1
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
3
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
5
|
Allan KM, Astore MA, Kardia E, Wong SL, Fawcett LK, Bell JL, Visser S, Chen PC, Griffith R, Jaffe A, Sivam S, Vittorio O, Kuyucak S, Waters SA. Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient. Front Mol Biosci 2023; 10:1148501. [PMID: 37325471 PMCID: PMC10267335 DOI: 10.3389/fmolb.2023.1148501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Egi Kardia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jessica L Bell
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Simone Visser
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Po-Chia Chen
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Renate Griffith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, Australia
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sheila Sivam
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
6
|
Pereira R, Barbosa T, Cardoso AL, Sá R, Sousa M. Cystic fibrosis and primary ciliary dyskinesia: Similarities and differences. Respir Med 2023; 209:107169. [PMID: 36828173 DOI: 10.1016/j.rmed.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Cystic fibrosis (CF) and Primary ciliary dyskinesia (PCD) are both rare chronic diseases, inherited disorders associated with multiple complications, namely respiratory complications, due to impaired mucociliary clearance that affect severely patients' lives. Although both are classified as rare diseases, PCD has a much lower prevalence than CF, particularly among Caucasians. As a result, CF is well studied, better recognized by clinicians, and with some therapeutic approaches already available. Whereas PCD is still largely unknown, and thus the approach is based on consensus guidelines, expert opinion, and extrapolation from the larger evidence base available for patients with CF. Both diseases have some clinical similarities but are very different, necessitating different treatment by specialists who are familiar with the complexities of each disease.This review aims to provide an overview of the knowledge about the two diseases with a focus on the similarities and differences between both in terms of disease mechanisms, common clinical manifestations, genetics and the most relevant therapeutic options. We hoped to raise clinical awareness about PCD, what it is, how it differs from CF, and how much information is still lacking. Furthermore, this review emphasises the fact that both diseases require ongoing research to find better treatments and, in particular for PCD, to fill the medical and scientific gaps.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Telma Barbosa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Ana Lúcia Cardoso
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| |
Collapse
|
7
|
Carey RM, Palmer JN, Adappa ND, Lee RJ. Loss of CFTR function is associated with reduced bitter taste receptor-stimulated nitric oxide innate immune responses in nasal epithelial cells and macrophages. Front Immunol 2023; 14:1096242. [PMID: 36742335 PMCID: PMC9890060 DOI: 10.3389/fimmu.2023.1096242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction Bitter taste receptors (T2Rs) are G protein-coupled receptors identified on the tongue but expressed all over the body, including in airway cilia and macrophages, where T2Rs serve an immune role. T2R isoforms detect bitter metabolites (quinolones and acyl-homoserine lactones) secreted by gram negative bacteria, including Pseudomonas aeruginosa, a major pathogen in cystic fibrosis (CF). T2R activation by bitter bacterial products triggers calcium-dependent nitric oxide (NO) production. In airway cells, the NO increases mucociliary clearance and has direct antibacterial properties. In macrophages, the same pathway enhances phagocytosis. Because prior studies linked CF with reduced NO, we hypothesized that CF cells may have reduced T2R/NO responses, possibly contributing to reduced innate immunity in CF. Methods Immunofluorescence, qPCR, and live cell imaging were used to measure T2R localization, calcium and NO signaling, ciliary beating, and antimicrobial responses in air-liquid interface cultures of primary human nasal epithelial cells and immortalized bronchial cell lines. Immunofluorescence and live cell imaging was used to measure T2R signaling and phagocytosis in primary human monocyte-derived macrophages. Results Primary nasal epithelial cells from both CF and non-CF patients exhibited similar T2R expression, localization, and calcium signals. However, CF cells exhibited reduced NO production also observed in immortalized CFBE41o- CF cells and non-CF 16HBE cells CRISPR modified with CF-causing mutations in the CF transmembrane conductance regulator (CFTR). NO was restored by VX-770/VX-809 corrector/potentiator pre-treatment, suggesting reduced NO in CF cells is due to loss of CFTR function. In nasal cells, reduced NO correlated with reduced ciliary and antibacterial responses. In primary human macrophages, inhibition of CFTR reduced NO production and phagocytosis during T2R stimulation. Conclusions Together, these data suggest an intrinsic deficiency in T2R/NO signaling caused by loss of CFTR function that may contribute to intrinsic susceptibilities of CF patients to P. aeruginosa and other gram-negative bacteria that activate T2Rs.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kato T, Asakura T, Edwards CE, Dang H, Mikami Y, Okuda K, Chen G, Sun L, Gilmore RC, Hawkins P, De la Cruz G, Cooley MR, Bailey AB, Hewitt SM, Chertow DS, Borczuk AC, Salvatore S, Martinez FJ, Thorne LB, Askin FB, Ehre C, Randell SH, O’Neal WK, Baric RS, Boucher RC. Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease. Am J Respir Crit Care Med 2022; 206:1336-1352. [PMID: 35816430 PMCID: PMC9746856 DOI: 10.1164/rccm.202111-2606oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/β) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S. Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland; and
| | | | | | | | - Leigh B. Thorne
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Frederic B. Askin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
9
|
Blaconà G, Raso R, Castellani S, Pierandrei S, Del Porto P, Ferraguti G, Ascenzioni F, Conese M, Lucarelli M. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting. Cell Mol Life Sci 2022; 79:257. [PMID: 35462606 PMCID: PMC9035428 DOI: 10.1007/s00018-022-04190-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients’ treatment by epigenetic targeting.
Collapse
Affiliation(s)
- Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Raso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. .,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Naringenin Regulates Lipopolysaccharide-Induced Abnormal Airway Surface Liquid Secretion. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Airway surface liquid (ASL) is one of the key factors affecting the respiratory system's physiological function. Abnormal ASL secretion can increase the incidence of various respiratory diseases. Lipopolysaccharide (LPS) stimulation can damage the airway epithelial barrier, affect the concentration of ASL contents, and down-regulate ion channel expression, which in turn causes abnormal ASL secretion. Naringenin, which exists in many Citrus foods, has the ability to promote airway surface liquid secretion. This work is designed to investigate the regulatory mechanism of naringenin on LPS-induced abnormal ASL secretion. The effects of naringenin and LPS on the viability of Calu-3 cells were measured by CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS). ASL secretion volume was measured by a micropipette on air–liquid interface cultured cells. The concentration of Cl−, Na+, lysozyme, and total protein in ASL were respectively measured by assay kits. The mRNA expressions were determined by quantitative real-time polymerase chain reaction, and proteins were measured by enzyme-linked immunosorbent assay. The results indicated that LPS could affect ASL secretion and regulate cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 1 (AQP1) and aquaporin 5 (AQP5) expression. Naringenin had the ability to regulate the ASL secretion by increasing secretion volume, and Cl− and Na+ concentrations, reducing lysozyme and total protein content, and regulating CFTR, AQP1, and AQP5 expression. This study indicated that naringenin had regulating effects to attenuate LPS-induced abnormal ASL secretion.
