1
|
Yousefi T, Yousef Memar M, Ahmadi Jazi A, Zand S, Reiter RJ, Amirkhanlou S, Mostafa Mir S. Molecular pathways and biological roles of melatonin and vitamin D; effects on immune system and oxidative stress. Int Immunopharmacol 2024; 143:113548. [PMID: 39488920 DOI: 10.1016/j.intimp.2024.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Melatonin and vitamin D are associated with the immune system and have important functions as antioxidants. Numerous attempts have been made to identify up to date activities of these molecules in various physiological conditions. The biosynthetic pathways of melatonin and vitamin D are correlated to sun exposure in an inverse manner. Vitamin D is biosynthesized when the skin is exposed to the sun's UV radiation, while melatonin synthesis occurs in the pineal gland principally during night. Additionally, vitamin D is particularly associated with intestinal absorption, metabolism, and homeostasis of ions including calcium, magnesium. However, melatonin has biological marks and impacts on the sleep-wake cycle. The roles of vitamin D and melatonin are opposed to each other individually, but either of them is implicated in the immune system. Recently studies have shown that melatonin and vitamin D have their specific set of aberrations in different cell signaling pathways, such as serine/threonine-specific protein kinase (Akt), phosphoinositide 3-kinase (PI3K), nuclear factor-κB (NF-κB), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Notch. The aim of this review is to clarify the common biological functions and molecular mechanisms through which melatonin and vitamin D could deal with different signaling pathways.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Ahmadi Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahabedin Zand
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, USA
| | - Saeid Amirkhanlou
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Nephrology, Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mostafa Mir
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran.
| |
Collapse
|
2
|
Konikowska K, Kiliś-Pstrusińska K, Matera-Witkiewicz A, Kujawa K, Adamik B, Doroszko A, Kaliszewski K, Pomorski M, Protasiewicz M, Sokołowski J, Madziarska K, Jankowska EA. Association of serum vitamin D concentration with the final course of hospitalization in patients with COVID-19. Front Immunol 2023; 14:1231813. [PMID: 37727794 PMCID: PMC10505823 DOI: 10.3389/fimmu.2023.1231813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background Vitamin D deficiency is a substantial public health problem. The present study evaluated the association between vitamin D concentration and hospitalization and mortality risk in patients with coronavirus disease 19 (COVID-19). Methods This study used the COronavirus in LOwer Silesia (COLOS) dataset collected between February 2020 and June 2021. The medical records of 474 patients with confirmed severe acute respiratory syndrome 2 (SARS-CoV-2) infection, and whose vitamin D concentration was measured, were analyzed. Results We determined a significant difference in vitamin D concentration between discharged patients and those who died during hospitalization (p = 0.0096). We also found an effect of vitamin D concentration on the risk of death in patients hospitalized due to COVID-19. As vitamin D concentration increased, the odds ratio (OR) for death slightly decreased (OR = 0.978; 95% confidence interval [CI] = 0.540-0.669). The vitamin D concentration cutoff point was 15.40 ng/ml. In addition, patients with COVID-19 and serum 25-hydroxyvitamin D (25(OH)D) concentrations < 30 ng/ml had a lower survival rate than those with serum 25(OH)D ≥ 30 ng/ml (log-rank test p = 0.0018). Moreover, a Cox regression model showed that patients with an estimated glomerular filtration rate (eGFR) ≥ 60 ml/min/1.73 m2 and higher vitamin D concentrations had a 2.8% reduced risk of mortality (hazard ratio HR = 0.972; CI = 0.95-0,99; p = 0.0097). Conclusions The results indicate an association between 25(OH)D levels in patients with COVID-19 and the final course of hospitalization and risk of death.
