through KO mice.
Collapse
Affiliation(s)
| | | | - Joanna Floros
- Departments of Pediatrics, Hershey, PA, United States.,Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
2
|
Novel interventional approaches for ALI/ARDS: cell-based gene therapy. Mediators Inflamm 2011; 2011:560194. [PMID: 21785528 PMCID: PMC3139183 DOI: 10.1155/2011/560194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) and its more severe
form, acute respiratory distress syndrome (ARDS),
continue to be a major cause of morbidity and
mortality in critically ill patients. The present
therapeutic strategies for ALI/ARDS including
supportive care, pharmacological treatments, and
ventilator support are still controversial. More
scientists are focusing on therapies involving
stem cells, which have self-renewing capabilities
and differentiate into multiple cell lineages,
and, genomics therapy which has the potential to
upregulate expression of anti-inflammatory
mediators. Recently, the combination of cell and
gene therapy which has been demonstrated to
provide additive benefit has opened up a new
chapter in therapeutic strategy and provides a
basis for the development of an innovative
approach for the prevention and treatment of
ALI/ARDS.
Collapse
|
3
|
Panoskaltsis-Mortari A, Griese M, Madtes DK, Belperio JA, Haddad IY, Folz RJ, Cooke KR. An official American Thoracic Society research statement: noninfectious lung injury after hematopoietic stem cell transplantation: idiopathic pneumonia syndrome. Am J Respir Crit Care Med 2011; 183:1262-79. [PMID: 21531955 DOI: 10.1164/rccm.2007-413st] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Acute lung dysfunction of noninfectious etiology, known as idiopathic pneumonia syndrome (IPS), is a severe complication following hematopoietic stem cell transplantation (HSCT). Several mouse models have been recently developed to determine the underlying causes of IPS. A cohesive interpretation of experimental data and their relationship to the findings of clinical research studies in humans is needed to better understand the basis for current and future clinical trials for the prevention/treatment of IPS. OBJECTIVES Our goal was to perform a comprehensive review of the preclinical (i.e., murine models) and clinical research on IPS. METHODS An ATS committee performed PubMed and OVID searches for published, peer-reviewed articles using the keywords "idiopathic pneumonia syndrome" or "lung injury" or "pulmonary complications" AND "bone marrow transplant" or "hematopoietic stem cell transplant." No specific inclusion or exclusion criteria were determined a priori for this review. MEASUREMENTS AND MAIN RESULTS Experimental models that reproduce the various patterns of lung injury observed after HSCT have identified that both soluble and cellular inflammatory mediators contribute to the inflammation engendered during the development of IPS. To date, 10 preclinical murine models of the IPS spectrum have been established using various donor and host strain combinations used to study graft-versus-host disease (GVHD). This, as well as the demonstrated T cell dependency of IPS development in these models, supports the concept that the lung is a target of immune-mediated attack after HSCT. The most developed therapeutic strategy for IPS involves blocking TNF signaling with etanercept, which is currently being evaluated in clinical trials. CONCLUSIONS IPS remains a frequently fatal complication that limits the broader use of allogeneic HSCT as a successful treatment modality. Faced with the clinical syndrome of IPS, one can categorize the disease entity with the appropriate tools, although cases of unclassifiable IPS will remain. Significant research efforts have resulted in a paradigm shift away from identifying noninfectious lung injury after HSCT solely as an idiopathic clinical syndrome and toward understanding IPS as a process involving aspects of both the adaptive and the innate immune response. Importantly, new laboratory insights are currently being translated to the clinic and will likely prove important to the development of future strategies to prevent or treat this serious disorder.
Collapse
|
4
|
Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2009; 25:13-26. [PMID: 20054141 DOI: 10.1159/000272047] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPalpha, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense.
Collapse
Affiliation(s)
- Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
5
|
Hirschburger M, Obert M, Traupe H, Kuchenbuch T, Padberg W, Fehrenbach H, Grau V. Treatment with keratinocyte growth factor does not improve lung allograft survival in the rat. Langenbecks Arch Surg 2008; 394:133-41. [PMID: 18283483 DOI: 10.1007/s00423-008-0302-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 01/31/2008] [Indexed: 11/27/2022]
Abstract
PURPOSE Lung allografts are threatened by primary graft dysfunction, infections, and rejection. Novel therapies protecting pulmonary allografts are badly needed. Keratinocyte growth factor (KGF) protects the lung against a variety of injurious stimuli and exerts anti-inflammatory effects. The aim of the study was to test the potential of recombinant truncated KGF (DeltaN23-KGF, palifermin) to attenuate pulmonary allograft rejection. MATERIALS AND METHODS Intratracheal instillation of 5 mg/kg DeltaN23-KGF was performed twice in donor rats on days 3 and 2 before explantation of the lung. In control animals, an equivalent volume of vehicle was instilled. Left lungs were transplanted in the fully allogeneic Dark Agouti to Lewis rat strain combination and in the less stringent Fischer 344 to Wistar Kyoto combination. Allograft recipients were additionally treated with DeltaN23-KGF post-transplantation. Graft outcome, leukocytic infiltration, and major histocompatibility complex (MHC) class II antigen expression was analyzed. RESULTS In both rat strain combinations, DeltaN23-KGF treatment did not improve pulmonary allograft outcome. Graft infiltration by macrophages and T lymphocytes remained unchanged. In addition, we demonstrated that MHC class II antigens were more abundant in KGF-treated allografts compared to control-treated grafts, which probably results in an increased alloreactivity. CONCLUSION In conclusion, intratracheal DeltaN23-KGF treatment is not effective to prevent acute pulmonary allograft rejection.