Collapse
|
11
|
Rooj AK, Cormet-Boyaka E, Clark EB, Qadri YJ, Lee W, Boddu R, Agarwal A, Tambi R, Uddin M, Parpura V, Sorscher EJ, Fuller CM, Berdiev BK. Association of cystic fibrosis transmembrane conductance regulator with epithelial sodium channel subunits carrying Liddle's syndrome mutations. Am J Physiol Lung Cell Mol Physiol 2021; 321:L308-L320. [PMID: 34037494 DOI: 10.1152/ajplung.00298.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The association of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) in the pathophysiology of cystic fibrosis (CF) is controversial. Previously, we demonstrated a close physical association between wild-type (WT) CFTR and WT ENaC. We have also shown that the F508del CFTR fails to associate with ENaC unless the mutant protein is rescued pharmacologically or by low temperature. In this study, we present the evidence for a direct physical association between WT CFTR and ENaC subunits carrying Liddle's syndrome mutations. We show that all three ENaC subunits bearing Liddle's syndrome mutations (both point mutations and the complete truncation of the carboxy terminus), could be coimmunoprecipitated with WT CFTR. The biochemical studies were complemented by fluorescence lifetime imaging microscopy (FLIM), a distance-dependent approach that monitors protein-protein interactions between fluorescently labeled molecules. Our measurements revealed significantly increased fluorescence resonance energy transfer between CFTR and all tested ENaC combinations as compared with controls (ECFP and EYFP cotransfected cells). Our findings are consistent with the notion that CFTR and ENaC are within reach of each other even in the setting of Liddle's syndrome mutations, suggestive of a direct intermolecular interaction between these two proteins.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Edlira B Clark
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Yawar J Qadri
- Department of Anesthesiology, The Emory University School of Medicine, Atlanta, Georgia
| | - William Lee
- Department of Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Ravindra Boddu
- Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Richa Tambi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Eric J Sorscher
- Department of Pediatrics, The Emory University School of Medicine, Atlanta, Georgia
| | - Cathy M Fuller
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Bakhrom K Berdiev
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
12
|
Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, Conese M, Ascenzioni F, Lucarelli M. DNA Methylation Patterns Correlate with the Expression of SCNN1A, SCNN1B, and SCNN1G (Epithelial Sodium Channel, ENaC) Genes. Int J Mol Sci 2021; 22:ijms22073754. [PMID: 33916525 PMCID: PMC8038451 DOI: 10.3390/ijms22073754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, β and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.
Collapse
Affiliation(s)
- Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Gessica Truglio
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy;
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
- Correspondence: (F.A.); (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena 291, 00161 Roma, Italy
- Correspondence: (F.A.); (M.L.)
| |
Collapse
|
13
|
Yadav S, Shaughnessy CA, Zeitlin PL, Bratcher PE. Downregulation of epithelial sodium channel (ENaC) activity in human airway epithelia after low temperature incubation. BMJ Open Respir Res 2021; 8:8/1/e000861. [PMID: 33622672 PMCID: PMC7907861 DOI: 10.1136/bmjresp-2020-000861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction The incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF. Methods After differentiation at the air–liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber. Results While F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors. Discussion Significant transcriptional downregulation of ENaC subunits β and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.
Collapse
Affiliation(s)
- Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Kolonko AK, Efing J, González-Espinosa Y, Bangel-Ruland N, van Driessche W, Goycoolea FM, Weber WM. Capsaicin-Loaded Chitosan Nanocapsules for wtCFTR-mRNA Delivery to a Cystic Fibrosis Cell Line. Biomedicines 2020; 8:E364. [PMID: 32962254 PMCID: PMC7554911 DOI: 10.3390/biomedicines8090364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF), a lethal hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene coding for an epithelial chloride channel, is characterized by an imbalanced homeostasis of ion and water transports in secretory epithelia. As the disease is single-gene based, transcript therapy using therapeutic mRNA is a promising concept of treatment in order to correct many aspects of the fatal pathology on a cellular level. Hence, we developed chitosan nanocapsules surface-loaded with wtCFTR-mRNA to restore CFTR function. Furthermore, we loaded the nanocapsules with capsaicin, aiming to enhance the overall efficiency of transcript therapy by reducing sodium hyperabsorption by the epithelial sodium channel (ENaC). Dynamic light scattering with non-invasive back scattering (DLS-NIBS) revealed nanocapsules with an average hydrodynamic diameter of ~200 nm and a Zeta potential of ~+60 mV. The results of DLS-NIBS measurements were confirmed by asymmetric flow field-flow fractionation (AF4) with multidetection, while transmission electron microscopy (TEM) images confirmed the spherical morphology and size range. After stability measurements showed that the nanocapsules were highly stable in cell culture transfection medium, and cytotoxicity was ruled out, transfection experiments were performed with the CF cell line CFBE41o-. Finally, transepithelial measurements with a new state-of-the-art Ussing chamber confirmed successfully restored CFTR function in transfected cells. This study demonstrates that CS nanocapsules as a natural and non-toxic delivery system for mRNA to target cells could effectively replace risky vectors for gene delivery. The nanocapsules are not only suitable as a transcript therapy for treatment of CF, but open aspiring possibilities for safe gene delivery in general.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | - Janes Efing
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | - Yadira González-Espinosa
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (Y.G.-E.); (F.M.G.)
