1
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired Myofibroblast Proliferation is a Central Feature of Pathologic Post-Natal Alveolar Simplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572766. [PMID: 38187712 PMCID: PMC10769348 DOI: 10.1101/2023.12.21.572766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S. Khan
- Division of Neonatology, Department of Pediatrics, UCSF
- Cardiovascular Research Institute, UCSF
| | - Christopher Molina
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Xin Ren
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Vincent C. Auyeung
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| |
Collapse
|
2
|
Roberts JD. Nitric oxide regulation of fetal and newborn lung development and function. Nitric Oxide 2024; 147:13-25. [PMID: 38588917 PMCID: PMC11148871 DOI: 10.1016/j.niox.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.
Collapse
Affiliation(s)
- Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services and the Departments of Anesthesia, Critical Care and Pain Medicine, Pediatrics, and Medicine, Massachusetts General Hospital - East, 149 13th St, Boston, MA, USA; Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Li J, Cao J, Yan C, Gong X. TGF-α/EGFR signaling promotes lipopolysaccharide-induced abnormal elastin deposition and alveolar simplification. Exp Cell Res 2024; 437:113997. [PMID: 38508328 DOI: 10.1016/j.yexcr.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by shortened secondary septa and fewer, larger alveoli. Elastin deposition to the distal tips of the secondary septa is critical for elongation of the secondary septa. Alveolar myofibroblasts, which are thought to migrate to the septal tips during alveolarization, are mainly responsible for elastin production and deposition. Antenatal exposure to inflammation induces abnormal elastin deposition, thereby increasing the risk of developing BPD. Here, we found that lipopolysaccharide (LPS) significantly increased the expression of transforming growth factor-α (TGF-α) in an LPS-induced rat model of BPD and in LPS-treated human pulmonary epithelial cells (BEAS-2B). In addition, in vitro experiments suggested that LPS upregulated TGF-α expression via toll-like receptor 4 (TLR4)/tumor necrosis factor α-converting enzyme (TACE) signaling. Increased TGF-α levels via its receptor epidermal growth factor receptor (EGFR)-induced lysyl oxidase (LOX) overactivation and cell division cycle 42 (Cdc42) activity inhibition of myofibroblasts. Similarly, in vivo LOX overactivation and inhibition of Cdc42 activity were observed in the lungs of LPS-exposed pups. LOX overactivation led to abnormal elastin deposition, and inhibition of Cdc42 activity disturbed the directional migration of myofibroblasts and disrupted elastin localization. Most importantly, the EGFR inhibitor erlotinib partially rescued LOX overactivation and Cdc42 activity inhibition, and improved elastin deposition and alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that TGF-α/EGFR signaling is critically involved in the regulation of elastin deposition and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China.
| | - Jian Cao
- Department of Respiratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Chongbing Yan
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China.
| |
Collapse
|
4
|
Hirani DV, Thielen F, Mansouri S, Danopoulos S, Vohlen C, Haznedar-Karakaya P, Mohr J, Wilke R, Selle J, Grosch T, Mizik I, Odenthal M, Alvira CM, Kuiper-Makris C, Pryhuber GS, Pallasch C, van Koningsbruggen-Rietschel S, Al-Alam D, Seeger W, Savai R, Dötsch J, Alejandre Alcazar MA. CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia. Inflamm Regen 2023; 43:52. [PMID: 37876024 PMCID: PMC10594718 DOI: 10.1186/s41232-023-00301-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.
Collapse
Affiliation(s)
- Dharmesh V Hirani
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
| | - Florian Thielen
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Siavash Mansouri
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Christina Vohlen
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, and University of Cologne, Cologne, Germany
| | - Pinar Haznedar-Karakaya
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Rebecca Wilke
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Thomas Grosch
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Ivana Mizik
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany
- Institute for Pathology, University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany
| | - Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany
| | - Gloria S Pryhuber
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christian Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Cologne, Germany
| | - S van Koningsbruggen-Rietschel
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, and University of Cologne, Cologne, Germany
| | - Denise Al-Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Rajkumar Savai
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, and University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpener Strasse 62, Cologne, 50937, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Institute for Lung Health (ILH) and Cardio-Pulmonary Institute (CPI), Gießen, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster On Stress Responses in Aging-Associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Ou W, Lei K, Wang H, Ma H, Deng X, He P, Zhao L, Lv Y, Tang G, Zhang B, Li J. Development of a blood proteins-based model for bronchopulmonary dysplasia prediction in premature infants. BMC Pediatr 2023; 23:304. [PMID: 37330491 PMCID: PMC10276448 DOI: 10.1186/s12887-023-04065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common chronic pulmonary disease in premature infants. Blood proteins may be early predictors of the development of this disease. METHODS In this study, protein expression profiles (blood samples during their first week of life) and clinical data of the GSE121097 was downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) and differential protein analysis were carried out for variable dimensionality reduction and feature selection. Least absolute shrinkage and selection operator (LASSO) were conducted for BPD prediction model development. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS The results showed that black module, magenta module and turquoise module, which included 270 proteins, were significantly correlated with the occurrence of BPD. 59 proteins overlapped between differential analysis results and above three modules. These proteins were significantly enriched in 253 GO terms and 11 KEGG signaling pathways. Then, 59 proteins were reduced to 8 proteins by LASSO analysis in the training cohort. The proteins model showed good BPD predictive performance, with an AUC of 1.00 (95% CI 0.99-1.00) and 0.96 (95% CI 0.90-1.00) in training cohort and test cohort, respectively. CONCLUSION Our study established a reliable blood-protein based model for early prediction of BPD in premature infants. This may help elucidate pathways to target in lessening the burden or severity of BPD.
Collapse
Affiliation(s)
- Wanting Ou
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - KeJing Lei
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Huanhuan Wang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hongmei Ma
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Xiaojuan Deng
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Pengcheng He
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Liping Zhao
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Youdao Lv
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Guohong Tang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Benjin Zhang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China.
