1
|
Li K, Chen Z, Chang X, Xue R, Wang H, Guo W. Wnt signaling pathway in spinal cord injury: from mechanisms to potential applications. Front Mol Neurosci 2024; 17:1427054. [PMID: 39114641 PMCID: PMC11303303 DOI: 10.3389/fnmol.2024.1427054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.
Collapse
Affiliation(s)
| | | | | | | | - Huaibo Wang
- Department of Spine Surgery, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
2
|
Karbasion N, Xu Y, Snider JC, Bersi MR. Primary Mouse Aortic Smooth Muscle Cells Exhibit Region- and Sex-Dependent Biological Responses In Vitro. J Biomech Eng 2024; 146:060904. [PMID: 38421345 PMCID: PMC11005860 DOI: 10.1115/1.4064965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-β1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-β1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.
Collapse
Affiliation(s)
- Niyousha Karbasion
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| | - Yujun Xu
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - J. Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - Matthew R. Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| |
Collapse
|
3
|
Denisin AK, Kim H, Riedel-Kruse IH, Pruitt BL. Field Guide to Traction Force Microscopy. Cell Mol Bioeng 2024; 17:87-106. [PMID: 38737454 PMCID: PMC11082129 DOI: 10.1007/s12195-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. Methods Therefore, we present this "Field Guide" with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00801-6.
Collapse
Affiliation(s)
| | - Honesty Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Present Address: The Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Beth L. Pruitt
- Departments of Bioengineering and Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
4
|
Jaddivada S, Gundiah N. Physical biology of cell-substrate interactions under cyclic stretch. Biomech Model Mechanobiol 2024; 23:433-451. [PMID: 38010479 DOI: 10.1007/s10237-023-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
Mechanosensitive focal adhesion (FA) complexes mediate dynamic interactions between cells and substrates and regulate cellular function. Integrins in FA complexes link substrate ligands to stress fibers (SFs) and aid load transfer and traction generation. We developed a one-dimensional, multi-scale, stochastic finite element model of a fibroblast on a substrate that includes calcium signaling, SF remodeling, and FA dynamics. We linked stochastic dynamics, describing the formation and clustering of integrins to substrate ligands via motor-clutches, to a continuum level SF contractility model at various locations along the cell length. We quantified changes in cellular responses with substrate stiffness, ligand density, and cyclic stretch. Results show that tractions and integrin recruitments varied along the cell length; tractions were maximum at lamellar regions and reduced to zero at the cell center. Optimal substrate stiffness, based on maximum tractions exerted by the cell, shifted toward stiffer substrates at high ligand densities. Mean tractions varied biphasically with substrate stiffness and peaked at the optimal substrate stiffness. Cytosolic calcium increased monotonically with substrate stiffness and accumulated near lamellipodial regions. Cyclic stretch increased the cytosolic calcium, integrin concentrations, and tractions at lamellipodial and intermediate regions on compliant substrates. The optimal substrate stiffness under stretch shifted toward compliant substrates for a given ligand density. Stretch also caused cell deadhesions beyond a critical substrate stiffness. FA's destabilized on stiff substrates under cyclic stretch. An increase in substrate stiffness and cyclic stretch resulted in higher fibroblast contractility. These results show that chemomechanical coupling is essential in mechanosensing responses underlying cell-substrate interactions.
Collapse
Affiliation(s)
- Siddhartha Jaddivada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Aravamudhan A, Dieffenbach PB, Choi KM, Link PA, Meridew JA, Haak AJ, Fredenburgh LE, Tschumperlin DJ. Non-canonical IKB kinases regulate YAP/TAZ and pathological vascular remodeling behaviors in pulmonary artery smooth muscle cells. Physiol Rep 2024; 12:e15999. [PMID: 38610069 PMCID: PMC11014870 DOI: 10.14814/phy2.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Patrick A. Link
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
6
|
Chen YW, Cheng PP, Yin YF, Cai H, Chen JZ, Feng MH, Guo W, Zhao P, Zhang C, Shan XL, Chen HH, Guo S, Lu Y, Xu M. Integrin αV mediated activation of myofibroblast via mechanoparacrine of transforming growth factor β1 in promoting fibrous scar formation after myocardial infarction. Biochem Biophys Res Commun 2024; 692:149360. [PMID: 38081108 DOI: 10.1016/j.bbrc.2023.149360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor β1 (TGF-β1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-β1 in MFBs activation for fibrous reparation in mice with MI. METHODS Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-β1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-β1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-β1 and nuclear translocation of Smad2/3. CONCLUSION This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-β1, especially in immature scar area, which ultimately promotes fibrous scar maturation.
Collapse
Affiliation(s)
- Yu-Wen Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Feng Yin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing-Zhi Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Hui Feng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Hua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuo Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Lu
- Minhang Hospital, Fu Dan University, Shanghai, China.
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Southern BD, Li H, Mao H, Crish JF, Grove LM, Scheraga RG, Mansoor S, Reinhardt A, Abraham S, Deshpande G, Loui A, Ivanov AI, Rosenfeld SS, Bresnick AR, Olman MA. A novel mechanoeffector role of fibroblast S100A4 in myofibroblast transdifferentiation and fibrosis. J Biol Chem 2024; 300:105530. [PMID: 38072048 PMCID: PMC10789633 DOI: 10.1016/j.jbc.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.
Collapse
Affiliation(s)
- Brian D Southern
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haiyan Li
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongxia Mao
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - James F Crish
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa M Grove
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel G Scheraga
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sanaa Mansoor
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amanda Reinhardt
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susamma Abraham
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Lerner Research Institute Imaging Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alicia Loui
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrei I Ivanov
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven S Rosenfeld
- Division of Hematology/Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mitchell A Olman
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
8
|
Mao C, Liu X, Guo SW. Reduced endometrial expression of histone deacetylase 3 in women with adenomyosis who complained of heavy menstrual bleeding. Reprod Biomed Online 2023; 47:103288. [PMID: 37690341 DOI: 10.1016/j.rbmo.2023.103288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/12/2023]
Abstract
RESEARCH QUESTION What role, if any, does histone deacetylase 3 (HDAC3) play in adenomyosis-associated heavy menstrual bleeding (HMB)? DESIGN Seventy-two women with adenomyosis-associated HMB were recruited. Of these, 37 women reported moderate/heavy bleeding (MHB) and the remaining 35 women reported excessive bleeding (EXB). The stiffness of adenomyotic lesions and neighbouring endometrial-myometrial interface (EMI) was measured by transvaginal elastosonography, and full-thickness uterine tissue columns were processed for Masson trichrome staining and immunohistochemistry analyses. The protein expression levels of HDAC3 in endometrial cells cultured on substrates of different stiffnesses, and the protein concentrations of nuclear factor-κB (NF-κB) p65 subunit with HDAC3 suppression were evaluated. Mouse experiments were performed to assess the effect of adenomyosis on Hdac3 expression, endometrial repair and bleeding, and to evaluate the effect of HDAC3 inhibition on endometrial repair. RESULTS Compared with controls, the endometrial staining of HDAC3 was significantly lower in women with adenomyosis-associated HMB, concomitant with a greater extent of fibrosis. The stiffness of lesions and neighbouring EMI was significantly higher in the EXB group compared with the MHB group, as was the extent of fibrosis in lesions, their neighboring EMI and endometrium. Expression of HDAC3 was reduced significantly when endometrial epithelial cells were cultured in stiff substrates. Suppression of HDAC3 abrogated the activation and signalling of NF-κB. Mice with induced adenomyosis exhibited reduced Hdac3 staining and elevated fibrosis in endometrium, concomitant with disrupted endometrial repair and more bleeding. Hdac3 inhibition resulted in botched inflammation and increased bleeding. CONCLUSIONS Lesional fibrosis results in reduced endometrial HDAC3 expression and subsequent disruption in NF-κB signalling and inflammation, leading to adenomyosis-associated HMB.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of General Gynaecology, Shanghai Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Department of General Gynaecology, Shanghai Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China; Research Institute, Shanghai Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Faralli JA, Filla MS, Peters DM. Role of integrins in the development of fibrosis in the trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1274797. [PMID: 38983065 PMCID: PMC11182094 DOI: 10.3389/fopht.2023.1274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 07/11/2024]
Abstract
Primary open angle glaucoma (POAG) is a progressive and chronic disease exhibiting many of the features of fibrosis. The extracellular matrix (ECM) in the trabecular meshwork (TM) undergoes extensive remodeling and enhanced rigidity, resembling fibrotic changes. In addition, there are changes associated with myofibroblast activation and cell contractility that further drives tissue fibrosis and stiffening. This review discusses what is known about the integrins in the TM and their involvement in fibrotic processes.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S Filla
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
10
|
Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res 2023; 24:242. [PMID: 37798767 PMCID: PMC10552248 DOI: 10.1186/s12931-023-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Fama Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Safiya Al Yazeedi
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
11
|
SubramanianBalachandar V, Islam MM, Steward RL. A machine learning approach to predict cellular mechanical stresses in response to chemical perturbation. Biophys J 2023; 122:3413-3424. [PMID: 37496269 PMCID: PMC10502424 DOI: 10.1016/j.bpj.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Mechanical stresses generated at the cell-cell level and cell-substrate level have been suggested to be important in a host of physiological and pathological processes. However, the influence various chemical compounds have on the mechanical stresses mentioned above is poorly understood, hindering the discovery of novel therapeutics, and representing a barrier in the field. To overcome this barrier, we implemented two approaches: 1) monolayer boundary predictor and 2) discretized window predictor utilizing either stepwise linear regression or quadratic support vector machine machine learning model to predict the dose-dependent response of tractions and intercellular stresses to chemical perturbation. We used experimental traction and intercellular stress data gathered from samples subject to 0.2 or 2 μg/mL drug concentrations along with cell morphological properties extracted from the bright-field images as predictors to train our model. To demonstrate the predictive capability of our machine learning models, we predicted tractions and intercellular stresses in response to 0 and 1 μg/mL drug concentrations which were not utilized in the training sets. Results revealed the discretized window predictor trained just with four samples (292 images) to best predict both intercellular stresses and tractions using the quadratic support vector machine and stepwise linear regression models, respectively, for the unseen sample images.