Collapse
Affiliation(s)
- Klaudia Konikowska
- Department of Dietetics and Bromatology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kujawa
- Statistical Analysis Centre, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Adamik
- Clinical Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Adrian Doroszko
- Clinical Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kaliszewski
- Clinical Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Michał Pomorski
- Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | | | - Janusz Sokołowski
- Clinical Department of Emergency Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Madziarska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
3
|
Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de las Heras N. Gut Microbiota Dysbiosis in COVID-19: Modulation and Approaches for Prevention and Therapy. Int J Mol Sci 2023; 24:12249. [PMID: 37569625 PMCID: PMC10419057 DOI: 10.3390/ijms241512249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation and oxidative stress are critical underlying mechanisms associated with COVID-19 that contribute to the complications and clinical deterioration of patients. Additionally, COVID-19 has the potential to alter the composition of patients' gut microbiota, characterized by a decreased abundance of bacteria with probiotic effects. Interestingly, certain strains of these bacteria produce metabolites that can target the S protein of other coronaviruses, thereby preventing their transmission and harmful effects. At the same time, the presence of gut dysbiosis can exacerbate inflammation and oxidative stress, creating a vicious cycle that perpetuates the disease. Furthermore, it is widely recognized that the gut microbiota can metabolize various foods and drugs, producing by-products that may have either beneficial or detrimental effects. In this regard, a decrease in short-chain fatty acid (SCFA), such as acetate, propionate, and butyrate, can influence the overall inflammatory and oxidative state, affecting the prevention, treatment, or worsening of COVID-19. This review aims to explore the current evidence regarding gut dysbiosis in patients with COVID-19, its association with inflammation and oxidative stress, the molecular mechanisms involved, and the potential of gut microbiota modulation in preventing and treating SARS-CoV-2 infection. Given that gut microbiota has demonstrated high adaptability, exploring ways and strategies to maintain good intestinal health, as well as an appropriate diversity and composition of the gut microbiome, becomes crucial in the battle against COVID-19.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan 5400, Argentina;
| | - Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza 5500, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
4
|
Ghodsi D, Nikooyeh B, Amini M, Rabiei S, Doustmohammadian A, Abdollahi Z, Minaie M, Sadeghi F, Clark CCT, Neyestani TR, Rasekhi H. Dietary Supplement Use among Iranian Households during COVID-19 Epidemic Lockdown: Less Access in Those Who May Need More National Food and Nutrition Surveillance. Int J Prev Med 2023; 14:99. [PMID: 37854989 PMCID: PMC10580211 DOI: 10.4103/ijpvm.ijpvm_207_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 10/20/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic elicited the general population to use various dietary supplements (DSs) and nutraceuticals as a protective means against the disease. The present study aimed to evaluate changes and certain determinants of DS intake during the COVID-19 lockdown among Iranian households. Methods This nationwide cross-sectional study was conducted from April 4 to April 25, 2020, during which Iran was in lockdown. To collect data, a web-based electronic self-administered questionnaire was created. The data were compared among provinces based on their food security situations. Results A total of 21,290 households were included in the analyses. Approximately 27% of the households were using DSs after the epidemic. The most common DSs used were vitamin D (42%) and vitamin C (20%), followed by multi-vitamin (16%), zinc (9%), omega-3 (6%), vitamin A (4%), and probiotics (3%). Logistic regression analysis revealed that DS intake was directly associated with the household income but inversely with household size and the food security status of the provinces. DS intake was positively associated with the presence of high-risk persons in the households, the education of the households' head, and the presence of a person with a history of COVID-19 within the household. Conclusions During epidemic lockdown, DS use was remarkably increased among the Iranian households. Apart from the debatable usefulness of DSs against COVID-19, the inverse association of DS use with a household's income and provincial food security well indicates inequity in accessibility to DS. Actions to improve the nutritional status of the under-privileged populations including targeted supplementation are strongly recommended.