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China.
| |
Collapse
|
6
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
7
|
Ha AW, Bai T, Ebenezer DL, Sethi T, Sudhadevi T, Mangio LA, Garzon S, Pryhuber GS, Natarajan V, Harijith A. Sphingosine kinase 1 regulates lysyl oxidase through STAT3 in hyperoxia-mediated neonatal lung injury. Thorax 2022; 77:47-57. [PMID: 33883249 PMCID: PMC9115769 DOI: 10.1136/thoraxjnl-2020-216469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neonatal lung injury as a consequence of hyperoxia (HO) therapy and ventilator care contribute to the development of bronchopulmonary dysplasia (BPD). Increased expression and activity of lysyl oxidase (LOX), a key enzyme that cross-links collagen, was associated with increased sphingosine kinase 1 (SPHK1) in human BPD. We, therefore, examined closely the link between LOX and SPHK1 in BPD. METHOD The enzyme expression of SPHK1 and LOX were assessed in lung tissues of human BPD using immunohistochemistry and quantified (Halo). In vivo studies were based on Sphk1-/- and matched wild type (WT) neonatal mice exposed to HO while treated with PF543, an inhibitor of SPHK1. In vitro mechanistic studies used human lung microvascular endothelial cells (HLMVECs). RESULTS Both SPHK1 and LOX expressions were increased in lungs of patients with BPD. Tracheal aspirates from patients with BPD had increased LOX, correlating with sphingosine-1-phosphate (S1P) levels. HO-induced increase of LOX in lungs were attenuated in both Sphk1-/- and PF543-treated WT mice, accompanied by reduced collagen staining (sirius red). PF543 reduced LOX activity in both bronchoalveolar lavage fluid and supernatant of HLMVECs following HO. In silico analysis revealed STAT3 as a potential transcriptional regulator of LOX. In HLMVECs, following HO, ChIP assay confirmed increased STAT3 binding to LOX promoter. SPHK1 inhibition reduced phosphorylation of STAT3. Antibody to S1P and siRNA against SPNS2, S1P receptor 1 (S1P1) and STAT3 reduced LOX expression. CONCLUSION HO-induced SPHK1/S1P signalling axis plays a critical role in transcriptional regulation of LOX expression via SPNS2, S1P1 and STAT3 in lung endothelium.
Collapse
Affiliation(s)
- Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tao Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tanvi Sethi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lizar Ace Mangio
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steven Garzon
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Sindelar R, Shepherd EG, Ågren J, Panitch HB, Abman SH, Nelin LD. Established severe BPD: is there a way out? Change of ventilatory paradigms. Pediatr Res 2021; 90:1139-1146. [PMID: 34012026 DOI: 10.1038/s41390-021-01558-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/04/2023]
Abstract
Improved survival of extremely preterm newborn infants has increased the number of infants at risk for developing bronchopulmonary dysplasia (BPD). Despite efforts to prevent BPD, many of these infants still develop severe BPD (sBPD) and require long-term invasive mechanical ventilation. The focus of research and clinical management has been on the prevention of BPD, which has had only modest success. On the other hand, research on the management of the established sBPD patient has received minimal attention even though this condition poses large economic and health problems with extensive morbidities and late mortality. Patients with sBPD, however, have been shown to respond to treatments focused not only on ventilatory strategies but also on multidisciplinary approaches where neurodevelopmental support, growth promoting strategies, and aggressive treatment of pulmonary hypertension improve their long-term outcomes. In this review we will try to present a physiology-based ventilatory strategy for established sBPD, emphasizing a possible paradigm shift from acute efforts to wean infants at all costs to a more chronic approach of stabilizing the infant. This chronic approach, herein referred to as chronic phase ventilation, aims at allowing active patient engagement, reducing air trapping, and improving ventilation-perfusion matching, while providing sufficient support to optimize late outcomes. IMPACT: Based on pathophysiological aspects of evolving and established severe BPD in premature infants, this review presents some lung mechanical properties of the most severe phenotype and proposes a chronic phase ventilatory strategy that aims at reducing air trapping, improving ventilation-perfusion matching and optimizing late outcomes.
Collapse
Affiliation(s)
- Richard Sindelar
- University Children's Hospital, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Edward G Shepherd
- Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Johan Ågren
- University Children's Hospital, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Howard B Panitch
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven H Abman
- Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Leif D Nelin
- University Children's Hospital, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
9
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
10
|
Amarelle L, Quintela L, Hurtado J, Malacrida L. Hyperoxia and Lungs: What We Have Learned From Animal Models. Front Med (Lausanne) 2021; 8:606678. [PMID: 33768102 PMCID: PMC7985075 DOI: 10.3389/fmed.2021.606678] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although oxygen (O2) is essential for aerobic life, it can also be an important source of cellular damage. Supra-physiological levels of O2 determine toxicity due to exacerbated reactive oxygen species (ROS) production, impairing the homeostatic balance of several cellular processes. Furthermore, injured cells activate inflammation cascades, amplifying the tissue damage. The lung is the first (but not the only) organ affected by this condition. Critically ill patients are often exposed to several insults, such as mechanical ventilation, infections, hypo-perfusion, systemic inflammation, and drug toxicity. In this scenario, it is not easy to dissect the effect of oxygen toxicity. Translational investigations with animal models are essential to explore injuring stimuli in controlled experimental conditions, and are milestones in understanding pathological mechanisms and developing therapeutic strategies. Animal models can resemble what happens in critical care or anesthesia patients under mechanical ventilation and hyperoxia, but are also critical to explore the effect of O2 on lung development and the role of hyperoxic damage on bronchopulmonary dysplasia. Here, we set out to review the hyperoxia effects on lung pathology, contributing to the field by describing and analyzing animal experimentation's main aspects and its implications on human lung diseases.