Collapse
Affiliation(s)
- VigneshAravind SubramanianBalachandar
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Central Florida, Orlando, Florida; Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Md Mydul Islam
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Central Florida, Orlando, Florida
| | - R L Steward
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Central Florida, Orlando, Florida; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida.
| |
Collapse
|
12
|
Shi X, Janmey PA. Large Polyacrylamide Hydrogels for Large-Batch Cell Culture and Mechanobiological Studies. Macromol Biosci 2023; 23:e2300042. [PMID: 37128976 PMCID: PMC10524403 DOI: 10.1002/mabi.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The rigidity of a cell's substrate or extracellular matrix plays a vital role in regulating cell and tissue functions. Polyacrylamide (PAAm) hydrogels are one of the most widely used cell culture substrates that provide a physiologically relevant range of stiffness. However, it is still arduous and time-consuming to prepare PAAm substrates in large batches for high-yield or multiscale cell cultures. In this communication, a simple method to prepare PAAm hydrogels with less time cost and easily accessible materials is presented. The hydrogel is mechanically uniform and supports cell culture in a large batch. It is further shown that the stiffness of the hydrogel covers a large range of Young's modulus and is sensed by cells, regulating various cell features including changes in cell morphology, proliferation, and contractility. This method improves the reproducibility of mechanobiology studies and can be easily applied for mechanobiology research requiring large numbers of cells or experimental groups.
Collapse
Affiliation(s)
- Xuechen Shi
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
13
|
Li K, Ding K, Zhu Q, Han F, He X, Tan S, Wu Z, Zheng Z, Tang Z, Liu Y. Extracellular matrix stiffness aggravates urethral stricture through Igfbp3/Smad pathway. Sci Rep 2023; 13:14315. [PMID: 37653219 PMCID: PMC10471624 DOI: 10.1038/s41598-023-41584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Urethral stricture refers to the narrowing of the urethral lumen. While previous studies have hinted at inflammation as the initial driver of this condition, the reasons and mechanisms behind its progression remain largely unknown. By Atomic force microscope (AFM), researchers measured the matrix stiffness of urethra to be 5.23 ± 0.37 kPa for normal tissue and 41.59 ± 2.48 kPa for stricture urethral scar. Similar results were observed in rat urethral stricture models, where the matrix stiffness of normal urethra was 4.29 ± 0.82 kPa, while 32.94 ± 7.12 kPa for urethral stricture scar. Notably, the matrix stiffness increased in rat models over time. To further investigate, polyacrylamide hydrogels were employed to mimic different levels of stiffness for normal and stricture condition. Interestingly, higher matrix stiffness led to an increased fibroblast-to-myofibroblast transition (FMT) in rat urethral fibroblasts, indicated by enhanced expression of α-SMA and Collagen I, as well as changing in the morphology of fibroblast. RNA-seq analysis suggested that Igfbp3/Smads might regulate the progressive FMT in urethral stricture. In the experiment where the expression of Igfbp3 was inhibited, increasing matrix stiffness lose the potential to stimulate FMT progression and the expression of p-Smad2/3 decreased. On the contrary, overexpression of Igfbp3 promoted the process of FMT in urethral fibroblasts. In conclusion, Igfbp3/Smad pathway appeared to be involved in the progression of urethral fibrosis. This finding suggested that Igfbp3/Smad might be an promising target for future research and treatment in this filed.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ke Ding
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Feng Han
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xi He
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Shuo Tan
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ziqiang Wu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhihuan Zheng
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yanling Liu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
14
|
Bates ME, Libring S, Reinhart-King CA. Forces exerted and transduced by cancer-associated fibroblasts during cancer progression. Biol Cell 2023; 115:e2200104. [PMID: 37224184 PMCID: PMC10757454 DOI: 10.1111/boc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.
Collapse
Affiliation(s)
- Madison E Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
15
|
Khalfaoui L, Mukhtasimova N, Kelley B, Wells N, Teske JJ, Roos BB, Borkar NA, Zhang EY, Sine SM, Prakash YS, Pabelick CM. Functional α7 nicotinic receptors in human airway smooth muscle increase intracellular calcium concentration and contractility in asthmatics. Am J Physiol Lung Cell Mol Physiol 2023; 325:L17-L29. [PMID: 37192375 PMCID: PMC10292984 DOI: 10.1152/ajplung.00260.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023] Open
Abstract
Although nicotinic acetylcholine receptors (nAChRs) are commonly associated with neurons in the brain and periphery, recent data indicate that they are also expressed in non-neuronal tissues. We recently found the alpha7 (α7nAChR) subunit is highly expressed in human airway smooth muscle (hASM) with substantial increase in asthmatics, but their functionality remains unknown. We investigated the location and functional role of α7nAChRs in hASM cells from normal versus mild-moderate asthmatic patients. Immunostaining and protein analyses showed α7nAChR in the plasma membrane including in asthmatics. In asthmatic hASM, patch-clamp recordings revealed significantly higher functional homomeric α7nAChR channels. Real-time fluorescence imaging showed nicotine, via α7nAChR, increases intracellular Ca2+ ([Ca2+]i) independent of ACh effects, particularly in asthmatic hASM, while cellular traction force microscopy showed nicotine-induced contractility including in asthmatics. These results indicate functional homomeric and heteromeric nAChRs that are increased in asthmatic hASM, with pharmacology that likely differ owing to different subunit interfaces that form the orthosteric sites. nAChRs may represent a novel target in alleviating airway hyperresponsiveness in asthma.NEW & NOTEWORTHY Cigarette smoking and vaping exacerbate asthma. Understanding the mechanisms of nicotine effects in asthmatic airways is important. This study demonstrates that functional alpha7 nicotinic acetylcholine receptors (α7nAChRs) are expressed in human airway smooth muscle, including from asthmatics, and enhance intracellular calcium and contractility. Although a7nAChRs are associated with neuronal pathways, α7nAChR in smooth muscle suggests inhaled nicotine (e.g., vaping) can directly influence airway contractility. Targeting α7nAChR may represent a novel approach to alleviating airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Nuriya Mukhtasimova
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Brian Kelley
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
16
|
Subramanian Balachandar VA, Steward RL. Extracellular matrix composition alters endothelial force transmission. Am J Physiol Cell Physiol 2023; 325:C314-C323. [PMID: 37335028 PMCID: PMC10393341 DOI: 10.1152/ajpcell.00106.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Extracellular matrix (ECM) composition is important in a host of pathophysiological processes such as angiogenesis, atherosclerosis, and diabetes, and during each of these processes ECM composition has been reported to change over time. However, the impact ECM composition has on the ability of endothelium to respond mechanically is currently unknown. Therefore, in this study, we seeded human umbilical vein endothelial cells (HUVECs) onto soft hydrogels coated with an ECM concentration of 0.1 mg/mL at the following collagen I (Col-I) and fibronectin (FN) ratios: 100% Col-I, 75% Col-I-25% FN, 50% Col-I-50% FN, 25% Col-I-75% FN, and 100% FN. We subsequently measured tractions, intercellular stresses, strain energy, cell morphology, and cell velocity. Our results revealed that tractions and strain energy are maximal at 50% Col-I-50% FN and minimal at 100% Col-I and 100% FN. Intercellular stress response was maximal on 50% Col-I-50% FN and minimal on 25% Col-I-75% FN. Cell area and cell circularity displayed a divergent relationship for different Col-I and FN ratios. We believe that these results will be of great importance to the cardiovascular field, biomedical field, and cell mechanics.NEW & NOTEWORTHY The endothelium constitutes the innermost layer of all blood vessels and plays an important role in vascular physiology and pathology. During certain vascular diseases, the extracellular matrix has been suggested to transition from a collagen-rich matrix to a fibronectin-rich matrix. In this study, we demonstrate the impact various collagen and fibronectin ratios have on endothelial biomechanical and morphological response.