Collapse
Affiliation(s)
- Delaram Ghodsi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Nikooyeh
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Amini
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Rabiei
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Doustmohammadian
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Abdollahi
- Community Nutrition Office, Deputy of Health, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Mina Minaie
- Community Nutrition Office, Deputy of Health, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Farzaneh Sadeghi
- Community Nutrition Office, Deputy of Health, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, U. K
| | - Tirang R. Neyestani
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Rasekhi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Genomic or Non-Genomic? A Question about the Pleiotropic Roles of Vitamin D in Inflammatory-Based Diseases. Nutrients 2023; 15:nu15030767. [PMID: 36771473 PMCID: PMC9920355 DOI: 10.3390/nu15030767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (vit D) is widely known for its role in calcium metabolism and its importance for the bone system. However, various studies have revealed a myriad of extra-skeletal functions, including cell differentiation and proliferation, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory properties in various cells and tissues. Vit D mediates its function via regulation of gene expression by binding to its receptor (VDR) which is expressed in almost all cells within the body. This review summarizes the pleiotropic effects of vit D, emphasizing its anti-inflammatory effect on different organ systems. It also provides a comprehensive overview of the genetic and epigenetic effects of vit D and VDR on the expression of genes pertaining to immunity and anti-inflammation. We speculate that in the context of inflammation, vit D and its receptor VDR might fulfill their roles as gene regulators through not only direct gene regulation but also through epigenetic mechanisms.
Collapse
|
6
|
High-dose vitamin D versus placebo to prevent complications in COVID-19 patients: Multicentre randomized controlled clinical trial. PLoS One 2022; 17:e0267918. [PMID: 35622854 PMCID: PMC9140264 DOI: 10.1371/journal.pone.0267918] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background The role of oral vitamin D3 supplementation for hospitalized patients with COVID-19 remains to be determined. The study was aimed to evaluate whether vitamin D3 supplementation could prevent respiratory worsening among hospitalized patients with COVID-19. Methods and findings We designed a multicentre, randomized, double-blind, sequential, placebo-controlled clinical trial. The study was conducted in 17 second and third level hospitals, located in four provinces of Argentina, from 14 August 2020 to 22 June 2021. We enrolled 218 adult patients, hospitalized in general wards with SARS-CoV-2 confirmed infection, mild-to-moderate COVID-19 and risk factors for disease progression. Participants were randomized to a single oral dose of 500 000 IU of vitamin D3 or matching placebo. Randomization ratio was 1:1, with permuted blocks and stratified for study site, diabetes and age (≤60 vs >60 years). The primary outcome was the change in the respiratory Sepsis related Organ Failure Assessment score between baseline and the highest value recorded up to day 7. Secondary outcomes included the length of hospital stay; intensive care unit admission; and in-hospital mortality. Overall, 115 participants were assigned to vitamin D3 and 105 to placebo (mean [SD] age, 59.1 [10.7] years; 103 [47.2%] women). There were no significant differences in the primary outcome between groups (median [IQR] 0.0 [0.0–1.0] vs 0.0 [0.0–1.0], for vitamin D3 and placebo, respectively; p = 0.925). Median [IQR] length of hospital stay was not significantly different between vitamin D3 group (6.0 [4.0–9.0] days) and placebo group (6.0 [4.0–10.0] days; p = 0.632). There were no significant differences for intensive care unit admissions (7.8% vs 10.7%; RR 0.73; 95% CI 0.32 to 1.70; p = 0.622), or in-hospital mortality (4.3% vs 1.9%; RR 2.24; 95% CI 0.44 to 11.29; p = 0.451). There were no significant differences in serious adverse events (vitamin D3 = 14.8%, placebo = 11.7%). Conclusions Among hospitalized patients with mild-to-moderate COVID-19 and risk factors, a single high oral dose of vitamin D3 as compared with placebo, did not prevent the respiratory worsening. Trial registration ClincicalTrials.gov Identifier: NCT04411446.
Collapse
|
7
|
Balakrishna Pillai A, JeanPierre AR, Mariappan V, Ranganadin P, S R R. Neutralizing the free radicals could alleviate the disease severity following an infection by positive strand RNA viruses. Cell Stress Chaperones 2022; 27:189-195. [PMID: 35366756 PMCID: PMC8976658 DOI: 10.1007/s12192-022-01269-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Free radical release due to oxidative stress is gaining importance in the field of viral pathogenesis. Recent studies suggest the involvement of oxidative stress and ROS levels in regulating disease virulence during RNA virus infection. Most of the RNA virus infections lead to vascular dysfunction and disease severity. However, the biology of free radicals in maintaining vascular endothelium integrity is not completely understood. In the present review, we discuss some of the common features in positive-strand RNA virus infections such as dengue and SARS-CoV-2 and suggest that anti-oxidant therapy could pave the way to develop therapeutic strategies in combating emerging and re-emerging RNA viruses.