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | | | - Francisco M. Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (Y.G.-E.); (F.M.G.)
| | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| |
Collapse
|
15
|
Kolonko AK, Bangel-Ruland N, Goycoolea FM, Weber WM. Chitosan Nanocomplexes for the Delivery of ENaC Antisense Oligonucleotides to Airway Epithelial Cells. Biomolecules 2020; 10:biom10040553. [PMID: 32260534 PMCID: PMC7226018 DOI: 10.3390/biom10040553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoscale drug delivery systems exhibit a broad range of applications and promising treatment possibilities for various medical conditions. Nanomedicine is of great interest, particularly for rare diseases still lacking a curative treatment such as cystic fibrosis (CF). CF is defined by a lack of Cl− secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) and an increased Na+ absorption mediated by the epithelial sodium channel (ENaC). The imbalanced ion and water transport leads to pathological changes in many organs, particularly in the lung. We developed a non-viral delivery system based on the natural aminopolysaccharide chitosan (CS) for the transport of antisense oligonucleotides (ASO) against ENaC to specifically address Na+ hyperabsorption. CS–ASO electrostatic self-assembled nanocomplexes were formed at varying positive/negative (P/N) charge ratios and characterized for their physicochemical properties. Most promising nanocomplexes (P/N 90) displayed an average size of ~150 nm and a zeta potential of ~+30 mV. Successful uptake of the nanocomplexes by the human airway epithelial cell line NCI-H441 was confirmed by fluorescence microscopy. Functional Ussing chamber measurements of transfected NCI-H441 cells showed significantly decreased Na+ currents, indicating successful downregulation of ENaC. The results obtained confirm the promising characteristics of CS as a non-viral and non-toxic delivery system and demonstrate the encouraging possibility to target ENaC with ASOs to treat abnormal ion transport in CF.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
- Correspondence: ; Tel.: +49-251-832-1784
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| | | | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| |
Collapse
|
16
|
Webster MJ, Reidel B, Tan CD, Ghosh A, Alexis NE, Donaldson SH, Kesimer M, Ribeiro CMP, Tarran R. SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration. Eur Respir J 2018; 52:13993003.00668-2018. [PMID: 30190268 DOI: 10.1183/13993003.00668-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Boris Reidel
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Arunava Ghosh
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Neil E Alexis
- Center for Asthma and Lung Biology, The University of North Carolina, Chapel Hill, NC, USA
| | - Scott H Donaldson
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Carla M P Ribeiro
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA .,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Shen CH, Lin JY, Chang YL, Wu SY, Peng CK, Wu CP, Huang KL. Inhibition of NKCC1 Modulates Alveolar Fluid Clearance and Inflammation in Ischemia-Reperfusion Lung Injury via TRAF6-Mediated Pathways. Front Immunol 2018; 9:2049. [PMID: 30271405 PMCID: PMC6146090 DOI: 10.3389/fimmu.2018.02049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The expression of Na-K-2Cl cotransporter 1 (NKCC1) in the alveolar epithelium is responsible for fluid homeostasis in acute lung injury (ALI). Increasing evidence suggests that NKCC1 is associated with inflammation in ALI. We hypothesized that inhibiting NKCC1 would attenuate ALI after ischemia-reperfusion (IR) by modulating pathways that are mediated by tumor necrosis-associated factor 6 (TRAF6). Methods: IR-ALI was induced by producing 30 min of ischemia followed by 90 min of reperfusion in situ in an isolated and perfused rat lung model. The rats were randomly allotted into four groups comprising two control groups and two IR groups with and without bumetanide. Alveolar fluid clearance (AFC) was measured for each group. Mouse alveolar MLE-12 cells were cultured in control and hypoxia-reoxygenation (HR) conditions with or without bumetanide. Flow cytometry and transwell monolayer permeability assay were carried out for each group. Results: Bumetanide attenuated the activation of p-NKCC1 and lung edema after IR. In the HR model, bumetanide decreased the cellular volume and increased the transwell permeability. In contrast, bumetanide increased the expression of epithelial sodium channel (ENaC) via p38 mitogen-activated protein kinase (p38 MAPK), which attenuated the reduction of AFC after IR. Bumetanide also modulated lung inflammation via nuclear factor-κB (NF-κB). TRAF6, which is upstream of p38 MAPK and NF-κB, was attenuated by bumetanide after IR and HR. Conclusions: Inhibition of NKCC1 by bumetanide reciprocally modulated epithelial p38 MAPK and NF-κB via TRAF6 in IR-ALI. This interaction attenuated the reduction of AFC via upregulating ENaC expression and reduced lung inflammation.
Collapse
Affiliation(s)
- Chih-Hao Shen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jr-Yu Lin
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
19
|
Burgener EB, Moss RB. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Curr Opin Pediatr 2018; 30:372-377. [PMID: 29538046 PMCID: PMC6398332 DOI: 10.1097/mop.0000000000000627] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to describe the newest development in cystic fibrosis (CF) care, CF transmembrane conductance regulator (CFTR) modulator therapies. RECENT FINDINGS Phase II results showing CFTR modulator triple therapies are more effective than current CFTR modulators. SUMMARY CFTR modulator therapy targets the protein defective in CF and boosts its function, but the drug must match mutation pathobiology. Ivacaftor, a CFTR potentiator, was the first modulator approved in 2012, with impressive improvement in lung function and other measures of disease in patients with gating and other residual function mutations (∼10% of CF patients). In 2015, the combination of lumacaftor, a CFTR corrector, and ivacaftor was approved for patients homozygous for the F508del mutation (∼40-50% of the CF population) with positive but less impressive clinical response and 10-20% incidence of intolerance. A next-generation CFTR corrector, tezacaftor, with ivacaftor equally effective and better tolerated than lumacaftor, has also received US Food and Drug Administration approval. Novel CFTR correctors, entering Phase 3 trials in triple modulator combination with tezacaftor-ivacaftor, appear substantially more effective for patients who are homozygous for the F508del mutation and can provide benefit for patients with a single F508del mutation. This offers promise of effective CFTR modulator therapy for nearly 90% of CF patients.
Collapse
|
20
|
Abstract
Nucleic acid therapeutics are an established class of drugs that enable specific targeting of a gene of interest. This diverse family of drugs includes antisense oligonucleotides, siRNAs, and mRNA replacement therapies, which can elicit both gene repression and activation, primarily at the RNA level. Recent advances in medicinal chemistry have increased drug potency and enhanced delivery and distribution to a broad array of tissue and cell types. A key advantage of nucleic acid therapeutics is in their application to monogenic diseases. Cystic fibrosis (CF) is one such disease that affects ∼70,000 people globally. This severe disease is an excellent candidate for nucleic acid therapies, as it is due to a genetic defect in a single epithelial chloride channel. Although CF affects many tissues, the primary cause of patient mortality is lung disease. Here we review the various nucleic acid therapeutic modalities and their mechanisms of action, the opportunities and challenges associated with application of nucleic acid drugs to the lung pathology of CF, and the current state and prospects for nucleic acid drugs for the treatment of CF.