Collapse
Affiliation(s)
- Vignesh Aravind Subramanian Balachandar
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Robert L Steward
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
17
|
SubramanianBalachandar V, Steward RL. Extracellular Matrix Composition Alters Endothelial Force Transmission. RESEARCH SQUARE 2023:rs.3.rs-2499973. [PMID: 36747754 PMCID: PMC9900979 DOI: 10.21203/rs.3.rs-2499973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ECM composition is important in a host of pathophysiological processes such as angiogenesis, atherosclerosis, and diabetes, for example and during each of these processes ECM composition has been reported to change over time. However, the impact ECM composition has on the endothelium’s ability to respond mechanically is currently unknown. Therefore, in this study we seeded human umbilical vein endothelial cells (HUVECs) onto soft hydrogels coated with an ECM concentration of 0.1 mg/mL at the following collagen I (Col-I) and fibronectin (FN) ratios: 100%Col-I, 75%Col-I-25%FN, 50%Col-I-50%FN, 25%Col-I-75%FN, and 100%FN. We subsequently measured tractions, intercellular stresses, strain energy, cell morphology, and cell velocity. Our results revealed huvecs seeded on gels coated with 50% Col-I - 50% FN to have the highest intercellular stresses, tractions, strain energies, but the lowest velocities and cell circularity. Huvecs seeded on 100% Col-I had the lowest tractions, cell area while havingthe highest velocities and cell circularity. In addition, cells cultured on 25% Col-I and 75% FN had the lowest intercellular stresses, but the highest cell area. Huvecs cultured on 100% FN yielded the lowest strain energies. We believe these results will be of great importance to the cardiovascular field, biomedical field, and cell mechanics. Summary: Study the influence of different Col-I - FN ECM compositions on endothelial cell mechanics and morphology.
Collapse
|
18
|
Bianchi P, Guo SW, Habiba M, Benagiano G. Utility of the Levonorgestrel-Releasing Intrauterine System in the Treatment of Abnormal Uterine Bleeding and Dysmenorrhea: A Narrative Review. J Clin Med 2022; 11:5836. [PMID: 36233703 PMCID: PMC9570961 DOI: 10.3390/jcm11195836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION We undertook a literature review of the use of levonorgestrel-releasing intrauterine devices when utilized for heavy menstrual bleeding and/or dysmenorrhea. METHODS A narrative review of articles in the Scopus and Medline databases was conducted. RESULTS A number of options exist for the management of both abnormal uterine bleeding (AUB) and dysmenorrhea, and evidence is accumulating that the insertion of a levonorgestrel-releasing intrauterine system (LNG-IUS) represents a useful option for their long-term treatment. The idea of using a progestogen released in utero was initially conceived to achieve long-term contraception, but it was quickly found that these systems could be utilized for a number of therapeutic applications. The first device to be made commercially available, Progestasert, was withdrawn from the market because, in the event of contraceptive failure, it caused a disproportionate percentage of extrauterine pregnancies. On the other hand, the LNG-IUS continues to be successfully utilized in its various variants, releasing 20, 13, or 8 μg/day. These devices have a respective duration of action of 7 (possibly 8), 5, and 3 years, and there exist versions of frameless systems affixed to the myometrium of the uterine fundus. In the present review, following a brief description of the major causes of AUB and dysmenorrhea, the molecular bases for the use of the LNG-IUS are summarized. This is followed by a compendium of its use in AUB and dysmenorrhea, concluding that the insertion of the system improves the quality of life, reduces menstrual blood loss better than other medical therapies, and decreases the extent of dysmenorrhea and pelvic pain. In addition, there is no evidence of a significant difference in these outcomes when the use of the LNG-IUS was compared with improvements offered by endometrial ablation or hysterectomy. Possibly, the most important mechanism of action of the system consists of its ability to induce amenorrhea, which effectively eliminates heavy bleeding and dysmenorrhea. However, no method is ideal for every woman, and, in the case of the LNG-IUS, younger age and severe dysmenorrhea seem to be associated with a higher risk of discontinuation. CONCLUSION The higher-dose LNG-IUS is a useful tool for HMB and dysmenorrhea in women of all ages. The low cost and ease of use make the LNG-IUS an attractive option, especially when contraception is also desired.
Collapse
Affiliation(s)
- Paola Bianchi
- Department of Medico-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza, University of Rome, 00161 Rome, Italy
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Marwan Habiba
- Department of Health Sciences, University Hospitals of Leicester, University of Leicester, Leicester LE1 7RH, UK
| | - Giuseppe Benagiano
- Faculty of Medicine and Dentistry, Sapienza, University of Rome, 00161 Rome, Italy
| |
Collapse
|
19
|
Radwanska A, Cottage CT, Piras A, Overed-Sayer C, Sihlbom C, Budida R, Wrench C, Connor J, Monkley S, Hazon P, Schluter H, Thomas MJ, Hogaboam CM, Murray LA. Increased expression and accumulation of GDF15 in IPF extracellular matrix contribute to fibrosis. JCI Insight 2022; 7:153058. [PMID: 35993367 PMCID: PMC9462497 DOI: 10.1172/jci.insight.153058] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unmet medical need. It is characterized by formation of scar tissue leading to a progressive and irreversible decline in lung function. IPF is associated with repeated injury, which may alter the composition of the extracellular matrix (ECM). Here, we demonstrate that IPF patient–derived pulmonary ECM drives profibrotic response in normal human lung fibroblasts (NHLF) in a 3D spheroid assay. Next, we reveal distinct alterations in composition of the diseased ECM, identifying potentially novel associations with IPF. Growth differentiation factor 15 (GDF15) was identified among the most significantly upregulated proteins in the IPF lung–derived ECM. In vivo, GDF15 neutralization in a bleomycin-induced lung fibrosis model led to significantly less fibrosis. In vitro, recombinant GDF15 (rGDF15) stimulated α smooth muscle actin (αSMA) expression in NHLF, and this was mediated by the activin receptor-like kinase 5 (ALK5) receptor. Furthermore, in the presence of rGDF15, the migration of NHLF in collagen gel was reduced. In addition, we observed a cell type–dependent effect of GDF15 on the expression of cell senescence markers. Our data suggest that GDF15 mediates lung fibrosis through fibroblast activation and differentiation, implicating a potential direct role of this matrix-associated cytokine in promoting aberrant cell responses in disease.
Collapse
Affiliation(s)
- Agata Radwanska
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christopher Travis Cottage
- Bioscience COPD/IPF, Research and Early Development, R&I, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Antonio Piras
- Bioscience In Vivo, Research and Early Development, R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, R&I, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Carina Sihlbom
- Proteomics Core Facility of Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ramachandramouli Budida
- Translational Science and Experimental Medicine, Research and Early Development, R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Wrench
- Bioscience COPD/IPF, Research and Early Development, R&I, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jane Connor
- Bioscience COPD/IPF, Research and Early Development, R&I, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Susan Monkley
- Translational Science and Experimental Medicine, Research and Early Development, R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Petra Hazon
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Holger Schluter
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew J. Thomas
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Lynne A. Murray
- Bioscience COPD/IPF, Research and Early Development, R&I, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
20
|
Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol 2022; 128:137-144. [PMID: 35339360 DOI: 10.1016/j.semcdb.2022.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a dynamic structure that surrounds and anchors cellular components in tissues. In addition to functioning as a structural scaffold for cellular components, ECMs also regulate diverse biological functions, including cell adhesion, proliferation, differentiation, migration, cell-cell interactions, and intracellular signaling events. Dermal fibroblasts (dFBs), the major cellular source of skin ECM, develop from a common embryonic precursor to the highly heterogeneous subpopulations during development and adulthood. Upon injury, dFBs migrate into wound granulation tissue and transdifferentiate into myofibroblasts, which play a critical role in wound contraction and dermal ECM regeneration and deposition. In this review, we describe the plasticity of dFBs during development and wound healing and how various dFB-derived ECM molecules, including collagen, proteoglycans, glycosaminoglycans, fibrillins and matricellular proteins are expressed and regulated, and in turn how these ECM molecules play a role in regulating the function of dFBs and immune cells. Finally, we describe how dysregulation of ECM matrix is associated the pathogenesis of wound healing related skin diseases, including chronic wounds and keloid.
Collapse
|
21
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
22
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
23
|
Maruri DP, Iyer KS, Schmidtke DW, Petroll WM, Varner VD. Signaling Downstream of Focal Adhesions Regulates Stiffness-Dependent Differences in the TGF- β1-Mediated Myofibroblast Differentiation of Corneal Keratocytes. Front Cell Dev Biol 2022; 10:886759. [PMID: 35693927 PMCID: PMC9177138 DOI: 10.3389/fcell.2022.886759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF-β1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF-β1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF-β1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation (α-SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF-β1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α-SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF-β1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.