Collapse
Affiliation(s)
- Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), School of Biological Sciences, MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India.
| | - Aashika Raagavi JeanPierre
- Central Inter-Disciplinary Research Facility (CIDRF), School of Biological Sciences, MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), School of Biological Sciences, MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| | - Pajanivel Ranganadin
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| | - Rao S R
- Research, Innovation & Development, Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| |
Collapse
|
8
|
Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, Zurita-Cruz JN, Barrada-Vázquez AS, González-Ibarra J, Martínez-Reyes M, Grajales-Muñiz C, Santacruz-Tinoco CE, Martínez-Miguel B, Maldonado-Hernández J, Cifuentes-González Y, Klünder-Klünder M, Garduño-Espinosa J, López-Martínez B, Parra-Ortega I. Efficacy and Safety of Vitamin D Supplementation to Prevent COVID-19 in Frontline Healthcare Workers. A Randomized Clinical Trial. Arch Med Res 2022; 53:423-430. [PMID: 35487792 PMCID: PMC9013626 DOI: 10.1016/j.arcmed.2022.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Background Associations between vitamin D (VD) deficiency and the risk of SARS-CoV-2 infection have been documented in cross-sectional population studies. Intervention studies in patients with moderate to severe COVID-19 have failed to consistently document a beneficial effect. Objective To determine the efficacy and safety of VD-supplementation in the prevention of SARS-CoV-2 infection in highly exposed individuals. Methods A double-blind, parallel, randomized trial was conducted. Frontline healthcare workers from four hospitals in Mexico City, who tested negative for SARS-CoV-2 infection, were enrolled between July 15 and December 30, 2020. Participants were randomly assigned to receive 4,000 IU VD (VDG) or placebo (PG) daily for 30 d. RT-PCR tests were taken at baseline and repeated if COVID-19 manifestations appeared during follow-up. Serum 25-hydroxyvitamin D3 and antibody tests were measured at baseline and at day 45. Per-protocol and intention-to-treat analysis were conducted. Results Of 321 recruited subjects, 94 VDG and 98 PG completed follow-up. SARS-CoV-2 infection rate was lower in VDG than in PG (6.4 vs. 24.5%, p <0.001). The risk of acquiring SARS-CoV-2 infection was lower in the VDG than in the PG (RR: 0.23; 95% CI: 0.09–0.55) and was associated with an increment in serum levels of 25-hydroxyvitamin D3 (RR: 0.87; 95% CI: 0.82–0.93), independently of VD deficiency. No significant adverse events were identified. Conclusions Our results suggest that VD-supplementation in highly exposed individuals prevents SARS-CoV-2 infection without serious AEs and regardless of VD status.