Collapse
Affiliation(s)
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| |
Collapse
|
21
|
Bossmann M, Ackermann BW, Thome UH, Laube M. Signaling Cascade Involved in Rapid Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Dexamethasone. Int J Mol Sci 2017; 18:ijms18081807. [PMID: 28825630 PMCID: PMC5578194 DOI: 10.3390/ijms18081807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Impairment of mucociliary clearance with reduced airway fluid secretion leads to chronically inflamed airways. Cystic fibrosis transmembrane conductance regulator (CFTR) is crucially involved in airway fluid secretion and dexamethasone (dexa) has previously been shown to elevate CFTR activity in airway epithelial cells. However, the pathway by which dexa increases CFTR activity is largely unknown. We aimed to determine whether the increase of CFTR activity by dexa is achieved by non-genomic signaling and hypothesized that the phosphoinositide 3-kinase (PI3K) pathway is involved in CFTR stimulation. Primary rat airway epithelial cells and human bronchial submucosal gland-derived Calu-3 cells were analyzed in Ussing chambers and kinase activation was determined by Western blots. Results demonstrated a critical involvement of PI3K and protein kinase B (AKT) signaling in the dexa-induced increase of CFTR activity, while serum and glucocorticoid dependent kinase 1 (SGK1) activity was not essential. We further demonstrated a reduced neural precursor cell expressed, developmentally downregulated 4-like (NEDD4L) ubiquitin E3 ligase activity induced by dexa, possibly responsible for the elevated CFTR activity. Finally, increases of CFTR activity by dexa were demonstrated within 30 min accompanied by rapid activation of AKT. In conclusion, dexa induces a rapid stimulation of CFTR activity which depends on PI3K/AKT signaling in airway epithelial cells. Glucocorticoids might thus represent, in addition to their immunomodulatory actions, a therapeutic strategy to rapidly increase airway fluid secretion.
Collapse
Affiliation(s)
- Miriam Bossmann
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| | - Benjamin W Ackermann
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
22
|
Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis. Proc Natl Acad Sci U S A 2017; 114:E7272-E7281. [PMID: 28808008 DOI: 10.1073/pnas.1617383114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.
Collapse
|
23
|
Crosby JR, Zhao C, Jiang C, Bai D, Katz M, Greenlee S, Kawabe H, McCaleb M, Rotin D, Guo S, Monia BP. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. J Cyst Fibros 2017; 16:671-680. [PMID: 28539224 DOI: 10.1016/j.jcf.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. METHODS We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. RESULTS The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. CONCLUSIONS Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung.
Collapse
Affiliation(s)
- Jeff R Crosby
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Chenguang Zhao
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chong Jiang
- The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Dong Bai
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Melanie Katz
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Sarah Greenlee
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hiroshi Kawabe
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Michael McCaleb
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Daniela Rotin
- The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Shuling Guo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brett P Monia
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
24
|
Stanton BA. Effects of Pseudomonas aeruginosa on CFTR chloride secretion and the host immune response. Am J Physiol Cell Physiol 2017; 312:C357-C366. [PMID: 28122735 DOI: 10.1152/ajpcell.00373.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
In the healthy lung the opportunistic pathogen, Pseudomonas aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl- and [Formula: see text] secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild-type and Phe508del-CFTR Cl- secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR inhibitory factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF and induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the Phe508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.
Collapse
Affiliation(s)
- Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
25
|
Zaidman NA, Panoskaltsis-Mortari A, O'Grady SM. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance. Am J Physiol Cell Physiol 2016; 311:C225-36. [PMID: 27306366 PMCID: PMC5129773 DOI: 10.1152/ajpcell.00073.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/10/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoids strongly influence the mucosal-defense functions performed by the bronchial epithelium, and inhaled corticosteroids are critical in the treatment of patients with inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. A common pathology associated with these diseases is reduced mucociliary clearance, a defense mechanism involving the coordinated transport of salt, water, and mucus by the bronchial epithelium, ultimately leading to retention of pathogens and particles in the airways and to further disease progression. In the present study we investigated the role of hydrocortisone (HC) in differentiation and development of the ion transport phenotype of normal human bronchial epithelial cells under air-liquid interface conditions. Normal human bronchial epithelial cells differentiated in the absence of HC (HC0) showed significantly less benzamil-sensitive short-circuit current than controls, as well as a reduced response after stimulation with the selective β2-adrenergic receptor agonist salbutamol. Apical membrane localization of epithelial Na(+) channel α-subunits was similarly reduced in HC0 cells compared with controls, supporting a role of HC in the trafficking and density of Na(+) channels in the plasma membrane. Additionally, glucocorticoid exposure during differentiation regulated the transcription of cystic fibrosis transmembrane conductance regulator and β2-adrenergic receptor mRNAs and appeared to be necessary for the expression of cystic fibrosis transmembrane conductance regulator-dependent anion secretion in response to β2-agonists. HC had no significant effect on surface cell differentiation but did modulate the expression of mucin mRNAs. These findings indicate that glucocorticoids support mucosal defense by regulating critical transport pathways essential for effective mucociliary clearance.