Collapse
Affiliation(s)
- Daniel P. Maruri
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Krithika S. Iyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - W. Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Victor D. Varner,
| |
Collapse
|
24
|
Rothermel TM, Cook BL, Alford PW. Cellular Microbiaxial Stretching Assay for Measurement and Characterization of the Anisotropic Mechanical Properties of Micropatterned Cells. Curr Protoc 2022; 2:e370. [PMID: 35195953 DOI: 10.1002/cpz1.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Characterizing the mechanical properties of single cells is important for developing descriptive models of tissue mechanics and improving the understanding of mechanically driven cell processes. Standard methods for measuring single-cell mechanical properties typically provide isotropic mechanical descriptions. However, many cells exhibit specialized geometries in vivo, with anisotropic cytoskeletal architectures reflective of their function, and are exposed to dynamic multiaxial loads, raising the need for more complete descriptions of their anisotropic mechanical properties under complex deformations. Here, we describe the cellular microbiaxial stretching (CμBS) assay in which controlled deformations are applied to micropatterned cells while simultaneously measuring cell stress. CμBS utilizes a set of linear actuators to apply tensile or compressive, short- or long-term deformations to cells micropatterned on a fluorescent bead-doped polyacrylamide gel. Using traction force microscopy principles and the known geometry of the cell and the mechanical properties of the underlying gel, we calculate the stress within the cell to formulate stress-strain curves that can be further used to create mechanical descriptions of the cells, such as strain energy density functions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Assembly of CμBS stretching constructs Basic Protocol 2: Polymerization of micropatterned, bead-doped polyacrylamide gel on an elastomer membrane Support Protocol: Cell culture and seeding onto CμBS constructs Basic Protocol 3: Implementing CμBS stretching protocols and traction force microscopy Basic Protocol 4: Data analysis and cell stress measurements.
Collapse
Affiliation(s)
- Taylor M Rothermel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Bernard L Cook
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
25
|
Link PA, Choi KM, Diaz Espinosa AM, Jones DL, Gao AY, Haak AJ, Tschumperlin DJ. Combined control of the fibroblast contractile program by YAP and TAZ. Am J Physiol Lung Cell Mol Physiol 2022; 322:L23-L32. [PMID: 34755530 PMCID: PMC8721907 DOI: 10.1152/ajplung.00210.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcription cofactors implicated in the contractile and profibrotic activation of fibroblasts. Fibroblast contractile function is important in alveologenesis and in lung wound healing and fibrosis. As paralogs, YAP and TAZ may have independent or redundant roles in regulating transcriptional programs and contractile function. Using IMR-90 lung fibroblasts, microarray analysis, and traction microscopy, we tested whether independent YAP or TAZ knockdown alone was sufficient to limit transcriptional activation and contraction in vitro. Our results demonstrate limited effects of knockdown of either YAP or TAZ alone, with more robust transcriptional and functional effects observed with combined knockdown, consistent with cooperation or redundancy of YAP and TAZ in transforming growth factor β1 (TGFβ1)-induced fibroblast activation and contractile force generation. The transcriptional responses to combined YAP/TAZ knockdown were focused on a relatively small subset of genes with prominent overrepresentation of genes implicated in contraction and migration. To explore potential disease relevance of our findings, we tested primary human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and confirmed that YAP and TAZ combined knockdown reduced the expression of three cytoskeletal genes, ACTA2, CNN1, and TAGLN. We then compared the contribution of these genes, along with YAP and TAZ, to contractile function. Combined knockdown targeting YAP/TAZ was more effective than targeting any of the individual cytoskeletal genes in reducing contractile function. Together, our results demonstrate that YAP and TAZ combine to regulate a multigene program that is essential to fibroblast contractile function.
Collapse
Affiliation(s)
- Patrick A. Link
- 1Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Kyoung Moo Choi
- 1Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ana M. Diaz Espinosa
- 1Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Dakota L. Jones
- 1Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ashley Y. Gao
- 2Department of Ophthalmology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Andrew J. Haak
- 1Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Daniel J. Tschumperlin
- 1Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
26
|
Huang Q, Liu X, Critchley H, Fu Z, Guo S. How does the extent of fibrosis in adenomyosis lesions contribute to heavy menstrual bleeding? Reprod Med Biol 2022; 21:e12442. [PMID: 35386380 PMCID: PMC8967287 DOI: 10.1002/rmb2.12442] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/19/2022] Open
Abstract
Purpose To investigate how the extent of fibrosis in adenomyosis lesions contributes to heavy menstrual bleeding (HMB). Methods We recruited 57 women with histologically confirmed adenomyosis, 29 of whom reported moderate/heavy bleeding (MHB) (menstrual blood loss (MBL) ≥20 but <100 mL) and the remaining 28, excessive MBL (EXB; ≥100 mL). Lesional stiffness was measured by transvaginal elastosonography. Full-thickness uterine tissue columns containing the lesion and its neighboring endometrial-myometrial interface (EMI) and endometrial tissues were evaluated for tissue fibrosis and immunohistochemical analysis of HIF-1α, COX-2, EP2, and EP4. Results The lesional stiffness in the EXB group was significantly higher than that of MHB, and consistently, the extent of lesional fibrosis and the extent of tissue fibrosis in both EMI and eutopic endometrium were also significantly higher. In adenomyotic lesions and their neighboring EMI and eutopic endometrial tissues, the immunostaining of HIF-1α, COX-2, EP2, and EP4 was significantly reduced. The extent of fibrosis and the immunostaining levels of HIF-1α, COX-2, EP2, and EP4 were negatively correlated in all tissues. Conclusions Lesional fibrosis begets stiffening matrix, propagating fibrosis to neighboring EMI and eutopic endometrium, resulting in reduced PGE2 and HIF-1α signaling, and thus likely reduced hypoxia necessary for endometrial repair, leading to HMB.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xishi Liu
- Department of GynecologyShanghai OB/GYN HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Hilary Critchley
- MRC Centre for Reproductive HealthUniversity of EdinburghThe Queen's Medical Research InstituteEdinburghUK
| | - Zhongpeng Fu
- Department of Ultrasound ImagingShanghai OB/GYN HospitalFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research InstituteShanghai OB/GYN HospitalFudan UniversityShanghaiChina
| |
Collapse
|
27
|
Huang Q, Liu X, Guo SW. Changing prostaglandin E2 (PGE 2) signaling during lesional progression and exacerbation of endometriosis by inhibition of PGE 2 receptor EP2 and EP4. Reprod Med Biol 2021; 21:e12426. [PMID: 34938150 PMCID: PMC8660993 DOI: 10.1002/rmb2.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the change, if any, in prostaglandin E2 (PGE2) signaling in endometriotic lesions of different developmental stages in mouse. In addition, we evaluated the effect of treatment of mice with induced deep endometriosis (DE) with inhibitors of PGE2 receptor subtypes EP2 and EP4 and metformin. Methods Three mouse experimentations were conducted. In Experiment 1, female Balb/C mice were induced with endometriosis or DE and were serially sacrificed after induction. Experiments 2 and 3 evaluated the effect of treatment with EP2 and EP4 inhibitors and metformin, respectively, in mice with induced DE. Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the extent of lesional fibrosis, was evaluated. Results The immunostaining of COX-2, EP2, and EP4 turned from activation to a stall as lesions progressed. Treatment with EP2/EP4 inhibitors in DE mice exacerbated endometriosis-associated hyperalgesia and promoted fibrogenesis in lesions even though it suppressed the PGE2 signaling dose-dependently. In contrast, treatment with metformin resulted in increased PGE2 signaling, concomitant with improved hyperalgesia, and retarded lesional fibrogenesis. Conclusions The PGE2 signaling diminishes as endometriotic lesions progress. Treatment with EP2/EP4 inhibitors in DE mice exacerbates endometriosis, but metformin appears to be promising seemingly through the induction of the PGE2 signaling.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
28
|
Huang Q, Liu X, Guo SW. Higher fibrotic content of endometriotic lesions is associated with diminished prostaglandin E2 signaling. Reprod Med Biol 2021; 21:e12423. [PMID: 34938147 PMCID: PMC8656679 DOI: 10.1002/rmb2.12423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose While the prevailing view holds that the prostaglandin E2 (PGE2) signaling plays a vital role in endometriosis, PGE2 also is known to be anti-fibrotic. We investigated the immunostaining of COX-2, EP2, and EP4, along with fibrotic content in ovarian endometrioma (OE) and deep endometriosis (DE) lesions, and in OE lesions from adolescent and adult patients. In addition, we evaluated the effect of substrate stiffness on the expression of COX-2, EP2, and EP4 in endometrial stromal cells. Methods Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the quantification of lesional fibrosis, was conducted for OE and DE lesion samples and also OE lesion samples from adolescent and adult patients. The effect of substrate rigidity on fibroblast-to-myofibroblast transdifferentiation (FMT) and the expression of COX-2, EP2, and EP4, with or without TGF-β1 stimulation, were investigated. Results The immunostaining of COX-2, EP2, and EP4 was substantially reduced in endometriotic lesions as lesions became more fibrotic. Both TGF-β1 stimulation and stiff substrates induced FMT and reduced the expression of COX-2, EP2, and EP4. Conclusions Since fibrosis is a common feature of endometriosis, our results thus cast doubts on the use of therapeutics that suppresses the PGE2 signaling pathway, either by inhibiting COX-2 or EP2/EP4.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,The Third Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
29
|
Ammanamanchi M, Maurer M, Hayenga HN. Inflammation Drives Stiffness Mediated Uptake of Lipoproteins in Primary Human Macrophages and Foam Cell Proliferation. Ann Biomed Eng 2021; 49:3425-3437. [PMID: 34734362 PMCID: PMC8678330 DOI: 10.1007/s10439-021-02881-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Macrophage to foam cell transition and their accumulation in the arterial intima are the key events that trigger atherosclerosis, a multifactorial inflammatory disease. Previous studies have linked arterial stiffness and cardiovascular disease and have highlighted the use of arterial stiffness as a potential early-stage marker. Yet the relationship between arterial stiffness and atherosclerosis in terms of macrophage function is poorly understood. Thus, it is pertinent to understand the mechanobiology of macrophages to clarify their role in plaque advancement. We explore how substrate stiffness affects proliferation of macrophages and foam cells, traction forces exerted by macrophages and uptake of native and oxidized low-density lipoproteins. We demonstrate that stiffness influences foam cell proliferation under both naïve and inflammatory conditions. Naïve foam cells proliferated faster on the 4 kPa polyacrylamide gel and glass whereas under inflammatory conditions, maximum proliferation was recorded on glass. Macrophage and foam cell traction forces were positively correlated to the substrate stiffness. Furthermore, the influence of stiffness was demonstrated on the uptake of lipoproteins on macrophages treated with lipopolysaccharide + interferon gamma. Cells on softer 1 kPa substrates had a significantly higher uptake of low-density lipoproteins and oxidized low-density lipoproteins compared to stiffer substrates. The results herein indicate that macrophage function is modulated by stiffness and help better understand ways in which macrophages and foam cells could contribute to the development and progression of atherosclerotic plaque.