Collapse
Affiliation(s)
- Miguel A Villasis-Keever
- Unidad de Investigación en Análisis y Síntesis de la Evidencia, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Mardia G López-Alarcón
- Unidad de Investigación Médica en Nutrición, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| | - Guadalupe Miranda-Novales
- Unidad de Investigación en Análisis y Síntesis de la Evidencia, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Jessie N Zurita-Cruz
- Facultad de Medicina, Universidad Nacional Autónoma de México; Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Aly S Barrada-Vázquez
- Unidad de Investigación Médica en Nutrición, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Joaquín González-Ibarra
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Monserrat Martínez-Reyes
- Unidad de Investigación Médica en Nutrición, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Concepción Grajales-Muñiz
- Laboratorio Central de Epidemiología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Clara E Santacruz-Tinoco
- Laboratorio Central de Epidemiología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Bernardo Martínez-Miguel
- Laboratorio Central de Epidemiología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Jorge Maldonado-Hernández
- Unidad de Investigación Médica en Nutrición, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Yazmín Cifuentes-González
- Unidad de Investigación Médica en Nutrición, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | | | | |
Collapse
|
9
|
Khorasanchi Z, Jafazadeh Esfehani A, Sharifan P, Hasanzadeh E, Shadmand Foumani Moghadam MR, Ahmadi O, Ebrahimi R, Lotfi SZ, Milani N, Mozdourian M, Rezvani R, Vatanparast H, Assaran Darban R, Ferns G, Ghayour Mobarhan M. The effects of high dose vitamin D supplementation as a nutritional intervention strategy on biochemical and inflammatory factors in adults with COVID-19: Study protocol for a randomized controlled trial. Nutr Health 2022; 28:311-317. [PMID: 35322711 PMCID: PMC8948538 DOI: 10.1177/02601060221082384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: Low serum vitamin D has been shown to be a risk factor
for Coronavirus 2019 (COVID-19). The aim of this study was to assess the effects
of high dose vitamin D supplementation on hs-CRP, ESR and clinical outcomes,
including duration of hospitalization, quality of life and New York Heart
Association (NYHA) Functional Classification, in adults with COVID-19.
Methods: This double-blind, randomized control trial will be
conducted on patients with RT-PCR and/or chest CT scan diagnosis of COVID-19
admitted in Imam Reza Hospital, Mashhad, Iran. Participants will be randomized
into control and intervention groups based on randomization sampling. The
intervention group will receive soft gel containing 50,000 IU vitamin D on the
first day followed by 10,000 IU/day through a supplement drop daily for 29 days.
The control group will receive 1000 IU vitamin D daily through supplement drop
and a placebo soft gel. All participants will undergo laboratory assessment
including inflammatory markers, serum 25)OH)D, complete blood count (CBC), liver
and renal profile, lipid profile and erythrocyte sedimentation rate (ESR) at
baseline and at day 30. The mortality rate will be recorded in both groups.
Results: Data will be presented using descriptive statistics.
Comparison of changes in study parameters over the study period will be
performed using analysis of covariance adjusting for possible confounders.
Conclusions: The findings of this will provide evidence on the
effects of high dose vitamin D supplementation on inflammatory markers in
hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Zahra Khorasanchi
- Department of Nutrition, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jafazadeh Esfehani
- Metabolic Syndrome Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Sharifan
- Department of Nutrition, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Hasanzadeh
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Omid Ahmadi
- Department of Parasitology and Mycology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Reyhaneh Ebrahimi
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Zahra Lotfi
- Kidney Transplantation Complication Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Milani
- Department of Internal Medicine, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Mozdourian
- Lung Diseases Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Rezvani
- Department of Nutrition, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Vatanparast
- College of Pharmacy and Nutrition, 7235University of Saskatchewan, Health Sciences E-Wing, Saskatoon, Saskatchewan, Canada
| | - Reza Assaran Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Majid Ghayour Mobarhan
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
11
|
Bleizgys A. Vitamin D Dosing: Basic Principles and a Brief Algorithm (2021 Update). Nutrients 2021; 13:nu13124415. [PMID: 34959969 PMCID: PMC8709011 DOI: 10.3390/nu13124415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, in modern societies, many people can be at high risk to have low vitamin D levels. Therefore, testing of serum 25-hydroxy-vitamin D (25OH-D) levels should be performed before prescribing them vitamin D supplementation. However, in some cases the 25OH-D level assessment is not available at the right moment, e.g., due to mandatory quarantine of COVID-19 outpatients. Therefore, such patients could be advised to start taking moderate vitamin D doses (e.g., 4000 IU/day for adults), and their 25-OH-D levels could be checked later. The proposed algorithm also comprises vitamin D dosing principles when baseline 25OH-D levels are known.