Collapse
Affiliation(s)
- Luciano Amarelle
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lucía Quintela
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay.,Advanced Bioimaging Unit, Institut Pasteur Montevideo and Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Pfeffer T, Lignelli E, Inoue H, Mižíková I, Surate Solaligue DE, Steenbock H, Myti D, Vadász I, Herold S, Seeger W, Brinckmann J, Morty RE. Minoxidil Cannot Be Used To Target Lysyl Hydroxylases during Postnatal Mouse Lung Development: A Cautionary Note. J Pharmacol Exp Ther 2020; 375:478-487. [PMID: 33020194 DOI: 10.1124/jpet.120.000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022] Open
Abstract
The lysyl hydroxylases (procollagen-lysine 5-dioxygenases) PLOD1, PLOD2, and PLOD3 have been proposed as pathogenic mediators of stunted lung development in bronchopulmonary dysplasia (BPD), a common complication of preterm birth. In affected infants, pulmonary oxygen toxicity stunts lung development. Mice lacking Plod1 exhibit 15% mortality, and mice lacking Plod2 or Plod3 exhibit embryonic lethality. Therefore, to address any pathogenic role of lysyl hydroxylases in stunted lung development associated with BPD, minoxidil was administered to newborn mice in an oxygen toxicity-based BPD animal model. Minoxidil, which has attracted much interest in the management of systemic hypertension and androgenetic alopecia, can also be used to reduce lysyl hydroxylase activity in cultured cells. An in vivo pilot dosing study established 50 mg⋅kg-1⋅day-1 as the maximum possible minoxidil dose for intraperitoneal administration in newborn mouse pups. When administered at 50 mg⋅kg-1⋅day-1 to newborn mouse pups, minoxidil was detected in the lungs but did not impact lysine hydroxylation, collagen crosslinking, or lysyl hydroxylase expression in the lungs. Consistent with no impact on mouse lung extracellular matrix structures, minoxidil administration did not alter the course of normal or stunted lung development in newborn mice. At doses of up to 50 mg⋅kg⋅day-1, pharmacologically active concentrations of minoxidil were not achieved in neonatal mouse lung tissue; thus, minoxidil cannot be used to attenuate lysyl hydroxylase expression or activity during mouse lung development. These data also highlight the need for new and specific lysyl hydroxylase inhibitors. SIGNIFICANCE STATEMENT: Extracellular matrix crosslinking is mediated by lysyl hydroxylases, which generate hydroxylated lysyl residues in procollagen peptides. Deregulated collagen crosslinking is a pathogenic component of a spectrum of diseases, and thus, there is interest in validating lysyl hydroxylases as pathogenic mediators of disease and potential "druggable" targets. Minoxidil, administered at the maximum possible dose, did not inhibit lysyl hydroxylation in newborn mouse lungs, suggesting that minoxidil was unlikely to be of use in studies that pharmacologically target lysyl hydroxylation in vivo.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Hajime Inoue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Despoina Myti
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - István Vadász
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Susanne Herold
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Jürgen Brinckmann
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany (T.P., E.L., I.M., D.E.S.S., D.M., W.S., R.E.M.); Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany (T.P., E.L., I.M., D.E.S.S., D.M., I.V., S.H., W.S., R.E.M.); Division of Regenerative Medicine, Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (H.I.); and Institute of Virology and Cell Biology (H.S., J.B.) and Department of Dermatology (J.B.), University of Lübeck, Lübeck, Germany,
| |
Collapse
|
12
|
Signaling Pathways Involved in the Development of Bronchopulmonary Dysplasia and Pulmonary Hypertension. CHILDREN-BASEL 2020; 7:children7080100. [PMID: 32824651 PMCID: PMC7465273 DOI: 10.3390/children7080100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
The alveolar and vascular developmental arrest in the premature infants poses a major problem in the management of these infants. Although, with the current management, the survival rate has improved in these infants, but bronchopulmonary dysplasia (BPD) is a serious complication associated with a high mortality rate. During the neonatal developmental period, these infants are vulnerable to stress. Hypoxia, hyperoxia, and ventilation injury lead to oxidative and inflammatory stress, which induce further damage in the lung alveoli and vasculature. Development of pulmonary hypertension (PH) in infants with BPD worsens the prognosis. Despite considerable progress in the management of premature infants, therapy to prevent BPD is not yet available. Animal experiments have shown deregulation of multiple signaling factors such as transforming growth factorβ (TGFβ), connective tissue growth factor (CTGF), fibroblast growth factor 10 (FGF10), vascular endothelial growth factor (VEGF), caveolin-1, wingless & Int-1 (WNT)/β-catenin, and elastin in the pathogenesis of BPD. This article reviews the signaling pathways entailed in the pathogenesis of BPD associated with PH and the possible management.
Collapse
|
13
|
Deng S, Zhang H, Han W, Guo C, Deng C. Transforming Growth Factor-β-Neutralizing Antibodies Improve Alveolarization in the Oxygen-Exposed Newborn Mouse Lung. J Interferon Cytokine Res 2019; 39:106-116. [PMID: 30657417 DOI: 10.1089/jir.2018.0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abnormal alveolar formation and excessive disordered elastin accumulation are key pathological features in bronchopulmonary dysplasia. Transforming growth factor (TGF)-β is an important regulator of the extracellular matrix in the developing lung. To determine if increased TGF-β would injure alveolar development by activating TGF-β signaling and by influencing the expression of elastogenesis-related protein, we performed intraperitoneal injection of newborn mice with the TGF-β-neutralizing antibody 1D11 and observed whether 1D11 had a protective role in the oxygen (O2)-exposed newborn mouse lung. The newborn mice were exposed to 85% O2 for 14 and 21 days. 1D11 was administered by intraperitoneal injection every day from postnatal days 3 to 20. Alveolar morphology was assessed by hematoxylin and eosin staining. The expression and distribution of elastin were evaluated by immunohistochemistry. The level of TGF-β signaling-related proteins were measured by immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot. The expression levels of elastogenesis-related proteins, including tropoelastin, fibulin-5, and neutrophil elastase (NE), which participate in the synthesis, assembly, and degradation of elastin, were detected by real-time PCR and Western blot. In this research, impaired alveolar development and elastin deposition as well as the excessive activation of TGF-β signaling were observed in the newborn mouse lung exposed to hyperoxia. 1D11 improved alveolarization as well as the distribution of elastin in the newborn lung with hyperoxia exposure. The expression levels of tropoelastin, fibulin-5, and NE, which are important components of elastogenesis, were decreased by treatment with 1D11 in the injured newborn lung. These data demonstrate that 1D11 improved alveolarization by blocking the TGF-β signaling pathway and by reducing the abnormal expression of elastogenesis-related proteins in the O2-exposed newborn mouse lung. 1D11 may become a new therapeutic method to prevent the development of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Sijun Deng