Collapse
Affiliation(s)
- Manasvini Ammanamanchi
- Department of Biomedical Engineering, University of Texas at Dallas, BSB 12.826, 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Melanie Maurer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Heather N Hayenga
- Department of Biomedical Engineering, University of Texas at Dallas, BSB 12.826, 800 W Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
30
|
Basta MD, Paulson H, Walker JL. The local wound environment is a key determinant of the outcome of TGFβ signaling on the fibrotic response of CD44 + leader cells in an ex vivo post-cataract-surgery model. Exp Eye Res 2021; 213:108829. [PMID: 34774488 DOI: 10.1016/j.exer.2021.108829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
The cytokine transforming growth factor beta (TGFβ) has a role in regulating the normal and pathological response to wound healing, yet how it shifts from a pro-repair to a pro-fibrotic function within the wound environment is still unclear. Using a clinically relevant ex vivo post-cataract surgery model that mimics the lens fibrotic disease posterior capsule opacification (PCO), we investigated the influence of two distinct wound environments on shaping the TGFβ-mediated injury response of CD44+ vimentin-rich leader cells. The substantial fibrotic response of this cell population occurred within a rigid wound environment under the control of endogenous TGFβ. However, TGFβ was dispensable for the role of leader cells in wound healing on the endogenous basement membrane wound environment, where repair occurs in the absence of a major fibrotic outcome. A difference between leader cell function in these distinct environments was their cell surface expression of the latent TGFβ activator, αvβ3 integrin. This receptor is exclusively found on this CD44+ cell population when they localize to the leading edge of the rigid wound environment. Providing exogenous TGFβ to bypass any differences in the ability of the leader cells to sustain activation of TGFβ in different environments revealed their inherent ability to induce pro-fibrotic reactions on the basement membrane wound environment. Furthermore, exposure of the leader cells in the rigid wound environment to TGFβ led to an accelerated fibrotic response including the earlier appearance of pro-collagen + cells, alpha smooth muscle actin (αSMA)+ myofibroblasts, and increased fibrotic matrix production. Collectively, these findings show the influence of the local wound environment on the extent and severity of TGFβ-induced fibrotic responses. These findings have important implications for understanding the development of the lens fibrotic disease PCO in response to cataract surgery wounding.
Collapse
Affiliation(s)
- Morgan D Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Heather Paulson
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
31
|
Keloid fibroblasts have elevated and dysfunctional mechanotransduction signaling that is independent of TGF-β. J Dermatol Sci 2021; 104:11-20. [PMID: 34538705 DOI: 10.1016/j.jdermsci.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fibroblasts found in keloid tissues are known to present an altered sensitivity to microenvironmental stimuli. However, the impact of changes in extracellular matrix stiffness on phenotypes of normal fibroblasts (NFs) and keloid fibroblasts (KFs) is poorly understood. OBJECTIVES Investigation the impact of matrix stiffness on NFs and KFs mainly via detecting yes-associated protein (YAP) expression. METHODS We used fibronectin-coated polyacrylamide hydrogel substrates with a range from physiological to pathological stiffness values with or without TGF-β (fibrogenic inducer). Atomic force microscopy was used to measure the stiffness of fibroblasts. Cellular mechanoresponses were screened by immunocytochemistry, Western blot and Luminex assay. RESULTS KFs are stiffer than NFs with greater expression of α-SMA. In NFs, YAP nuclear translocation was induced by increasing matrix stiffness as well as by stimulation with TGF-β. In contrast, KFs showed higher baseline levels of nuclear YAP that was not responsive to matrix stiffness or TGF-β. TGF-β1 induced p-SMAD3 in both KFs and NFs, demonstrating the pathway was functional and not hyperactivated in KFs. Moreover, blebbistatin suppressed α-SMA expression and cellular stiffness in KFs, linking the elevated YAP signaling to keloid phenotype. CONCLUSIONS These data suggest that whilst normal skin fibroblasts respond to matrix stiffness in vitro, keloid fibroblasts have elevated activation of mechanotransduction signaling insensitive to the microenvironment. This elevated signaling appears linked to the expression of α-SMA, suggesting a direct link to disease pathogenesis. These findings suggest changes to keloid fibroblast phenotype related to mechanotransduction contribute to disease and may be a useful therapeutic target.
Collapse
|
32
|
Khalil NN, McCain ML. Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Front Cardiovasc Med 2021; 8:709871. [PMID: 34336962 PMCID: PMC8316619 DOI: 10.3389/fcvm.2021.709871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.
Collapse
Affiliation(s)
- Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
33
|
John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev 2021; 302:228-240. [PMID: 34028807 PMCID: PMC8237078 DOI: 10.1111/imr.12977] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic rapidly spread around the world following the first reports in Wuhan City, China in late 2019. The disease, caused by the novel SARS-CoV-2 virus, is primarily a respiratory condition that can affect numerous other bodily systems including the cardiovascular and gastrointestinal systems. The disease ranges in severity from asymptomatic through to severe acute respiratory distress requiring intensive care treatment and mechanical ventilation, which can lead to respiratory failure and death. It has rapidly become evident that COVID-19 patients can develop features of interstitial pulmonary fibrosis, which in many cases persist for as long as we have thus far been able to follow the patients. Many questions remain about how such fibrotic changes occur within the lung of COVID-19 patients, whether the changes will persist long term or are capable of resolving, and whether post-COVID-19 pulmonary fibrosis has the potential to become progressive, as in other fibrotic lung diseases. This review brings together our existing knowledge on both COVID-19 and pulmonary fibrosis, with a particular focus on lung epithelial cells and fibroblasts, in order to discuss common pathways and processes that may be implicated as we try to answer these important questions in the months and years to come.