Collapse
Affiliation(s)
- Andrius Bleizgys
- Clinic of Internal Diseases, Family Medicine and Oncology, Faculty of Medicine, Vilnius University Santariškių 2, LT-08661 Vilnius, Lithuania
| |
Collapse
|
12
|
Fakhoury HMA, Kvietys PR, Shakir I, Shams H, Grant WB, Alkattan K. Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients 2021; 13:2216. [PMID: 34203190 PMCID: PMC8308422 DOI: 10.3390/nu13072216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 infects the respiratory tract and leads to the disease entity, COVID-19. Accordingly, the lungs bear the greatest pathologic burden with the major cause of death being respiratory failure. However, organs remote from the initial site of infection (e.g., kidney, heart) are not spared, particularly in severe and fatal cases. Emerging evidence indicates that an excessive inflammatory response coupled with a diminished antiviral defense is pivotal in the initiation and development of COVID-19. A common finding in autopsy specimens is the presence of thrombi in the lungs as well as remote organs, indicative of immunothrombosis. Herein, the role of SARS-CoV-2 in lung inflammation and associated sequelae are reviewed with an emphasis on immunothrombosis. In as much as vitamin D is touted as a supplement to conventional therapies of COVID-19, the impact of this vitamin at various junctures of COVID-19 pathogenesis is also addressed.
Collapse
Affiliation(s)
- Hana. M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Peter R. Kvietys
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - Ismail Shakir
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - Hashim Shams
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA;
| | - Khaled Alkattan
- Department of Surgery, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
13
|
Martín Giménez VM, Bergam I, Reiter RJ, Manucha W. Metal ion homeostasis with emphasis on zinc and copper: Potential crucial link to explain the non-classical antioxidative properties of vitamin D and melatonin. Life Sci 2021; 281:119770. [PMID: 34197883 DOI: 10.1016/j.lfs.2021.119770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Metal ion homeostasis is an essential physiological mechanism necessary for achieving an adequate balance of these ions' concentrations in the different cellular compartments. This fact is of great importance because both an excess and a deficiency of cellular metal ion levels are usually equally harmful due to the exacerbated increase in oxidative stress that may occur in both cases. Metal ion homeostasis ensures an equilibrium among multiple functions associated with the body's antioxidative defense network controlled by metallic micronutrients such as zinc and copper, some of the central regulators of redox processes. These micronutrients significantly modulate the activity of some isoforms of superoxide dismutase (SOD) and other enzymes such as metallothioneins (MTs) and ceruloplasmin (CP), which are directly or indirectly involved in the regulation of redox homeostasis. Although it is well known that both melatonin (MEL) and vitamin D have important roles as natural antioxidants, often some of these effects are related to their actions on antioxidative processes dependent on metal ions. Thus, in addition to their classical antioxidative properties usually associated with mitochondrial effects, it is known that MEL and vitamin D modulate the expression and activity of Cu/Zn-dependent SOD isoforms, MTs and CP; function as copper chelators and regulate genomic and non-genomic mechanisms related to the zinc transport. This review summarizes the main findings related to the crucial participation of zinc and copper in physiological antioxidative status and their relationship with the non-classical antioxidant effects of MEL and vitamin D, suggesting a potential synergism among these four micronutrients.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Ivana Bergam
- CROATIA Osiguranje Pension Company for Voluntary Pension Fund Management D.O.O., Zagreb, Croatia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
14
|
McCullough PJ, McCullough WP, Lehrer D, Travers JB, Repas SJ. Oral and Topical Vitamin D, Sunshine, and UVB Phototherapy Safely Control Psoriasis in Patients with Normal Pretreatment Serum 25-Hydroxyvitamin D Concentrations: A Literature Review and Discussion of Health Implications. Nutrients 2021; 13:1511. [PMID: 33947070 PMCID: PMC8146035 DOI: 10.3390/nu13051511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin D, sunshine and UVB phototherapy were first reported in the early 1900s to control psoriasis, cure rickets and cure tuberculosis (TB). Vitamin D also controlled asthma and rheumatoid arthritis with intakes ranging from 60,000 to 600,000 International Units (IU)/day. In the 1980s, interest in treating psoriasis with vitamin D rekindled. Since 1985 four different oral forms of vitamin D (D2, D3, 1-hydroxyvitaminD3 (1(OH)D3) and 1,25-dihydroxyvitaminD3 (calcitriol)) and several topical formulations have been reported safe and effective treatments for psoriasis-as has UVB phototherapy and sunshine. In this review we show that many pre-treatment serum 25(OH)D concentrations fall within the current range of normal, while many post-treatment concentrations fall outside the upper limit of this normal (100 ng/mL). Yet, psoriasis patients showed significant clinical improvement without complications using these treatments. Current estimates of vitamin D sufficiency appear to underestimate serum 25(OH)D concentrations required for optimal health in psoriasis patients, while concentrations associated with adverse events appear to be much higher than current estimates of safe serum 25(OH)D concentrations. Based on these observations, the therapeutic index for vitamin D needs to be reexamined in the treatment of psoriasis and other diseases strongly linked to vitamin D deficiency, including COVID-19 infections, which may also improve safely with sufficient vitamin D intake or UVB exposure.