- 1 Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,2 China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,3 Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Han Zhang
- 1 Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,2 China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,3 Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenli Han
- 2 China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,3 Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,4 Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Chunbao Guo
- 1 Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,2 China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,3 Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,5 Department of Hepatology and Liver Transplantation Center, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Chun Deng
- 1 Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,2 China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,3 Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Mižíková I, Pfeffer T, Nardiello C, Surate Solaligue DE, Steenbock H, Tatsukawa H, Silva DM, Vadász I, Herold S, Pease RJ, Iismaa SE, Hitomi K, Seeger W, Brinckmann J, Morty RE. Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 2018; 285:3056-3076. [PMID: 29935061 DOI: 10.1111/febs.14596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
The generation, maturation and remodelling of the extracellular matrix (ECM) are essential for the formation of alveoli during lung development. Alveoli formation is disturbed in preterm infants that develop bronchopulmonary dysplasia (BPD), where collagen fibres are malformed, and perturbations to lung ECM structures may underlie BPD pathogenesis. Malformed ECM structures might result from abnormal protein cross-linking, in part attributable to the increased expression and activity of transglutaminase 2 (TGM2) that have been noted in affected patient lungs, as well as in hyperoxia-based BPD animal models. The objective of the present study was to assess whether TGM2 plays a causal role in normal and aberrant lung alveolarization. Targeted deletion of Tgm2 in C57BL/6J mice increased septal thickness and reduced gas-exchange surface area in otherwise normally developing lungs. During aberrant lung alveolarization that occurred under hyperoxic conditions, collagen structures in Tgm2-/- mice were partially protected from the impact of hyperoxia, where normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance was restored; however, the lung alveolar architecture remained abnormal. Inhibition of transglutaminases (including TGM2) with cysteamine appreciably reduced transglutaminase activity in vivo, as assessed by Nε -(γ-l-glutamyl)-l-lysine abundance and TGM catalytic activity, and restored normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance under pathological conditions. Furthermore, a moderate improvement in alveoli size and gas-exchange surface density was noted in cysteamine-treated mouse lungs in which BPD was modelled. These data indicate that TGM2 plays a role in normal lung alveolarization, and contributes to the formation of aberrant ECM structures during disordered lung alveolarization.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Diogo M Silva
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Richard J Pease
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Germany.,Department of Dermatology, University of Lübeck, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
15
|
Novaretti JV, Astur DC, Casadio D, Nicolini AP, de Castro Pochini A, Andreoli CV, Ejnisman B, Cohen M. Higher Gene Expression of Healing Factors in Anterior Cruciate Ligament Remnant in Acute Anterior Cruciate Ligament Tear. Am J Sports Med 2018; 46:1583-1591. [PMID: 29565632 DOI: 10.1177/0363546518760577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) reconstruction with remnant preservation has been described and related to potential advantages. Literature is lacking regarding gene expression of potential factors related to ligament healing in the ACL remnant and its relation to time from injury. HYPOTHESIS The mRNA expression of ligament healing factors in the ACL remnant would be higher in acute tears (<3 months from injury) than in intermediate (3-12 months) and chronic (>12 months) injuries. STUDY DESIGN Controlled laboratory study. METHODS Gene expression of 21 genes related to ligament healing factors was analyzed in 46 ACL remnants biopsied during surgical reconstruction with quantitative real-time polymerase chain reaction technique. Specimens were divided into 3 groups according to time from injury: acute (<3 months from injury; n = 19), intermediate (3-12 months; n = 12), and chronic (>12 months; n = 15). Histological and immunohistochemical evaluation was performed by analysis of hematoxylin and eosin, CD-34, and S-100 staining. RESULTS Expression of COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL12A1, LOX, PLOD1, and TNC genes in ACL remnant was greater in acute compared with chronic injuries. COL1A1, COL5A1, COL12A1, and TNC genes were also expressed more in the acute group compared with the intermediate group. Furthermore, expression of the genes COL1A1 and COL5A2 was significantly higher in female than in male patients. No difference in the number of blood vessels and mechanoreceptors among groups was observed in the microscopic evaluation. CONCLUSION The present study demonstrates that expression of COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL12A1, LOX, PLOD1, and TNC genes in ACL remnant is greater in acute (<3 months from injury) compared with chronic (>12 months) injuries. Furthermore, COL1A1, COL5A1, COL12A1, and TNC genes were expressed more in the acute group compared with the intermediate group (3-12 months from injury). CLINICAL RELEVANCE ACL reconstructions with remnant preservation should be performed in patients with acute injuries, as in these cases the ACL remnant may present the greatest healing potential.
Collapse
Affiliation(s)
- João Victor Novaretti
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Diego Costa Astur
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Davi Casadio
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Alexandre Pedro Nicolini
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Alberto de Castro Pochini
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Carlos Vicente Andreoli
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Benno Ejnisman
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| | - Moises Cohen
- Orthopaedics and Traumatology Sports Center (CETE), Department of Orthopaedics and Traumatology, Paulista School of Medicine (EPM), Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|
17
|
Leal GF, Nishimura G, Voss U, Bertola DR, Åström E, Svensson J, Yamamoto GL, Hammarsjö A, Horemuzova E, Papadiogannakis N, Iwarsson E, Grigelioniene G, Tham E. Expanding the Clinical Spectrum of Phenotypes Caused by Pathogenic Variants in PLOD2. J Bone Miner Res 2018; 33:753-760. [PMID: 29178448 DOI: 10.1002/jbmr.3348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022]
Abstract