Collapse
Affiliation(s)
- Nathan A Zaidman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Angela Panoskaltsis-Mortari
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; and
| | - Scott M O'Grady
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; Department of Animal Science, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
27
|
Laube M, Bossmann M, Thome UH. Glucocorticoids Distinctively Modulate the CFTR Channel with Possible Implications in Lung Development and Transition into Extrauterine Life. PLoS One 2015; 10:e0124833. [PMID: 25910246 PMCID: PMC4409322 DOI: 10.1371/journal.pone.0124833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
During fetal development, the lung is filled with fluid that is secreted by an active Cl- transport promoting lung growth. The basolateral Na+,K+,2Cl- cotransporter (NKCC1) participates in Cl- secretion. The apical Cl- channels responsible for secretion are unknown but studies suggest an involvement of the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is developmentally regulated with a high expression in early fetal development and a decline in late gestation. Perinatal lung transition is triggered by hormones that stimulate alveolar Na+ channels resulting in fluid absorption. Little is known on how hormones affect pulmonary Cl- channels. Since the rise of fetal cortisol levels correlates with the decrease in fetal CFTR expression, a causal relation may be assumed. The aim of this study was to analyze the influence of glucocorticoids on pulmonary Cl- channels. Alveolar cells from fetal and adult rats, A549 cells, bronchial Calu-3 and 16HBE14o- cells, and primary rat airway cells were studied with real-time quantitative PCR and Ussing chambers. In fetal and adult alveolar cells, glucocorticoids strongly reduced Cftr expression and channel activity, which was prevented by mifepristone. In bronchial and primary airway cells CFTR mRNA expression was also reduced, whereas channel activity was increased which was prevented by LY-294002 in Calu-3 cells. Therefore, glucocorticoids strongly reduce CFTR expression while their effect on CFTR activity depends on the physiological function of the cells. Another apical Cl- channel, anoctamin 1 showed a glucocorticoid-induced reduction of mRNA expression in alveolar cells and an increase in bronchial cells. Furthermore, voltage-gated chloride channel 5 and anoctamine 6 mRNA expression were increased in alveolar cells. NKCC1 expression was reduced by glucocorticoids in alveolar and bronchial cells alike. The results demonstrate that glucocorticoids differentially modulate pulmonary Cl- channels and are likely causing the decline of CFTR during late gestation in preparation for perinatal lung transition.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Miriam Bossmann
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| | - Ulrich H. Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Sonneville F, Ruffin M, Guillot L, Rousselet N, Le Rouzic P, Corvol H, Tabary O. New insights about miRNAs in cystic fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:897-908. [PMID: 25687559 DOI: 10.1016/j.ajpath.2014.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
The molecular basis of cystic fibrosis (CF) is a mutation-related defect in the epithelial-cell chloride channel called CF transmembrane conductance regulator (CFTR). This defect alters chloride ion transport and impairs water transport across the cell membrane. Marked clinical heterogeneity occurs even among patients carrying the same mutation in the CFTR gene. Recent studies suggest that such heterogeneity could be related to epigenetic factors and/or miRNAs, which are small noncoding RNAs that modulate the expression of various proteins via post-transcriptional inhibition of gene expression. In the respiratory system, it has been shown that the dysregulation of miRNAs could participate in and lead to pathogenicity in several diseases. In CF airways, recent studies have proposed that miRNAs may modulate disease progression by affecting the production of either CFTR or various proteins that are dysregulated in the CF lung. Herein, we provide an overview of studies showing how miRNAs may modulate CF pathology and the efforts to develop miRNA-based treatments and/or to consider miRNAs as biomarkers. The identification of miRNAs involved in CF disease progression opens up new avenues toward treatments targeting selected clinical components of CF, independently from the CFTR mutation.
Collapse
Affiliation(s)
- Florence Sonneville
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Manon Ruffin
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Loïc Guillot
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Nathalie Rousselet
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Philippe Le Rouzic
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Harriet Corvol
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France; Paediatric Respiratory Department, Hôpital Trousseau, AP-HP, Paris, France
| | - Olivier Tabary
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France.
| |
Collapse
|
29
|
Henry KR, Lee S, Walker D, Zeitlin PL. Direct interactions between ENaC gamma subunit and ClCN2 in cystic fibrosis epithelial cells. Physiol Rep 2015; 3:3/1/e12264. [PMID: 25626868 PMCID: PMC4387756 DOI: 10.14814/phy2.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal disease caused by mutations in the chloride channel CFTR gene. The disease is characterized by decreased chloride secretion and unregulated sodium absorption through the epithelial sodium channel (ENaC) in the airway epithelium and other affected organs. We hypothesize that a non‐CFTR alternative chloride channel ClCN2 can be activated to negatively regulate ENaC in CF epithelial cell cultures. We identified a novel interaction between ClCN2 and the ENaCγ subunit in CF airway epithelial cells and show that the upregulation of ClCN2 leads to decreased expression of ENaCγ via a K63 ubiquitination mechanism. These regulatory effects of ClCN2 on ENaCγ appear to be dependent on the CBS‐1 domain located within the c‐terminus of ClCN2, which is necessary for the targeting of ClCN2 to the apical surface. In sum, these results suggest the ability of ClCN2 to negatively regulate sodium absorption through ENaC, supporting its role as a therapeutic target for the treatment of CF. Cystic Fibrosis is caused by mutations in the chloride channel CFTR gene which secondarily increases sodium reabsorption in the airways. ClCN2 is an epithelial chloride channel in the airways that can be activated in CF. We show an interaction between ClCN2 and the epithelial sodium channel subunit gamma that affects subunit expression and targeting to the plasma membrane.
Collapse
Affiliation(s)
- Katherine R Henry
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seakwoo Lee
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Douglas Walker
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pamela L Zeitlin
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Abstract
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung.
Collapse
Affiliation(s)
- James F Collawn
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Grumbach Y, Bikard Y, Suaud L, Chanoux RA, Rubenstein RC. ERp29 regulates epithelial sodium channel functional expression by promoting channel cleavage. Am J Physiol Cell Physiol 2014; 307:C701-9. [PMID: 24944201 DOI: 10.1152/ajpcell.00134.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial Na(+) channel (ENaC) plays a key role in the regulation of blood pressure and airway surface liquid volume. ERp29 is a 29-kDa thioredoxin-homologous endoplasmic reticulum (ER) protein that has only a single cysteine instead of the usual thioredoxin CXXC motif. Our group previously demonstrated that ERp29 promotes biogenesis of the cystic fibrosis transmembrane conductance regulator (CFTR). On the basis of similarities of CFTR and ENaC trafficking, we hypothesized that ERp29 would also regulate ENaC biogenesis and functional expression. In epithelial cells, overexpression of wild-type (wt) ERp29 increased ENaC functional expression [amiloride-sensitive short-circuit current (Isc)] in Ussing chamber experiments, as well as the abundance of the cleaved form of γ-ENaC in whole cell lysates. In contrast, siRNA-mediated depletion of ERp29 or overexpression of a mutant ERp29 lacking its single cysteine (C157S ERp29) decreased ENaC functional expression. Cells in which wt ERp29 was overexpressed had a smaller fractional increase in amiloride-sensitive Isc when trypsin was applied to the apical surface to activate uncleaved ENaC, while cells in which C157S ERp29 was overexpressed or ERp29 was depleted had a significantly greater fractional increase in amiloride-sensitive Isc in response to trypsin. Interestingly, these observations were not associated with altered expression of β-ENaC at the apical surface. Instead, ERp29 appeared to promote the interaction of β-ENaC with the Sec24D cargo recognition component of the coat complex II ER exit machinery. Together, these data support the hypothesis that ERp29 directs ENaC toward the Golgi, where it undergoes cleavage during its biogenesis and trafficking to the apical membrane.