Collapse
Affiliation(s)
- Patrick J. McCullough
- Medical Services Department, Summit Behavioral Healthcare, Ohio Department of Mental Health and Addiction Services, 1101 Summit Rd, Cincinnati, OH 45237, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | | | - Douglas Lehrer
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | - Steven J. Repas
- Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
15
|
Dzobo K. Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:269-278. [PMID: 33904782 DOI: 10.1089/omi.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With coronavirus disease 19 (COVID-19), we have witnessed a shift from public health to planetary health and a growing recognition of the importance of systems science in developing effective solutions against pandemics in the 21st century. COVID-19 and the history of frequent infectious outbreaks in the last two decades suggest that COVID-19 is likely a dry run for future ecological crises. Now is the right time to plan ahead and deploy the armamentarium of systems science scholarship for planetary health. The science of epigenomics, which investigates both genetic and nongenetic traits regarding heritable phenotypic alterations, and new approaches to understanding genome regulation in humans and pathogens offer veritable prospects to boost the global scientific capacities to innovate therapeutics and diagnostics against novel and existing infectious agents. Several reversible epigenetic alterations, such as chromatin remodeling and histone methylation, control and influence gene expression. COVID-19 lethality is linked, in part, to the cytokine storm, age, and status of the immune system in a given person. Additionally, due to reduced human mobility and daily activities, effects of the pandemic on the environment have been both positive and negative. For example, reduction in environmental pollution and lesser extraction from nature have potential positive corollaries on water and air quality. Negative effects include pollution as plastics and other materials were disposed in unconventional places and spaces in the course of the pandemic. I discuss the opportunities and challenges associated with the science of epigenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century. In particular, this article underscores that epigenetics of both viruses and the host may influence virus infectivity and severity of attendant disease.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Potential Effects of Melatonin and Micronutrients on Mitochondrial Dysfunction during a Cytokine Storm Typical of Oxidative/Inflammatory Diseases. Diseases 2021; 9:diseases9020030. [PMID: 33919780 PMCID: PMC8167770 DOI: 10.3390/diseases9020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Exaggerated oxidative stress and hyper-inflammation are essential features of oxidative/inflammatory diseases. Simultaneously, both processes may be the cause or consequence of mitochondrial dysfunction, thus establishing a vicious cycle among these three factors. However, several natural substances, including melatonin and micronutrients, may prevent or attenuate mitochondrial damage and may preserve an optimal state of health by managing the general oxidative and inflammatory status. This review aims to describe the crucial role of mitochondria in the development and progression of multiple diseases as well as the close relationship among mitochondrial dysfunction, oxidative stress, and cytokine storm. Likewise, it attempts to summarize the main findings related to the powerful effects of melatonin and some micronutrients (vitamins and minerals), which may be useful (alone or in combination) as therapeutic agents in the treatment of several examples of oxidative/inflammatory pathologies, including sepsis, as well as cardiovascular, renal, neurodegenerative, and metabolic disorders.