Osteogenesis imperfecta (OI) is a strikingly heterogeneous group of disorders with a broad range of phenotypic variations. It is also one of the differential diagnoses in bent bone dysplasias along with campomelic dysplasia and thanatophoric dysplasia and can usually be distinguished by decreased bone mineralization and bone fractures. Bent bone dysplasias also include syndromes such as kyphomelic dysplasia (MIM:211350) and mesomelic dysplasia Kozlowski-Reardon (MIM249710), both of which have been under debate regarding whether or not they are a real entity or simply a phenotypic manifestation of another dysplasia including OI. Bruck syndrome type 2 (BRKS2; MIM:609220) is a rare form of autosomal recessive OI caused by biallelic PLOD2 variants and is associated with congenital joint contractures with pterygia. In this report, we present six patients from four families with novel PLOD2 variants. All cases had multiple fractures. Other features ranged from prenatal lethal severe angulation of the long bones as in kyphomelic dysplasia and mesomelic dysplasia Kozlowski-Reardon through classical Bruck syndrome to moderate OI with normal joints. Two siblings with a kyphomelic dysplasia-like phenotype who were stillborn had compound heterozygous variants in PLOD2 (p.Asp585Val and p.Ser166*). One infant who succumbed at age 4 months had a bent bone phenotype phenotypically like skeletal dysplasia Kozlowski-Reardon (with mesomelic shortening, camptodactyly, retrognathia, cleft palate, skin dimples, but also with fractures). He was homozygous for the nonsense variant (p.Trp561*). Two siblings had various degrees of Bruck syndrome caused by the homozygous missense variant, p.His687Arg. Furthermore a boy with a clinical presentation of moderate OI had a possibly pathogenic homozygous variant p.Trp588Cys. Our experience of six patients with biallelic pathogenic variants in PLOD2 expands the phenotypic spectrum in the PLOD2-related phenotypes. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gabriela Ferraz Leal
- Centro Integrado de Saúde Amaury de Medeiros, Universidade de Pernambuco, Recife, Brazil.,Instituto de Medicina Integral Prof Fernando Figueira, Recife, Brazil
| | - Gen Nishimura
- Intractable Disease Center, Saitama Medical University Hospital, Saitama, Japan
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Débora Romeo Bertola
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil
| | - Eva Åström
- Pediatric Neurology and Musculoskeletal Disorders and Home Care, Astrid Lindgren Children's Hospital at Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Svensson
- Department of Paediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Guilherme Lopes Yamamoto
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Eva Horemuzova
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Paediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Nikos Papadiogannakis
- Department of Pathology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Erik Iwarsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| |
Collapse
|
18
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
19
|
Overexpression of PLOD3 promotes tumor progression and poor prognosis in gliomas. Oncotarget 2018; 9:15705-15720. [PMID: 29644003 PMCID: PMC5884658 DOI: 10.18632/oncotarget.24594] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/21/2018] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas are the most threatening brain tumors due to aggressive proliferation and poor prognosis. Thus, utilizing genetic glioma biomarkers to forecast prognosis and guide clinical management is crucial. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) modulates cancer progression and metastasis. However, its detailed function in cancer remains largely uninvestigated. PLOD3 expression was evaluated with real-time PCR in glioblastoma (GBM) cell lines and by Gene Expression Omnibus dataset analysis and immunohistochemistry of glioma tissues. We investigated the clinical use of PLOD3 for determining glioma prognosis. The biological roles of PLOD3 in proliferation, migration and invasion of GBM cells were studied both in vitro with wound-healing and transwell assays and in vivo using an orthotopic xenograft mouse model. Hypoxia and western blotting were applied to discover the molecular mechanisms underlying PLOD3 functions. PLOD3 mRNA and protein expression were upregulated in glioma tissues compared to normal brain tissues. PLOD3 overexpression was correlated with negative survival in glioma patients. PLOD3 silencing suppressed cell proliferation and induced G1 phase arrest through p53-independent regulation of the p21 pathway. Inhibition of PLOD3 in glioma cells decreased VEGF expression, migration and invasion by downregulating mesenchymal markers, including Snail and Twist. Notably, knockdown of PLOD3 inhibited HIF-1α accumulation via the ERK signaling pathway under hypoxia. Taken together, these discoveries reveal that PLOD3 is a potential therapeutic target in human gliomas.
Collapse
|
20
|
Recombinant human elafin promotes alveologenesis in newborn mice exposed to chronic hyperoxia. Int J Biochem Cell Biol 2017; 92:173-182. [DOI: 10.1016/j.biocel.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/20/2023]
|
21
|
Ardini-Poleske ME, Clark RF, Ansong C, Carson JP, Corley RA, Deutsch GH, Hagood JS, Kaminski N, Mariani TJ, Potter SS, Pryhuber GS, Warburton D, Whitsett JA, Palmer SM, Ambalavanan N. LungMAP: The Molecular Atlas of Lung Development Program. Am J Physiol Lung Cell Mol Physiol 2017; 313:L733-L740. [PMID: 28798251 PMCID: PMC5792185 DOI: 10.1152/ajplung.00139.2017] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 02/01/2023] Open
Abstract
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users.
Collapse
Affiliation(s)
| | - Robert F Clark
- RTI International, Research Triangle Park, North Carolina;
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, Washington
| | | | | | | | | | | | | | - Steven S Potter
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | - Scott M Palmer
- Duke University School of Medicine, Durham, North Carolina; and
| | | | | |
Collapse
|
22
|
Zhang H, Du L, Zhong Y, Flanders KC, Roberts JD. Transforming growth factor-β stimulates Smad1/5 signaling in pulmonary artery smooth muscle cells and fibroblasts of the newborn mouse through ALK1. Am J Physiol Lung Cell Mol Physiol 2017. [PMID: 28642261 DOI: 10.1152/ajplung.00079.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intracellular signaling mechanisms through which TGF-β regulates pulmonary development are incompletely understood. Canonical TGF-β signaling involves Smad2/3 phosphorylation, Smad2/3·Smad4 complex formation and nuclear localization, and gene regulation. Here, we show that physiologically relevant TGF-β1 levels also stimulate Smad1/5 phosphorylation, which is typically a mediator of bone morphogenetic protein (BMP) signaling, in mouse pup pulmonary artery smooth muscle cells (mPASMC) and lung fibroblasts and other interstitial lung cell lines. This cross-talk mechanism likely has in vivo relevance because mixed Smad1/5/8·Smad2/3 complexes, which are indicative of TGF-β-stimulated Smad1/5 activation, were detected in the developing mouse lung using a proximity ligation assay. Although mixed Smad complexes have been shown not to transduce nuclear signaling, we determined that TGF-β stimulates nuclear localization of phosphorylated Smad1/5 and induces the expression of prototypical BMP-regulated genes in the mPASMC. Small-molecule kinase inhibitor studies suggested that TGF-β-regulated Smad1/5 phosphorylation in these cells is mediated by TGF-β-type I receptors, not BMP-type I receptors, but possibly the accessory activin-like kinase (ALK1) receptor. Although work by others suggested that ALK1 is expressed exclusively in endothelial cells in the vasculature, we detected ALK1 mRNA and protein expression in mPASMC in vitro and in mouse pup lungs. Moreover, using an antimurine ALK1 antibody and mPASMC, we determined that ALK1 regulates Smad1/5 phosphorylation by TGF-β. Together, these studies characterize an accessory TGF-β-stimulated BMP R-Smad signaling mechanism in interstitial cells of the developing lung. They also indicate the importance of considering alternate Smad pathways in studies directed at determining how TGF-β regulates newborn lung development.