Collapse
Affiliation(s)
- Markus Hirschburger
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, University of Giessen Lung Center, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35385, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Tichelaar JW, Wesselkamper SC, Chowdhury S, Yin H, Berclaz PY, Sartor MA, Leikauf GD, Whitsett JA. Duration-dependent cytoprotective versus inflammatory effects of lung epithelial fibroblast growth factor-7 expression. Exp Lung Res 2008; 33:385-417. [PMID: 17994369 DOI: 10.1080/01902140701703226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fibroblast growth factor-7 (FGF7) is a lung epithelial cell mitogen that is cytoprotective during injury. Transgenic mice that conditionally expressed FGF7 were used to dissect the mechanisms of FGF7 protection during lung injury. FGF7 improved survival when induced 3 days prior to acute lung injury. In contrast, FGF7 caused pulmonary inflammation and lung injury after 7 days or longer. Gene expression analysis of mouse lung mRNA identified mRNAs that contribute to the protective effects of FGF7. FGF7 improved survival during acute lung injury in adult mouse lung after short-term expression, but paradoxically induced inflammation and injury after persistent expression.
Collapse
Affiliation(s)
- Jay W Tichelaar
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Impaired upregulation of keratinocyte growth factor in injured lungs induced by Pseudomonas aeruginosa in immunosuppressed rats. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200609010-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Yang CH, Szeliga J, Jordan J, Faske S, Sever-Chroneos Z, Dorsett B, Christian RE, Settlage RE, Shabanowitz J, Hunt DF, Whitsett JA, Chroneos ZC. Identification of the surfactant protein A receptor 210 as the unconventional myosin 18A. J Biol Chem 2005; 280:34447-57. [PMID: 16087679 PMCID: PMC1762002 DOI: 10.1074/jbc.m505229200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometric characterization of the surfactant protein A (SP-A) receptor 210 (SP-R210) led to the identification of myosin (Myo) XVIIIA and nonmuscle myosin IIA. Antibodies generated against the unique C-terminal tail of MyoXVIIIA revealed that MyoXVIIIA, MyoIIA, and SP-R210 have overlapping tissue distribution, all being highly expressed in myeloid cells, bone marrow, spleen, lymph nodes, and lung. Western blot analysis of COS-1 cells stably transfected with either MyoXVIIIA or MyoIIA indicated that SP-R210 antibodies recognize MyoXVIIIA. Furthermore, MyoXVIIIA but not MyoIIA localized to the surface of COS-1 cells, and most importantly, expression of MyoXVIIIA in COS-1 cells conferred SP-A binding. Western analysis of recombinant MyoXVIIIA domains expressed in bacteria mapped the epitopes of previously derived SP-R210 antibodies to the neck region of MyoXVIIIA. Antibodies raised against the neck domain of MyoXVIIIA blocked the binding of SP-A to macrophages. Together, these findings indicate that MyoXVIIIA constitutes a novel receptor for SP-A.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacteria/metabolism
- Base Sequence
- Blotting, Northern
- Blotting, Western
- COS Cells
- Cell Membrane/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Epitopes/chemistry
- Flow Cytometry
- Humans
- Immunoglobulin G/chemistry
- Immunoprecipitation
- Macrophages/metabolism
- Mass Spectrometry
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Myosins/chemistry
- Myosins/physiology
- Nonmuscle Myosin Type IIA/chemistry
- Peptides/chemistry
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Pulmonary Surfactant-Associated Protein A/chemistry
- Rats
- Receptors, Cell Surface/chemistry
- Recombinant Proteins/chemistry
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tissue Distribution
- Transfection
- U937 Cells
Collapse
Affiliation(s)
- Ching-Hui Yang
- Center of Biomedical Research, University of Texas Health Center, Tyler, Texas 75708-3154, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Deshpande DA, White TA, Guedes AGP, Milla C, Walseth TF, Lund FE, Kannan MS. Altered airway responsiveness in CD38-deficient mice. Am J Respir Cell Mol Biol 2004; 32:149-56. [PMID: 15557017 DOI: 10.1165/rcmb.2004-0243oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) mobilizes calcium from intracellular stores and contributes to agonist-induced intracellular calcium elevation in airway smooth muscle (ASM). In this study we determined the functional role of CD38/cADPR signaling in the regulation of airway tone using CD38 deficient (cd38(-/-)) mice. The responsiveness to different doses of methacholine, as determined by changes in lung resistance and dynamic compliance, was significantly (P < or = 0.05) lower in cd38(-/-) mice compared with wild-type controls. To determine the mechanism responsible for the reduced responsiveness, we measured the intracellular calcium responses to contractile agonists in ASM cells. In ASM cells isolated from cd38(-/-) mice, the intracellular calcium responses to acetylcholine and endothelin-1 were significantly lower than in controls. Pretreatment of ASM cells with a cADPR antagonist resulted in attenuated intracellular calcium responses to endothelin-1 in cells isolated from wild-type mice, but not in those isolated from the cd38(-/-) mice. Very low cADPR levels and no detectable ADP-ribosyl cyclase activity were observed in lung tissue from cd38(-/-) mice, suggesting that CD38 is a critical source for cADPR synthesis. The results of the present study demonstrate that CD38/cADPR contributes to airway smooth muscle tone and responsiveness through its effects on agonist-induced elevation of intracellular calcium in ASM cells.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|