Collapse
Affiliation(s)
- Alison E. John
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Chitra Joseph
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Gisli Jenkins
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Amanda L. Tatler
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
34
|
Avoiding tensional equilibrium in cells migrating on a matrix with cell-scale stiffness-heterogeneity. Biomaterials 2021; 274:120860. [PMID: 34004486 DOI: 10.1016/j.biomaterials.2021.120860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022]
Abstract
Intracellular stresses affect various cell functions, including proliferation, differentiation and movement, which are dynamically modulated in migrating cells through continuous cell-shaping and remodeling of the cytoskeletal architecture induced by spatiotemporal interactions with extracellular matrix stiffness. When cells migrate on a matrix with cell-scale stiffness-heterogeneity, which is a common situation in living tissues, what intracellular stress dynamics (ISD) emerge? In this study, to explore this issue, finite element method-based traction force microscopy was applied to cells migrating on microelastically patterned gels. Two model systems of microelastically patterned gels (stiff/soft stripe and stiff triangular patterns) were designed to characterize the effects of a spatial constraint on cell-shaping and of the presence of different types of cues to induce competing cellular taxis (usual and reverse durotaxis) on the ISD, respectively. As the main result, the prolonged fluctuation of traction stress on a whole-cell scale was markedly enhanced on single cell-size triangular stiff patterns compared with homogeneous gels. Such ISD enhancement was found to be derived from the interplay between the nomadic migration of cells to regions with different degrees of stiffness and domain shape-dependent traction force dynamics, which should be an essential factor for keeping cells far from tensional equilibrium.
Collapse
|
35
|
Sato S, Chong SG, Upagupta C, Yanagihara T, Saito T, Shimbori C, Bellaye PS, Nishioka Y, Kolb MR. Fibrotic extracellular matrix induces release of extracellular vesicles with pro-fibrotic miRNA from fibrocytes. Thorax 2021; 76:895-906. [PMID: 33859055 DOI: 10.1136/thoraxjnl-2020-215962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/14/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023]
Abstract
RATIONALE Extracellular vesicles (EVs) are small lipid vesicles, and EV-coupled microRNAs (miRNAs) are important modulators of biological processes. Fibrocytes are circulating bone marrow-derived cells that migrate into the injured lungs and contribute to fibrogenesis. The question of whether EV-coupled miRNAs derived from fibrocytes are able to regulate pulmonary fibrosis has not been addressed yet. METHODS Pulmonary fibrosis was induced in rats by intratracheal administration of an adenoviral gene vector encoding active transforming growth factor-β1 (TGF-β1) or control vector. Primary fibrocytes and fibroblasts were cultured from rat lungs and were sorted by anti-CD45 magnetic beads. Human circulating fibrocytes and fibrocytes in bronchoalveolar lavage fluid (BALF) were isolated by fibronectin-coated dishes. Fibrocytes were cultured on different stiffness plates or decellularised lung scaffolds. We also determined the effects of extracellular matrix (ECM) and recombinant TGF-β1 on the cellular and EV-coupled miRNA expression of fibrocytes. RESULTS The EVs of fibrocytes derived from fibrotic lungs significantly upregulated the expression of col1a1 of fibroblasts. Culturing on rigid plates or fibrotic decellularised lung scaffolds increased miR-21-5 p expression compared with soft plates or normal lung scaffolds. Dissolved ECM collected from fibrotic lungs and recombinant TGF-β1 increased miR-21-5 p expression on fibrocytes, and these effects were attenuated on soft plates. Fibrocytes from BALF collected from fibrotic interstitial pneumonia patients showed higher miR-21-5 p expression than those from other patients. CONCLUSIONS Our results indicate that ECM contributes to fibrogenesis through biomechanical and biochemical effects on miRNA expression in fibrocytes.
Collapse
Affiliation(s)
- Seidai Sato
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada.,Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Sy Giin Chong
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Chandak Upagupta
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Takuya Saito
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Chiko Shimbori
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Pierre-Simon Bellaye
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Emon B, Li Z, Joy MSH, Doha U, Kosari F, Saif MTA. A novel method for sensor-based quantification of single/multicellular force dynamics and stiffening in 3D matrices. SCIENCE ADVANCES 2021; 7:eabf2629. [PMID: 33837084 PMCID: PMC8034860 DOI: 10.1126/sciadv.abf2629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Cells in vivo generate mechanical traction on the surrounding 3D extracellular matrix (ECM) and neighboring cells. Such traction and biochemical cues may remodel the matrix, e.g., increase stiffness, which, in turn, influences cell functions and forces. This dynamic reciprocity mediates development and tumorigenesis. Currently, there is no method available to directly quantify single-cell forces and matrix remodeling in 3D. Here, we introduce a method to fulfill this long-standing need. We developed a high-resolution microfabricated sensor that hosts a 3D cell-ECM tissue formed by self-assembly. This sensor measures cell forces and tissue stiffness and can apply mechanical stimulation to the tissue. We measured single and multicellular force dynamics of fibroblasts (3T3), human colon (FET) and lung (A549) cancer cells, and cancer-associated fibroblasts (CAF05) with 1-nN resolution. Single cells show notable force fluctuations in 3D. FET/CAF coculture system, mimicking cancer tumor microenvironment, increased tissue stiffness by three times within 24 hours.
Collapse
Affiliation(s)
- Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhengwei Li
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Md Saddam H Joy
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Umnia Doha
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
37
|
Norris SCP, Soto J, Kasko AM, Li S. Photodegradable Polyacrylamide Gels for Dynamic Control of Cell Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5929-5944. [PMID: 33502154 DOI: 10.1021/acsami.0c19627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cross-linked polyacrylamide hydrogels are commonly used in biotechnology and cell culture applications due to advantageous properties, such as the precise control of material stiffness and the attachment of cell adhesive ligands. However, the chemical and physical properties of polyacrylamide gels cannot be altered once fabricated. Here, we develop a photodegradable polyacrylamide gel system that allows for a dynamic control of polyacrylamide gel stiffness with exposure to light. Photodegradable polyacrylamide hydrogel networks are produced by copolymerizing acrylamide and a photocleavable ortho-nitrobenzyl (o-NB) bis-acrylate cross-linker. When the hydrogels are exposed to light, the o-NB cross-links cleave and the stiffness of the photodegradable polyacrylamide gels decreases. Further examination of the effect of dynamic stiffness changes on cell behavior reveals that in situ softening of the culture substrate leads to changes in cell behavior that are not observed when cells are cultured on presoftened gels, indicating that both dynamic and static mechanical environments influence cell fate. Notably, we observe significant changes in nuclear localization of YAP and cytoskeletal organization after in situ softening; these changes further depend on the type and concentration of cell adhesive proteins attached to the gel surface. By incorporating the simplicity and well-established protocols of standard polyacrylamide gel fabrication with the dynamic control of photodegradable systems, we can enhance the capability of polyacrylamide gels, thereby enabling cell biologists and engineers to study more complex cellular behaviors that were previously inaccessible using regular polyacrylamide gels.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| |
Collapse
|
38
|
Berhan A, Harris T, Jaffar J, Jativa F, Langenbach S, Lönnstedt I, Alhamdoosh M, Ng M, Lee P, Westall G, Wilson N, Wilson M, Stewart AG. Cellular Microenvironment Stiffness Regulates Eicosanoid Production and Signaling Pathways. Am J Respir Cell Mol Biol 2021; 63:819-830. [PMID: 32926636 DOI: 10.1165/rcmb.2020-0227oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathological changes in the biomechanical environment are implicated in the progression of idiopathic pulmonary fibrosis (IPF). Stiffened matrix augments fibroblast proliferation and differentiation and activates TGF-β1 (transforming growth factor-β1). Stiffened matrix impairs the synthesis of the antifibrogenic lipid mediator prostaglandin E2 (PGE2) and reduces the expression of the rate-limiting prostanoid biosynthetic enzyme cyclooxygenase-2 (COX-2). We now show that prostaglandin E synthase (PTGES), the final enzyme in the PGE2 biosynthetic pathway, is expressed at lower levels in the lungs of patients with IPF. We also show substantial induction of COX-2, PTGES, prostaglandin E receptor 4 (EP4), and cytosolic phospholipase A2 (cPLA2) expression in human lung fibroblasts cultured in soft collagen hydrogels or in spheroids compared with conventional culture on stiff plastic culture plates. Induction of COX-2, cPLA2, and PTGES expression in spheroid cultures was moderately inhibited by the p38 mitogen-activated protein kinase inhibitor SB203580. The induction of prostanoid biosynthetic enzyme expression was accompanied by an increase in PGE2 levels only in non-IPF-derived fibroblast spheroids. Our study reveals an extensive dysregulation of prostanoid biosynthesis and signaling pathways in IPF-derived fibroblasts, which are only partially abrogated by culture in soft microenvironments.