Collapse
Affiliation(s)
- Huili Zhang
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Lili Du
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts; .,Department of Anesthesia and the Division of Newborn Medicine in the Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Nardiello C, Mižíková I, Morty RE. Looking ahead: where to next for animal models of bronchopulmonary dysplasia? Cell Tissue Res 2016; 367:457-468. [PMID: 27917436 PMCID: PMC5320021 DOI: 10.1007/s00441-016-2534-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth, with appreciable morbidity and mortality in a neonatal intensive care setting. Much interest has been shown in the identification of pathogenic pathways that are amenable to pharmacological manipulation (1) to facilitate the development of novel therapeutic and medical management strategies and (2) to identify the basic mechanisms of late lung development, which remains poorly understood. A number of animal models have therefore been developed and continue to be refined with the aim of recapitulating pathological pulmonary hallmarks noted in lungs from neonates with BPD. These animal models rely on several injurious stimuli, such as mechanical ventilation or oxygen toxicity and infection and sterile inflammation, as applied in mice, rats, rabbits, pigs, lambs and nonhuman primates. This review addresses recent developments in modeling BPD in experimental animals and highlights important neglected areas that demand attention. Additionally, recent progress in the quantitative microscopic analysis of pathology tissue is described, together with new in vitro approaches of value for the study of normal and aberrant alveolarization. The need to examine long-term sequelae of damage to the developing neonatal lung is also considered, as is the need to move beyond the study of the lungs alone in experimental animal models of BPD.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
| |
Collapse
|
24
|
Ambalavanan N, Morty RE. Searching for better animal models of BPD: a perspective. Am J Physiol Lung Cell Mol Physiol 2016; 311:L924-L927. [PMID: 27663992 DOI: 10.1152/ajplung.00355.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
There have been many efforts to develop good animal models of bronchopulmonary dysplasia (BPD) to better understand the pathophysiology and mechanisms underlying development of BPD as well as to test potential strategies for its prevention and treatment. This Perspectives summarizes the features of common animal models of BPD and the strengths and limitations of such models. Potential optimal approaches to development of animal models are indicated, with the underlying concepts that require emphasis.
Collapse
Affiliation(s)
- Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
25
|
Cohen C, Leal MF, Belangero PS, Figueiredo EA, Smith MC, Andreoli CV, de Castro Pochini A, Cohen M, Ejnisman B, Faloppa F. The roles of Tenascin C and Fibronectin 1 in adhesive capsulitis: a pilot gene expression study. Clinics (Sao Paulo) 2016; 71:325-31. [PMID: 27438566 PMCID: PMC4930668 DOI: 10.6061/clinics/2016(06)07] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES We evaluated mRNA expression levels of genes that encode TGF-β1; the TGF-β1 receptor; the collagen-modifying enzymes LOX, PLOD1, and PLOD2; and the extracellular matrix proteins COMP, FN1, TNC and TNXB in synovial/capsule specimens from patients with idiopathic adhesive capsulitis. Possible associations between the measured mRNA levels and clinical parameters were also investigated. METHODS We obtained glenohumeral joint synovium/capsule specimens from 9 patients with idiopathic adhesive capsulitis who had not shown improvement in symptoms after 5 months of physiotherapy. Adhesive capsulitis was confirmed in all patients by magnetic resonance imaging. We also obtained specimens from 8 control patients who had underwent surgery for acute acromioclavicular joint dislocation and who had radiological indication of glenohumeral capsule alteration based on arthroscopic evaluation. mRNA expression in the synovium/capsule specimens was analyzed by quantitative reverse transcription PCR. The B2M and HPRT1 genes were used as references to normalize target gene expression in the shoulder tissue samples. RESULTS The synovium/capsule samples from the patients with adhesive capsulitis had significantly higher TNC and FN1 expression than those from the controls. Additionally, symptom duration directly correlated with expression of TGFβ1 receptor I. CONCLUSION Elevated levels of TNC and FN1 expression may be a marker of capsule injury. Upregulation of TGFβ1 receptor I seems to be dependent on symptom duration; therefore, TGFβ signaling may be involved in adhesive capsulitis. As such, TNC, FN1 and TGFβ1 receptor I may also play roles in adhesive capsulitis by contributing to capsule inflammation and fibrosis.
Collapse
Affiliation(s)
- Carina Cohen
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
- #contributed equally to this work
| | - Mariana Ferreira Leal
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
- Departamento de Morfologia e Genética, Disciplina de Genética, São Paulo/SP, Brazil
- E-mail:
| | | | | | | | | | | | - Moises Cohen
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
| | - Benno Ejnisman
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
| | - Flávio Faloppa
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
| |
Collapse
|
26
|
Shahzad T, Radajewski S, Chao CM, Bellusci S, Ehrhardt H. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 2016; 3:23. [PMID: 27357257 PMCID: PMC4927524 DOI: 10.1186/s40348-016-0051-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
Bronchopulmonary dysplasia is a chronic lung disease of preterm infants. It is caused by the disturbance of physiologic lung development mainly in the saccular stage with lifelong restrictions of pulmonary function and an increased risk of abnormal somatic and psychomotor development. The contributors to this disease’s entity are multifactorial with pre- and postnatal origin. Central to the pathogenesis of bronchopulmonary is the induction of a massive pulmonary inflammatory response due to mechanical ventilation and oxygen toxicity. The extent of the pro-inflammatory reaction and the disturbance of further alveolar growth and vasculogenesis vary largely and can be modified by prenatal infections, antenatal steroids, and surfactant application. This minireview summarizes the important recent research findings on the pulmonary inflammatory reaction obtained in patient cohorts and in experimental models. Unfortunately, recent changes in clinical practice based on these findings had only limited impact on the incidence of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Tayyab Shahzad
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Sarah Radajewski
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Cho-Ming Chao
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Saverio Bellusci
- University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany. .,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
27
|
Terajima M, Taga Y, Chen Y, Cabral WA, Hou-Fu G, Srisawasdi S, Nagasawa M, Sumida N, Hattori S, Kurie JM, Marini JC, Yamauchi M. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen. J Biol Chem 2016; 291:9501-12. [PMID: 26934917 DOI: 10.1074/jbc.m115.699470] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/07/2023] Open
Abstract
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.