Collapse
Affiliation(s)
- Yael Grumbach
- Division of Pulmonary Medicine and Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Yann Bikard
- Division of Pulmonary Medicine and Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Laurence Suaud
- Division of Pulmonary Medicine and Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Rebecca A Chanoux
- Division of Pulmonary Medicine and Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine and Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Carbone A, Castellani S, Favia M, Diana A, Paracchini V, Di Gioia S, Seia M, Casavola V, Colombo C, Conese M. Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells. J Cell Mol Med 2014; 18:1631-43. [PMID: 24894806 PMCID: PMC4190909 DOI: 10.1111/jcmm.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype.
Collapse
Affiliation(s)
- Annalucia Carbone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Laboratory, Milan, Italy; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yusef YR, Thomas W, Harvey BJ. Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells. Physiol Rep 2014; 2:2/5/e12020. [PMID: 24872356 PMCID: PMC4098747 DOI: 10.14814/phy2.12020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The most active estrogen, 17β‐estradiol (E2), has previously been shown to stimulate a female sex‐specific antisecretory response in the intestine. This effect is thought to contribute to the increase in whole body extracellular fluid (ECF) volume which occurs in high estrogen states, such as in the implantation window during estrous cycle. The increased ECF volume may be short‐circuited by a renal compensation unless estrogen exerts a proabsorptive effect in the nephron. Thus, the effect of E2 on ENaC in kidney cortical collecting duct (CCD) cells is of interest to understand estrogen regulation of ECF volume. Previous studies showed a rapid stimulatory effect of estrogen on ENaC in bronchial epithelium. In this study we examined if such a rapid effect on Na+ absorption could occur in the kidney. Experiments were carried out on murine M1‐CCD cell cultures. E2 (25 nmol/L) treatment caused a rapid‐onset (<15 min) and sustained increase in the amiloride‐sensitive Na+ current (INa) in CCD monolayers mounted in Ussing chambers (control, 1.9 ± 0.2 μA/cm2; E2, 4.7 ± 0.3 μA/cm2; n = 43, P < 0.001), without affecting the ouabain‐sensitive Na+/K+ pump current. The INa response to E2 was inhibited by PKCδ activity antagonism with rottlerin (5 μmol/L), inhibition of matrix metalloproteinases activity with GM6001 (1 μmol/L), inhibition of EGFR activity with AG1478 (10 μmol/L), inhibition of PLC activity with U‐73122 (10 μmol/L), and inhibition of estrogen receptors with the general ER antagonist ICI‐182780 (100 nmol/L). The estrogen activation of INa could be mimicked by the ERα agonist PPT (1 nmol/L). The nuclear excluded estrogen dendrimer conjugate (EDC) induced similar stimulatory effects on INa comparable to free E2. The end target for E2 stimulation of PKCδ was shown to be an increased abundance of the γ‐ENaC subunit in the apical plasma membrane of CCD cells. We have demonstrated a novel rapid “nongenomic” function of estrogen to stimulate ENaC via ERα‐EGFR transactivation in kidney CCD cells. We propose that the salt‐retaining effect of estrogen in the kidney together with its antisecretory action in the intestine are the molecular mechanisms causing the expanded ECF volume in high‐estrogen states. Estrogen stimulates sodium absorption in kidney cells. This rapid “nongenomic” response to estrogen is transduced via estrogen receptor transactivation of the epidermal growth factor receptor. The ER‐EGFR transactivation triggers a protein kinase signaling cascade which culminates in the insertion of sodium channel subunits into the cell membrane. Estrogen is a novel salt‐retaining hormone with proabsorptive effects in kidney and antisecretory actions in intestine.
Collapse
Affiliation(s)
- Yamil R Yusef
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
34
|
Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014; 111:E1723-30. [PMID: 24706852 DOI: 10.1073/pnas.1403470111] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite therapeutic advancement, pulmonary disease still remains a major cause of morbidity and mortality around the world. Opportunities to study human lung disease either in vivo or in vitro are currently limited. Using induced pluripotent stem cells (iPSCs), we generated mature multiciliated cells in a functional airway epithelium. Robust multiciliogenesis occurred when notch signaling was inhibited and was confirmed by (i) the assembly of multiple pericentrin-stained centrioles at the apical surface, (ii) expression of transcription factor forkhead box protein J1, and (iii) presence of multiple acetylated tubulin-labeled cilia projections in individual cells. Clara, goblet, and basal cells were all present, confirming the generation of a complete polarized epithelial-cell layer. Additionally, cAMP-activated and cystic fibrosis transmembrane regulator inhibitor 172-sensitive cystic fibrosis transmembrane regulator currents were recorded in isolated epithelial cells. Our report demonstrating the generation of mature multiciliated cells in respiratory epithelium from iPSCs is a significant advance toward modeling a number of human respiratory diseases in vitro.
Collapse
|
35
|
Bomberger JM, Coutermarsh BA, Barnaby RL, Sato JD, Chapline MC, Stanton BA. Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval. PLoS One 2014; 9:e89599. [PMID: 24586903 PMCID: PMC3931797 DOI: 10.1371/journal.pone.0089599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. METHODS AND RESULTS We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). CONCLUSION This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane.