Collapse
|
17
|
Karnia MJ, Korewo D, Myślińska D, Ciepielewski ZM, Puchalska M, Konieczna-Wolska K, Kowalski K, Kaczor JJ. The Positive Impact of Vitamin D on Glucocorticoid-Dependent Skeletal Muscle Atrophy. Nutrients 2021; 13:nu13030936. [PMID: 33799389 PMCID: PMC7998166 DOI: 10.3390/nu13030936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
(1) The study aimed to investigate whether vitamin D3 supplementation would positively affect rats with glucocorticoids-induced muscle atrophy as measured by skeletal muscle mass in two experimental conditions: chronic dexamethasone (DEX) administration and a model of the chronic stress response. (2) The study lasted 28 consecutive days and was performed on 45 male Wistar rats randomly divided into six groups. These included two groups treated by abdominal injection of DEX at a dose of 2 mg/kg/day supplemented with vegetable oil (DEX PL; n = 7) or with vitamin D3 600 IU/kg/day (DEX SUP; n = 8), respectively, and a control group treated with an abdominal injection of saline (CON; n = 6). In addition, there were two groups of rats chronically stressed by cold water immersion (1 hour/day in a glass box with 1-cm-deep ice/water mixture; temperature ~4 °C), which were supplemented with vegetable oil as a placebo (STR PL; n = 9) or vitamin D3 at 600 IU/kg/day (STR SUP; n = 9). The last group was of sham-stressed rats (SHM; n = 6). Blood, soleus, extensor digitorum longus, gastrocnemius, tibialis anterior, and quadriceps femoris muscles were collected and weighed. The heart, liver, spleen, and thymus were removed and weighed immediately after sacrifice. The plasma corticosterone (CORT) and vitamin D3 metabolites were measured. (3) We found elevated CORT levels in both cold water-immersed groups; however, they did not alter body and muscle weight. Body weight and muscle loss occurred in groups with exogenously administered DEX, with the exception of the soleus muscle in rats supplemented with vitamin D3. Decreased serum 25(OH)D3 concentrations in DEX-treated rats were observed, and the cold water immersion did not affect vitamin D3 levels. (4) Our results indicate that DEX-induced muscle loss was abolished in rats supplemented with vitamin D3, especially in the soleus muscle.
Collapse
Affiliation(s)
- Mateusz Jakub Karnia
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
| | - Daria Korewo
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Ziemowit Maciej Ciepielewski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Monika Puchalska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Klaudia Konieczna-Wolska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Konrad Kowalski
- Masdiag-Diagnostic Mass Spectrometry Laboratory, Stefana Żeromskiego 33, 01-882 Warsaw, Poland;
| | - Jan Jacek Kaczor
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
- Correspondence: ; Tel.: +48-58-554-72-55
| |
Collapse
|
18
|
Ferrari D, Locatelli M, Briguglio M, Lombardi G. Is there a link between vitamin D status, SARS-CoV-2 infection risk and COVID-19 severity? Cell Biochem Funct 2020; 39:35-47. [PMID: 33137851 DOI: 10.1002/cbf.3597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
The outbreak of COVID-19 emerged in December 2019 rapidly spread across the globe and has become pandemic. Little is known about the protective factors of this infection, which is equally distributed between genders and different ages while severe and poor prognosis cases are strongly associated to old males and the presence of comorbidities. Thus, preventive measures aiming at reducing the number of infection and/or their severity are strongly needed. Vitamin D has got great attention and has been claimed as potentially protective against the infection since it may be associated with immunocompetence, inflammation, aging, and those diseases involved in determining the outcomes of COVID-19. This narrative review aims at collecting the literature available on the involvement of the vitamin D status in the pathogenesis of COVID-19 and the putative utility of vitamin D supplementation in the therapeutics. It emerges that a poor vitamin D status seems to associate with an increased risk of infection whereas age, gender and comorbidities seem to play a more important role in COVID-19 severity and mortality. While randomized control trials are needed to better inquire into this topic, vitamin D supplementation may be useful beside its potential effects on SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
| | | | - Matteo Briguglio
- Scientific Direction, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|