Collapse
Affiliation(s)
- Masahiko Terajima
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuki Taga
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Yulong Chen
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Wayne A Cabral
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Guo Hou-Fu
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sirivimol Srisawasdi
- the Departments of Operative Dentistry, Chulalongkorn University, Bangkok 10330, Thailand, and
| | - Masako Nagasawa
- the Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noriko Sumida
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shunji Hattori
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Jonathan M Kurie
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Joan C Marini
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitsuo Yamauchi
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
28
|
Belangero PS, Leal MF, Cohen C, Figueiredo EA, Smith MC, Andreoli CV, de Castro Pochini A, Ejnisman B, Cohen M. Expression analysis of genes involved in collagen cross-linking and its regulation in traumatic anterior shoulder instability. J Orthop Res 2016; 34:510-7. [PMID: 26185036 DOI: 10.1002/jor.22984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023]
Abstract
The molecular alterations involved in the capsule deformation presented in shoulder instability patients are poorly understood. Increased TGFβ1 acts as a signal for production of matrix macromolecules by fibrogenic cells at joint injury sites. TGFβ1, through its receptor TGFβR1, regulates genes involved in collagen cross-linking, such as LOX, PLOD1, and PLOD2. We evaluated TGFβ1, TGFβR1, LOX, PLOD1, and PLOD2 gene expression in the antero-inferior (macroscopically injured region), antero-superior and posterior regions of the glenohumeral capsule of 29 shoulder instability patients and eight controls. We observed that PLOD2 expression was increased in the anterior-inferior capsule region of the patients compared to controls. LOX expression tended to be increased in the posterior portion of patients. Patients with recurrent shoulder dislocation presented upregulation of TGFβR1 in the antero-inferior capsule portion and of PLOD2 in the posterior region. Conversely, LOX was increased in the posterior portion of the capsule of patients with a single shoulder dislocation episode. In the antero-inferior, LOX expression was inversely correlated and TGFβR1 was directly correlated with the duration of symptoms. In the posterior region, PLOD2, TGFβ1, and TGFβR1 were directly correlated with the duration of symptoms. In conclusion, PLOD2 expression was increased in the macroscopically injured region of the capsule of patients. Upregulation of TGFβ1, TGFβR1, and PLOD2 seems to be related with the maintenance of disease symptoms, especially in the posterior region. LOX upregulation seems to occur only in the initial phase of the affection. Therefore, TGFβ1, TGFβR1, LOX, and PLOD2 may play a role in shoulder instability.
Collapse
Affiliation(s)
- Paulo Santoro Belangero
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil
| | - Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil.,Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| | - Carina Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil
| | - Eduardo Antônio Figueiredo
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| | - Carlos Vicente Andreoli
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil
| | - Alberto de Castro Pochini
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil
| | - Benno Ejnisman
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil
| | - Moises Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-031, Brazil
| |
Collapse
|
29
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
30
|
Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, Sondergaard R, Escudero AVV, Baraghithy S, Attar-Namdar M, Friedlander-Barenboim S, Mathavan N, Isaksson H, Mechoulam R, Müller R, Bajayo A, Gabet Y, Bab I. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts. J Bone Miner Res 2015; 30:1905-13. [PMID: 25801536 DOI: 10.1002/jbmr.2513] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2022]
Abstract
Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femurs from rats given a mixture of CBD and Δ(9) -tetrahydrocannabinol (THC) for 8 weeks were markedly increased by CBD. This effect is not shared by THC (the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks postfracture followed by attenuation of the CBD effect at 8 weeks. Using micro-computed tomography (μCT), the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier transform infrared (FTIR) spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes.
Collapse
Affiliation(s)
- Natalya M Kogan
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eitan Melamed
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Wasserman
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bitya Raphael
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviva Breuer
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathryn S Stok
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | - Saja Baraghithy
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopedics, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopedics, Lund University, Lund, Sweden
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Alon Bajayo
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itai Bab
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
31
|
Wujak ŁA, Blume A, Baloğlu E, Wygrecka M, Wygowski J, Herold S, Mayer K, Vadász I, Besuch P, Mairbäurl H, Seeger W, Morty RE. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells. Respir Physiol Neurobiol 2015; 220:54-61. [PMID: 26410457 DOI: 10.1016/j.resp.2015.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence.
Collapse
Affiliation(s)
- Łukasz A Wujak
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Biochemistry, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anna Blume
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Emel Baloğlu
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, University of Heidelberg, Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Medical Pharmacology, Acibadem University, İstanbul, Turkey
| | - Małgorzata Wygrecka
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Biochemistry, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jegor Wygowski
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Petra Besuch
- Department of Pathology, Klinikum Frankfurt (Oder) GmbH, Frankfurt (Oder), Germany
| | - Heimo Mairbäurl
- Department of Biochemistry, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
32
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
33
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
34
|
Madurga A, Golec A, Pozarska A, Ishii I, Mižíková I, Nardiello C, Vadász I, Herold S, Mayer K, Reichenberger F, Fehrenbach H, Seeger W, Morty RE. The H2S-generating enzymes cystathionine β-synthase and cystathionine γ-lyase play a role in vascular development during normal lung alveolarization. Am J Physiol Lung Cell Mol Physiol 2015; 309:L710-24. [PMID: 26232299 DOI: 10.1152/ajplung.00134.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development. H2S is endogenously generated by cystathionine β-synthase (Cbs) and cystathionine γ-lyase (Cth). We demonstrate here that the expression of Cbs and Cth in mouse lungs is dynamically regulated during lung alveolarization and that alveolarization is blunted in Cbs(-/-) and Cth(-/-) mouse pups, where a 50% reduction in the total number of alveoli was observed, without any impact on septal thickness. Laser-capture microdissection and immunofluorescence staining indicated that Cbs and Cth were expressed in the airway epithelium and lung vessels. Loss of Cbs and Cth led to a 100-500% increase in the muscularization of small- and medium-sized lung vessels, which was accompanied by increased vessel wall thickness, and an apparent decrease in lung vascular supply. Ablation of Cbs expression using small interfering RNA or pharmacological inhibition of Cth using propargylglycine in lung endothelial cells limited angiogenic capacity, causing a 30-40% decrease in tube length and a 50% decrease in number of tubes formed. In contrast, exogenous administration of H2S with GYY4137 promoted endothelial tube formation. These data confirm a key role for the H2S-generating enzymes Cbs and Cth in pulmonary vascular development and homeostasis and in lung alveolarization.