Collapse
Affiliation(s)
- Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bonita A. Coutermarsh
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - J. Denry Sato
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - M. Christine Chapline
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chen H, Sun X, Chi R, Li X, Feng J, Wu J, Ning W, Liu Z, Wu Q. Glucocorticoid dexamethasone regulates the differentiation of mouse conducting airway epithelial progenitor cells. Steroids 2014; 80:44-50. [PMID: 24333449 DOI: 10.1016/j.steroids.2013.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/20/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023]
Abstract
Inhaled glucocorticoid dexamethasone is the most effective treatment of asthma currently available. Epithelial damage and shedding represents a clear manifestation of asthmatic pathologies. However it remains unknown if dexamethasone regulates functions of airway progenitor cells that are responsible for epithelial repair. In present study Secretoglobin1a1 (Scgb1a1) lineage tracing mice were injected intraperitoneally with tamoxifen to induce the expression of green fluorescence protein (GFP) in Scgb1a1-expressing conducting airway progenitor cells. Scgb1a1-expressing progenitor cells were isolated from lungs of Scgb1a1 lineage tracing mice via flow activated cell sorting. In vitro three-dimensional matrigel culture of these progenitor cells revealed that dexamethasone has little effect on the colony forming ability of airway epithelial progenitor cells, but exhibits significant effects on the differentiation of the progenitor cells. Compared to the untreated group, dexamethasone treatment inhibited the expression of forkhead box J1 (FoxJ1) and mucin subtype A & C (Muc5Ac), but promoted the expression of calcium activated chloride channel 3 (Clca3) and cystic fibrosis transmembrane conductance regulator (Cftr). Dexamethasone-induced effects on the expression of FoxJ1, Muc5Ac and Clca3 were abolished or even reversed in the presence of RU486, an antagonist of glucocorticoid receptor, indicating that glucocorticoid receptor plays a role in the regulation of airway epithelial progenitor cells by dexamethasone. These data suggested that, though effective to reduce airway inflammation, dexamethasone treatment alone fails to fully restore the mucociliary clearance function in the treatment of asthma patients.
Collapse
Affiliation(s)
- Huaiyong Chen
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China.
| | - Xin Sun
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Ruo Chi
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Xue Li
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Jing Feng
- Department of Respiratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junping Wu
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhixue Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China.
| |
Collapse
|
37
|
Greenlee MM, Mitzelfelt JD, Yu L, Yue Q, Duke BJ, Harrell CS, Neigh GN, Eaton DC. Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor. Am J Physiol Lung Cell Mol Physiol 2013; 305:L878-89. [PMID: 24097558 DOI: 10.1152/ajplung.00008.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Female sex predisposes individuals to poorer outcomes during respiratory disorders like cystic fibrosis and influenza-associated pneumonia. A common link between these disorders is dysregulation of alveolar fluid clearance via disruption of epithelial sodium channel (ENaC) activity. Recent evidence suggests that female sex hormones directly regulate expression and activity of alveolar ENaC. In our study, we identified the mechanism by which estradiol (E2) or progesterone (P4) independently regulates alveolar ENaC. Using cell-attached patch clamp, we measured ENaC single-channel activity in a rat alveolar cell line (L2) in response to overnight exposure to either E2 or P4. In contrast to P4, E2 increased ENaC channel activity (NPo) through an increase in channel open probability (Po) and an increased number of patches with observable channel activity. Apical plasma membrane abundance of the ENaC α-subunit (αENaC) more than doubled in response to E2 as determined by cell surface biotinylation. αENaC membrane abundance was approximately threefold greater in lungs from female rats in proestrus, when serum E2 is greatest, compared with diestrus, when it is lowest. Our results also revealed a significant role for the G protein-coupled estrogen receptor (Gper) to mediate E2's effects on ENaC. Overall, our results demonstrate that E2 signaling through Gper selectively activates alveolar ENaC through an effect on channel gating and channel density, the latter via greater trafficking of channels to the plasma membrane. The results presented herein implicate E2-mediated regulation of alveolar sodium channels in the sex differences observed in the pathogenesis of several pulmonary diseases.
Collapse
Affiliation(s)
- Megan M Greenlee
- Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Ste. 655B, Atlanta, GA 30322.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
39
|
Rab A, Rowe SM, Raju SV, Bebok Z, Matalon S, Collawn JF. Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 2013; 305:L530-41. [PMID: 23934925 DOI: 10.1152/ajplung.00039.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder consisting of chronic bronchitis and/or emphysema. COPD patients suffer from chronic infections and display exaggerated inflammatory responses and a progressive decline in respiratory function. The respiratory symptoms of COPD are similar to those seen in cystic fibrosis (CF), although the molecular basis of the two disorders differs. CF is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a chloride and bicarbonate channel (CFTR), leading to CFTR dysfunction. The majority of COPD cases result from chronic oxidative insults such as cigarette smoke. Interestingly, environmental stresses including cigarette smoke, hypoxia, and chronic inflammation have also been implicated in reduced CFTR function, and this suggests a common mechanism that may contribute to both the CF and COPD. Therefore, improving CFTR function may offer an excellent opportunity for the development of a common treatment for CF and COPD. In this article, we review what is known about the CF respiratory phenotype and discuss how diminished CFTR expression-associated ion transport defects may contribute to some of the pathological changes seen in COPD.
Collapse
Affiliation(s)
- Andras Rab
- Dept. of Cell, Developmental and Integrative Biology, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., MCLM 395, Birmingham, AL 35294.
| | | | | | | | | | | |
Collapse
|
40
|
Vohwinkel CU, Vadász I. Influenza A matrix protein M2 downregulates CFTR: inhibition of chloride transport by a proton channel of the viral envelope. Am J Physiol Lung Cell Mol Physiol 2013; 304:L813-6. [PMID: 23605001 DOI: 10.1152/ajplung.00091.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Chan HC, Chen H, Ruan Y, Sun T. Physiology and Pathophysiology of the Epithelial Barrier of the Female Reproductive Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:193-217. [DOI: 10.1007/978-1-4614-4711-5_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Morty RE, Matalon S. “Real-time visualization of lung function: from micro to macro”. Am J Physiol Lung Cell Mol Physiol 2013; 304:L1-3. [DOI: 10.1152/ajplung.00279.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University Hospital Giessen and Marburg, Giessen, Germany; and
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Alabama
| |
Collapse
|
43
|
Prota LFM, Cebotaru L, Cheng J, Wright J, Vij N, Morales MM, Guggino WB. Dexamethasone regulates CFTR expression in Calu-3 cells with the involvement of chaperones HSP70 and HSP90. PLoS One 2012; 7:e47405. [PMID: 23272037 PMCID: PMC3521767 DOI: 10.1371/journal.pone.0047405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
Background Dexamethasone is widely used for pulmonary exacerbation in patients with cystic fibrosis, however, not much is known about the effects of glucocorticoids on the wild-type cystic fibrosis channel transmembrane regulator (CFTR). Our aim was to determine the effects of dexamethasone treatment on wild-type CFTR expression. Methods and Results Dose–response (1 nM to 10 µM) and time course (3 to 48 h) curves were generated for dexamethasone for mRNA expression in Calu-3 cells using a real-time PCR. Within 24 h, dexamethasone (10 nM) showed a 0.3-fold decrease in CFTR mRNA expression, and a 3.2-fold increase in αENaC mRNA expression compared with control groups. Dexamethasone (10 nM) induced a 1.97-fold increase in the total protein of wild-type CFTR, confirmed by inhibition by mifepristone. To access surface protein expression, biotinylation followed by Western blotting showed that dexamethasone treatment led to a 2.35-fold increase in the amount of CFTR in the cell surface compared with the untreated control groups. Once protein translation was inhibited with cycloheximide, dexamethasone could not increase the amount of CFTR protein. Protein stability was assessed by inhibition of protein synthesis with cycloheximide (50 µg/ml) at different times in cells treated with dexamethasone and in untreated cells. Dexamethasone did not alter the degradation of wild-type CFTR. Assessment of the B band of CFTR within 15 min of metabolic pulse labeling showed a 1.5-fold increase in CFTR protein after treatment with dexamethasone for 24 h. Chaperone 90 (HSP90) binding to CFTR increased 1.55-fold after treatment with dexamethasone for 24 h, whereas chaperone 70 (HSP70) binding decreased 0.30 fold in an immunoprecipitation assay. Conclusion Mature wild-type CFTR protein is regulated by dexamethasone post transcription, involving cotranslational mechanisms with HSP90 and HSP70, which enhances maturation and expression of wild-type CFTR.