Collapse
Affiliation(s)
- Asres Berhan
- Department of Pharmacology and Therapeutics, and
| | - Trudi Harris
- Department of Pharmacology and Therapeutics, and
| | - Jade Jaffar
- Department of Allergy, Immunology, Respiratory Medicine, The Alfred Hospital/Monash University, Melbourne, Victoria, Australia
| | - Fernando Jativa
- Department of Pharmacology and Therapeutics, and.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Milica Ng
- CSL Ltd., Melbourne, Victoria, Australia; and
| | - Peter Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Glen Westall
- Department of Allergy, Immunology, Respiratory Medicine, The Alfred Hospital/Monash University, Melbourne, Victoria, Australia
| | - Nick Wilson
- CSL Ltd., Melbourne, Victoria, Australia; and
| | | | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, and.,ARC Centre for Personalised Therapeutics Technologies, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Acheva A, Kärki T, Schaible N, Krishnan R, Tojkander S. Adipokine Leptin Co-operates With Mechanosensitive Ca 2 +-Channels and Triggers Actomyosin-Mediated Motility of Breast Epithelial Cells. Front Cell Dev Biol 2021; 8:607038. [PMID: 33490070 PMCID: PMC7815691 DOI: 10.3389/fcell.2020.607038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
In postmenopausal women, a major risk factor for the development of breast cancer is obesity. In particular, the adipose tissue-derived adipokine leptin has been strongly linked to tumor cell proliferation, migration, and metastasis, but the underlying mechanisms remain unclear. Here we show that treatment of normal mammary epithelial cells with leptin induces EMT-like features characterized by higher cellular migration speeds, loss of structural ordering of 3D-mammo spheres, and enhancement of epithelial traction forces. Mechanistically, leptin triggers the phosphorylation of myosin light chain kinase-2 (MLC-2) through the interdependent activity of leptin receptor and Ca2+ channels. These data provide evidence that leptin-activated leptin receptors, in co-operation with mechanosensitive Ca2+ channels, play a role in the development of breast carcinomas through the regulation of actomyosin dynamics.
Collapse
Affiliation(s)
- Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Niccole Schaible
- Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
De La Pena A, Mukhtar M, Yokosawa R, Carrasquilla S, Simmons CS. Quantifying cellular forces: Practical considerations of traction force microscopy for dermal fibroblasts. Exp Dermatol 2021; 30:74-83. [PMID: 32767472 PMCID: PMC7769991 DOI: 10.1111/exd.14166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Traction force microscopy (TFM) is a well-established technique traditionally used by biophysicists to quantify the forces adherent biological cells exert on their microenvironment. As image processing software becomes increasingly user-friendly, TFM is being adopted by broader audiences to quantify contractility of (myo)fibroblasts. While many technical reviews of TFM's computational mechanics are available, this review focuses on practical experimental considerations for dermatology researchers new to cell mechanics and TFM who may wish to implement a higher throughput and less expensive alternative to collagen compaction assays. Here, we describe implementation of experimental methods, analysis using open-source software and troubleshooting of common issues to enable researchers to leverage TFM for their investigations into skin fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Chelsey S. Simmons
- Department of Mechanical and Aerospace Engineering
- J. Crayton Pruitt Department of Biomedical Engineering
- Division of Cardiovascular Medicine, University of Florida
| |
Collapse
|
41
|
Dutta B, Goswami R, Rahaman SO. TRPV4 Plays a Role in Matrix Stiffness-Induced Macrophage Polarization. Front Immunol 2020; 11:570195. [PMID: 33381111 PMCID: PMC7767862 DOI: 10.3389/fimmu.2020.570195] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
42
|
Petroll WM, Varner VD, Schmidtke DW. Keratocyte mechanobiology. Exp Eye Res 2020; 200:108228. [PMID: 32919993 PMCID: PMC7655662 DOI: 10.1016/j.exer.2020.108228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023]
Abstract
In vivo, corneal keratocytes reside within a complex 3D extracellular matrix (ECM) consisting of highly aligned collagen lamellae, growth factors, and other extracellular matrix components, and are subjected to various mechanical stimuli during developmental morphogenesis, fluctuations in intraocular pressure, and wound healing. The process by which keratocytes convert changes in mechanical stimuli (e.g. local topography, applied force, ECM stiffness) into biochemical signaling is known as mechanotransduction. Activation of the various mechanotransductive pathways can produce changes in cell migration, proliferation, and differentiation. Here we review how corneal keratocytes respond to and integrate different biochemical and biophysical factors. We first highlight how growth factors and other cytokines regulate the activity of Rho GTPases, cytoskeletal remodeling, and ultimately the mechanical phenotype of keratocytes. We then discuss how changes in the mechanical properties of the ECM have been shown to regulate keratocyte behavior in sophisticated 2D and 3D experimental models of the corneal microenvironment. Finally, we discuss how ECM topography and protein composition can modulate cell phenotypes, and review the different methods of fabricating in vitro mimics of corneal ECM topography, novel approaches for examining topographical effects in vivo, and the impact of different ECM glycoproteins and proteoglycans on keratocyte behavior.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
43
|
Haak AJ, Kostallari E, Sicard D, Ligresti G, Choi KM, Caporarello N, Jones DL, Tan Q, Meridew J, Diaz Espinosa AM, Aravamudhan A, Maiers JL, Britt RD, Roden AC, Pabelick CM, Prakash YS, Nouraie SM, Li X, Zhang Y, Kass DJ, Lagares D, Tager AM, Varelas X, Shah VH, Tschumperlin DJ. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med 2020; 11:11/516/eaau6296. [PMID: 31666402 DOI: 10.1126/scitranslmed.aau6296] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/01/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Tissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types. Here, we find that the Gαs-coupled dopamine receptor D1 (DRD1) is preferentially expressed in lung and liver mesenchymal cells relative to other resident cells of these organs. Agonism of DRD1 selectively inhibits YAP/TAZ function in mesenchymal cells and shifts their phenotype from profibrotic to fibrosis resolving, reversing in vitro extracellular matrix stiffening and in vivo tissue fibrosis in mouse models. Aromatic l-amino acid decarboxylase [DOPA decarboxylase (DDC)], the enzyme responsible for the final step in biosynthesis of dopamine, is decreased in the lungs of subjects with idiopathic pulmonary fibrosis, and its expression inversely correlates with disease severity, consistent with an endogenous protective role for dopamine signaling that is lost in pulmonary fibrosis. Together, these findings establish a pharmacologically tractable and cell-selective approach to targeting YAP/TAZ via DRD1 that reverses fibrosis in mice.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dakota L Jones
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica L Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA.,Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH 43215, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN 55905, USA
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Seyed Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
44
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
45
|
Mazzone A, Strege PR, Gibbons SJ, Alcaino C, Joshi V, Haak AJ, Tschumperlin DJ, Bernard CE, Cima RR, Larson DW, Chua HK, Graham RP, El Refaey M, Mohler PJ, Hayashi Y, Ordog T, Calder S, Du P, Farrugia G, Beyder A. microRNA overexpression in slow transit constipation leads to reduced Na V1.5 current and altered smooth muscle contractility. Gut 2020; 69:868-876. [PMID: 31757880 PMCID: PMC7147984 DOI: 10.1136/gutjnl-2019-318747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC). DESIGN All human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures. RESULTS The expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction. CONCLUSIONS A small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Constanza Alcaino
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Vikram Joshi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl E Bernard
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert R Cima
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David W Larson
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Heidi K Chua
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mona El Refaey
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J Mohler
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yujiro Hayashi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gianrico Farrugia
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
46
|
Layton TB, Williams L, Colin-York H, McCann FE, Cabrita M, Feldmann M, Brown C, Xie W, Fritzsche M, Furniss D, Nanchahal J. Single cell force profiling of human myofibroblasts reveals a biophysical spectrum of cell states. Biol Open 2020; 9:bio049809. [PMID: 32139395 PMCID: PMC7104857 DOI: 10.1242/bio.049809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/21/2020] [Indexed: 01/31/2023] Open
Abstract
Mechanical force is a fundamental regulator of cell phenotype. Myofibroblasts are central mediators of fibrosis, a major unmet clinical need characterised by the deposition of excessive matrix proteins. Traction forces of myofibroblasts play a key role in remodelling the matrix and modulate the activities of embedded stromal cells. Here, we employ a combination of unsupervised computational analysis, cytoskeletal profiling and single cell traction force microscopy as a functional readout to uncover how the complex spatiotemporal dynamics and mechanics of living human myofibroblast shape sub-cellular profiling of traction forces in fibrosis. We resolve distinct biophysical communities of myofibroblasts, and our results provide a new paradigm for studying functional heterogeneity in human stromal cells.