Collapse
Affiliation(s)
- Alicia Madurga
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anita Golec
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Isao Ishii
- Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Ivana Mižíková
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Frank Reichenberger
- Department of Pulmonology, Asklepios Lung Centre, Munich-Gauting, Germany; and
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Area Asthma and Allergy, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Werner Seeger
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| |
Collapse
|
35
|
Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1145-58. [DOI: 10.1152/ajplung.00039.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
| | - Alicia Madurga
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
36
|
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res 2015; 16:4. [PMID: 25591994 PMCID: PMC4307226 DOI: 10.1186/s12931-014-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
Background Earlier studies have reported that transforming growth factor beta 1(TGFβ1) is a critical mediator of hyperoxia-induced acute lung injury (HALI) in developing lungs, leading to impaired alveolarization and a pulmonary phenotype of bronchopulmonary dysplasia (BPD). However, the mechanisms responsible for the TGFβ1-induced inflammatory signals that lead to cell death and abnormal alveolarization are poorly understood. We hypothesized that TGFβ1 signaling via TGFβR2 is necessary for the pathogenesis of the BPD pulmonary phenotype resulting from HALI. Methods We utilized lung epithelial cell-specific TGFβ1 overexpressing transgenic and TGFβR2 null mutant mice to evaluate the effects on neonatal mortality as well as pulmonary inflammation and apoptosis in developing lungs. Lung morphometry was performed to determine the impaired alveolarization and multicolor flow cytometry studies were performed to detect inflammatory macrophages and monocytes in lungs. Apoptotic cell death was measured with TUNEL assay, immunohistochemistry and western blotting and protein expression of angiogenic mediators were also analyzed. Results Our data reveals that increased TGFβ1 expression in newborn mice lungs leads to increased mortality, macrophage and immature monocyte infiltration, apoptotic cell death specifically in Type II alveolar epithelial cells (AECs), impaired alveolarization, and dysregulated angiogenic molecular markers. Conclusions Our study has demonstrated the potential role of inhibition of TGFβ1 signaling via TGFβR2 for improved survival, reduced inflammation and apoptosis that may provide insights for the development of potential therapeutic strategies targeted against HALI and BPD.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Mansoor A Syed
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Chandra Sekhar Boddupalli
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Madhav V Dhodapkar
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Parviz Minoo
- Department of Pediatrics, University of Southern California, 1200 North State Street, Los Angeles, CA, 90033, USA.
| | - Vineet Bhandari
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
37
|
Platelet-rich plasma for the treatment of patent ductus arteriosus: not quite ready for prime time. Cardiol Young 2015; 25:139-40. [PMID: 25160560 DOI: 10.1017/s1047951114001516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Hilgendorff A, Parai K, Ertsey R, Navarro E, Jain N, Carandang F, Peterson J, Mokres L, Milla C, Preuss S, Alcazar MA, Khan S, Masumi J, Ferreira-Tojais N, Mujahid S, Starcher B, Rabinovitch M, Bland R. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice. Am J Physiol Lung Cell Mol Physiol 2014; 308:L464-78. [PMID: 25539853 DOI: 10.1152/ajplung.00278.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln(+/+)) and Eln(+/-) littermates at baseline and after MV with air for 8-24 h. Lungs of unventilated Eln(+/-) mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln(+/+) pups. Eln(+/-) lungs contained fewer capillaries than Eln(+/+) lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln(+/+) neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln(+/-) mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln(+/-) than in Eln(+/+) pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln(+/-) compared with Eln(+/+) mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln(+/+) and Eln(+/-) mice. Paucity of lung capillaries in Eln(+/-) newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln(+/-) mice.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Pediatrics, Stanford University, Stanford, California; Comprehensive Pneumology Center, Ludwig-Maximilian University, Munich, Germany; and
| | - Kakoli Parai
- Department of Pediatrics, Stanford University, Stanford, California
| | - Robert Ertsey
- Department of Pediatrics, Stanford University, Stanford, California
| | - Edwin Navarro
- Department of Pediatrics, Stanford University, Stanford, California
| | - Noopur Jain
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Joanna Peterson
- Department of Pediatrics, Stanford University, Stanford, California
| | - Lucia Mokres
- Department of Pediatrics, Stanford University, Stanford, California
| | - Carlos Milla
- Department of Pediatrics, Stanford University, Stanford, California
| | - Stefanie Preuss
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Suleman Khan
- Department of Pediatrics, Stanford University, Stanford, California
| | - Juliet Masumi
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Sana Mujahid
- Department of Pediatrics, Stanford University, Stanford, California
| | - Barry Starcher
- Department of Biochemistry, University of Texas, Tyler, Texas
| | | | - Richard Bland
- Department of Pediatrics, Stanford University, Stanford, California;
| |
Collapse
|
39
|
Rossor T, Greenough A. Advances in paediatric pulmonary vascular disease associated with bronchopulmonary dysplasia. Expert Rev Respir Med 2014; 9:35-43. [PMID: 25426585 DOI: 10.1586/17476348.2015.986470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary hypertension (PH) is a common finding in infants with bronchopulmonary dysplasia (BPD). The aim of this review is to describe recent advances in the diagnosis and treatment of PH and discuss whether they will benefit infants and children with BPD related PH. Echocardiography remains the mainstay of diagnosis but has limitations, further developments in diagnostic techniques and identification of biomarkers are required. There are many potential therapies for PH associated with BPD. Inhaled nitric oxide has been shown to improve short term outcomes only. Sidenafil in resource limited settings was shown in three randomized trials to significantly reduce mortality. The efficacy of other therapies including prostacyclin, PDE3 inhibitors and endothelin receptor blockers has only been reported in case reports or case series. Randomized controlled trials with long term follow up are required to appropriately assess the efficacy of therapies aimed at improving the outcome of children with PH.
Collapse
Affiliation(s)
- Thomas Rossor
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, England, UK
| | | |
Collapse
|
40
|
Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L936-47. [PMID: 25305249 DOI: 10.1152/ajplung.00159.2014] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.
Collapse
Affiliation(s)
- Jessica Berger
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
41
|
Yoder BA, Coalson JJ. Animal models of bronchopulmonary dysplasia. The preterm baboon models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L970-7. [PMID: 25281639 DOI: 10.1152/ajplung.00171.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Much of the progress in improved neonatal care, particularly management of underdeveloped preterm lungs, has been aided by investigations of multiple animal models, including the neonatal baboon (Papio species). In this article we highlight how the preterm baboon model at both 140 and 125 days gestation (term equivalent 185 days) has advanced our understanding and management of the immature human infant with neonatal lung disease. Not only is the 125-day baboon model extremely relevant to the condition of bronchopulmonary dysplasia but there are also critical neurodevelopmental and other end-organ pathological features associated with this model not fully discussed in this limited forum. We also describe efforts to incorporate perinatal infection into these preterm models, both fetal and neonatal, and particularly associated with Ureaplasma/Mycoplasma organisms. Efforts to rekindle the preterm primate model for future evaluations of therapies such as stem cell replacement, early lung recruitment interventions coupled with noninvasive surfactant and high-frequency nasal ventilation, and surfactant therapy coupled with antioxidant or anti-inflammatory medications, to name a few, should be undertaken.
Collapse
Affiliation(s)
- Bradley A Yoder
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Jacqueline J Coalson
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|