Collapse
Affiliation(s)
- Luiz Felipe M. Prota
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jerry Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Neeraj Vij
- Department of Pediatrics and Institute of Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - William B. Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
44
|
Collawn JF, Matalon S. The role of CFTR in transepithelial liquid transport in pig alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2012; 303:L489-91. [PMID: 22797251 PMCID: PMC3468479 DOI: 10.1152/ajplung.00216.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. δ ENaC: a novel divergent amiloride-inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1013-26. [PMID: 22983350 DOI: 10.1152/ajplung.00206.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fourth subunit of the epithelial sodium channel, termed delta subunit (δ ENaC), was cloned in human and monkey. Increasing evidence shows that this unique subunit and its splice variants exhibit biophysical and pharmacological properties that are divergent from those of α ENaC channels. The widespread distribution of epithelial sodium channels in both epithelial and nonepithelial tissues implies a range of physiological functions. The altered expression of SCNN1D is associated with numerous pathological conditions. Genetic studies link SCNN1D deficiency with rare genetic diseases with developmental and functional disorders in the brain, heart, and respiratory systems. Here, we review the progress of research on δ ENaC in genomics, biophysics, proteomics, physiology, pharmacology, and clinical medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Johannesson B, Hirtz S, Schatterny J, Schultz C, Mall MA. CFTR regulates early pathogenesis of chronic obstructive lung disease in βENaC-overexpressing mice. PLoS One 2012; 7:e44059. [PMID: 22937152 PMCID: PMC3427321 DOI: 10.1371/journal.pone.0044059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Factors determining the onset and severity of chronic obstructive pulmonary disease remain poorly understood. Previous studies demonstrated that airway surface dehydration in βENaC-overexpressing (βENaC-Tg) mice on a mixed genetic background caused either neonatal mortality or chronic obstructive lung disease suggesting that the onset of lung disease was modulated by the genetic background. Methods To test this hypothesis, we backcrossed βENaC-Tg mice onto two inbred strains (C57BL/6 and BALB/c) and studied effects of the genetic background on neonatal mortality, airway ion transport and airway morphology. Further, we crossed βENaC-Tg mice with CFTR-deficient mice to validate the role of CFTR in early lung disease. Results We demonstrate that the C57BL/6 background conferred increased CFTR-mediated Cl− secretion, which was associated with decreased mucus plugging and mortality in neonatal βENaC-Tg C57BL/6 compared to βENaC-Tg BALB/c mice. Conversely, genetic deletion of CFTR increased early mucus obstruction and mortality in βENaC-Tg mice. Conclusions We conclude that a decrease or absence of CFTR function in airway epithelia aggravates the severity of early airway mucus obstruction and related mortality in βENaC-Tg mice. These results suggest that genetic or environmental factors that reduce CFTR activity may contribute to the onset and severity of chronic obstructive pulmonary disease and that CFTR may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Bjarki Johannesson
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephanie Hirtz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Carsten Schultz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
47
|
Alexandrou D, Walters DV. The role of Cl- in the regulation of ion and liquid transport in the intact alveolus during β-adrenergic stimulation. Exp Physiol 2012; 98:576-84. [PMID: 22872661 DOI: 10.1113/expphysiol.2012.066159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The epithelium of the developing lung displays an evolving liquid transport phenotype, in which Cl(-) secretion during fetal life is rapidly switched to Na(+) absorption perinatally. However, the mechanisms underlying the homeostasis of the thin layer of liquid lining the postnatal pulmonary epithelium remain elusive. In particular, it remains unclear whether the stimulated clearance of excess alveolar liquid is mediated via transepithelial Cl(-) transport. Our study is a pharmacological analysis with the aim of addressing this issue, which is of major physiological significance in cases of pulmonary oedema from any cause. We measured the rate of transepithelial liquid movement (J(v)) with (125)I-albumin, in the in situ perfused adult rat lung. Transepithelial Cl(-) transport was studied with the use of the Cl(-) channel inhibitor NPPB in the resting state and during stimulation with the β(2)-adrenergic agonist terbutaline. The study of J(v) in these conditions revealed the following findings: (1) there is net absorption of excess of alveolar liquid in the resting, unstimulated state, which is predominantly amiloride sensitive; (2) inhibition of Cl(-) transport with NPPB in the resting state results in a 1.6-fold increase in net absorption of alveolar liquid; and (3) the terbutaline-stimulated net absorption of the excess liquid is enhanced by 2.8-fold in the presence of NPPB. Our results are suggestive of the functional presence of secretory, but not absorptive, Cl(-) mechanisms and show that transepithelial Cl(-) transport is not part of the mechanism underlying lung liquid clearance in response to β-adrenergic stimulation.
Collapse
|
48
|
Qadri YJ, Cormet-Boyaka E, Rooj AK, Lee W, Parpura V, Fuller CM, Berdiev BK. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC). J Biol Chem 2012; 287:16781-90. [PMID: 22442149 DOI: 10.1074/jbc.m111.332031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina 27511, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
50
|
|