Collapse
Affiliation(s)
- Thomas B Layton
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Lynn Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Fiona E McCann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Marisa Cabrita
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Marc Feldmann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Cameron Brown
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Weilin Xie
- Department of Inflammation Research, Celgene Corporation, San Diego, CA 92121, USA
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Jagdeep Nanchahal
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
47
|
Davidson CD, Jayco DKP, Matera DL, DePalma SJ, Hiraki HL, Wang WY, Baker BM. Myofibroblast activation in synthetic fibrous matrices composed of dextran vinyl sulfone. Acta Biomater 2020; 105:78-86. [PMID: 31945504 PMCID: PMC7369643 DOI: 10.1016/j.actbio.2020.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanical interactions between fibroblasts and their surrounding extracellular matrix (ECM) guide fundamental behaviors such as spreading, migration, and proliferation that underlie disease pathogenesis. The challenges of studying ECM mechanics in vivo have motivated the development of in vitro models of the fibrous ECM in which fibroblasts reside. Natural materials such as collagen hydrogels bear structural and biochemical resemblance to stromal ECM, but mechanistic studies in these settings are often confounded by cell-mediated material degradation and the lack of structural and mechanical tunability. Here, we established a new material system composed of electrospun dextran vinyl sulfone (DexVS) polymeric fibers. These fibrous matrices exhibit mechanical tunability at both the single fiber (80-340 MPa) and bulk matrix (0.77-11.03 kPa) level, as well as long-term stability in mechanical properties over a two-week period. Cell adhesion to these matrices can be either user-defined by functionalizing synthetic fibers with thiolated adhesive peptides or methacrylated heparin to sequester cell-derived ECM proteins. We utilized DexVS fibrous matrices to investigate the role of matrix mechanics on the activation of fibroblasts into myofibroblasts, a key step of the fibrotic progression. In contrast to previous findings with non-fibrous hydrogel substrates, we find that fibroblasts in soft and deformable matrices exhibit increased spreading, focal adhesion formation, proliferation, and myofibroblast activation as compared to cells on stiffer matrices with equivalent starting architecture. STATEMENT OF SIGNIFICANCE: Cellular mechanosensing of fibrillar extracellular matrices plays a critical role in homeostasis and disease progression in stromal connective tissue. Here, we established a new material system composed of electrospun dextran vinyl sulfone polymeric fibers. These matrices exhibit architectural, mechanical, and biochemical tunability to accurately model diverse tissue microenvironments found in the body. In contrast to previous observations with non-fibrous hydrogels, we find that fibroblasts in soft and deformable fibrous matrices exhibit increased spreading and focal adhesion formation as compared to those in stiffer matrices with equivalent architecture. We also investigated the role of matrix stiffness on myofibroblast activation, a critical step in the fibrotic cascade, and find that low stiffness matrices promote increased myofibroblast activation.
Collapse
Affiliation(s)
- Christopher D Davidson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Danica Kristen P Jayco
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
48
|
Aravamudhan A, Haak AJ, Choi KM, Meridew JA, Caporarello N, Jones DL, Tan Q, Ligresti G, Tschumperlin DJ. TBK1 regulates YAP/TAZ and fibrogenic fibroblast activation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L852-L863. [PMID: 32159970 DOI: 10.1152/ajplung.00324.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) results in scarring of the lungs by excessive extracellular matrix (ECM) production. Resident fibroblasts are the major cell type involved in ECM deposition. The biochemical pathways that facilitate pathological fibroblast activation leading to aberrant ECM deposition are not fully understood. Tank binding protein kinase-1 (TBK1) is a kinase that regulates multiple signaling pathways and was recently identified as a candidate regulator of fibroblast activation in a large-scale small-interfering RNA (siRNA) screen. To determine the effect of TBK1 on fibroblast activation, TBK1 was inhibited pharmacologically (MRT-68601) and genetically (siRNA) in normal and IPF human lung fibroblasts. Reducing the activity or expression of TBK1 led to reduction in α-smooth muscle actin stress fiber levels by 40-60% and deposition of ECM components collagen I and fibronectin by 50% in TGF-β-stimulated normal and IPF fibroblasts. YAP and TAZ are homologous mechanoregulatory profibrotic transcription cofactors known to regulate fibroblast activation. TBK1 knockdown or inhibition decreased the total and nuclear protein levels of YAP/TAZ. Additionally, low cell-cell contact and increased ECM substrate stiffness augmented the phosphorylation and activation of TBK1, consistent with cues that regulate YAP/TAZ. The action of TBK1 toward YAP/TAZ activation was independent of LATS1/2 and canonical downstream TBK1 signaling mediator IRF3 but dependent on proteasomal machinery of the cell. This study identifies TBK1 as a fibrogenic activator of human pulmonary fibroblasts, suggesting TBK1 may be a novel therapeutic target in pulmonary fibrosis.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kyoung Moo Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Dakota L Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Parikh P, Britt RD, Manlove LJ, Wicher SA, Roesler A, Ravix J, Teske J, Thompson MA, Sieck GC, Kirkland JL, LeBrasseur N, Tschumperlin DJ, Pabelick CM, Prakash YS. Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2020; 61:51-60. [PMID: 30508396 DOI: 10.1165/rcmb.2018-0176oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Supplemental O2 (hyperoxia; 30-90% O2) is a necessary intervention for premature infants, but it contributes to development of neonatal and pediatric asthma, necessitating better understanding of contributory mechanisms in hyperoxia-induced changes to airway structure and function. In adults, environmental stressors promote formation of senescent cells that secrete factors (senescence-associated secretory phenotype), which can be inflammatory and have paracrine effects that enhance chronic lung diseases. Hyperoxia-induced changes in airway structure and function are mediated in part by effects on airway smooth muscle (ASM). In the present study, using human fetal ASM cells as a model of prematurity, we ascertained the effects of clinically relevant moderate hyperoxia (40% O2) on cellular senescence. Fetal ASM exposed to 40% O2 for 7 days exhibited elevated concentrations of senescence-associated markers, including β-galactosidase; cell cycle checkpoint proteins p16, p21, and p-p53; and the DNA damage marker p-γH2A.X (phosphorylated γ-histone family member X). The combination of dasatinib and quercetin, compounds known to eliminate senescent cells (senolytics), reduced the number of hyperoxia-exposed β-galactosidase-, p21-, p16-, and p-γH2A.X-positive ASM cells. The senescence-associated secretory phenotype profile of hyperoxia-exposed cells included both profibrotic and proinflammatory mediators. Naive ASM exposed to media from hyperoxia-exposed senescent cells exhibited increased collagen and fibronectin and higher contractility. Our data show that induction of cellular senescence by hyperoxia leads to secretion of inflammatory factors and has a functional effect on naive ASM. Cellular senescence in the airway may thus contribute to pediatric airway disease in the context of sequelae of preterm birth.
Collapse
Affiliation(s)
- Pavan Parikh
- 1 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Rodney D Britt
- 2 Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,3 Department of Pediatrics, Ohio State University, Columbus, Ohio
| | | | - Sarah A Wicher
- 4 Department of Anesthesiology and Perioperative Medicine
| | - Anne Roesler
- 4 Department of Anesthesiology and Perioperative Medicine
| | - Jovanka Ravix
- 4 Department of Anesthesiology and Perioperative Medicine
| | - Jacob Teske
- 4 Department of Anesthesiology and Perioperative Medicine
| | | | - Gary C Sieck
- 5 Department of Physiology and Biomedical Engineering.,6 Department of Physical Medicine and Rehabilitation, and
| | - James L Kirkland
- 5 Department of Physiology and Biomedical Engineering.,7 Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nathan LeBrasseur
- 5 Department of Physiology and Biomedical Engineering.,6 Department of Physical Medicine and Rehabilitation, and.,7 Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Christina M Pabelick
- 4 Department of Anesthesiology and Perioperative Medicine.,5 Department of Physiology and Biomedical Engineering
| | - Y S Prakash
- 4 Department of Anesthesiology and Perioperative Medicine.,5 Department of Physiology and Biomedical Engineering
| |
Collapse
|
50
|
Chen YF, Li YSJ, Chou CH, Chiew MY, Huang HD, Ho JHC, Chien S, Lee OK. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. SCIENCE ADVANCES 2020; 6:eaay0264. [PMID: 32076643 PMCID: PMC7002135 DOI: 10.1126/sciadv.aay0264] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/22/2019] [Indexed: 05/07/2023]
Abstract
During endoderm formation, cell identity and tissue morphogenesis are tightly controlled by cell-intrinsic and cell-extrinsic factors such as biochemical and physical inputs. While the effects of biochemical factors are well studied, the physical cues that regulate cell division and differentiation are poorly understood. RNA sequencing analysis demonstrated increases of endoderm-specific gene expression in hPSCs cultured on soft substrate (Young's modulus, 3 ± 0.45 kPa) in comparison with hard substrate (Young's modulus, 165 ± 6.39 kPa). Further analyses revealed that multiple long noncoding RNAs (lncRNAs) were up-regulated on soft substrate; among them, LINC00458 was identified as a stiffness-dependent lncRNA specifically required for hPSC differentiation toward an early endodermal lineage. Gain- and loss-of-function experiments confirmed that LINC00458 is functionally required for hPSC endodermal lineage specification induced by soft substrates. Our study provides evidence that mechanical cues regulate the expression of LINC00458 and induce differentiation of hPSC into hepatic lineage progenitors.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Shuan J. Li
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Men Yee Chiew
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- School of Life and Health Sciences, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jennifer Hui-Chun Ho
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Corresponding author. (J.H.-C.H.); (S.C.); (O.K.L.)
| | - Shu Chien
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Corresponding author. (J.H.-C.H.); (S.C.); (O.K.L.)
| | - Oscar K. Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong
- Corresponding author. (J.H.-C.H.); (S.C.); (O.K.L.)
| |
Collapse
|