1
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Zhang Q, Sun W, Wang Q, Zheng X, Zhang R, Zhang N. A High MCT-Based Ketogenic Diet Suppresses Th1 and Th17 Responses to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice by Inhibiting GSDMD and JAK2-STAT3/4 Pathways. Mol Nutr Food Res 2024; 68:e2300602. [PMID: 38054637 DOI: 10.1002/mnfr.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.
Collapse
Affiliation(s)
- Qianye Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| |
Collapse
|
3
|
Xu J, Xie L. Advances in immune response to pulmonary infection: Nonspecificity, specificity and memory. Chronic Dis Transl Med 2023; 9:71-81. [PMID: 37305110 PMCID: PMC10249196 DOI: 10.1002/cdt3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
The lung immune response consists of various cells involved in both innate and adaptive immune processes. Innate immunity participates in immune resistance in a nonspecific manner, whereas adaptive immunity effectively eliminates pathogens through specific recognition. It was previously believed that adaptive immune memory plays a leading role during secondary infections; however, innate immunity is also involved in immune memory. Trained immunity refers to the long-term functional reprogramming of innate immune cells caused by the first infection, which alters the immune response during the second challenge. Tissue resilience limits the tissue damage caused by infection by controlling excessive inflammation and promoting tissue repair. In this review, we summarize the impact of host immunity on the pathophysiological processes of pulmonary infections and discuss the latest progress in this regard. In addition to the factors influencing pathogenic microorganisms, we emphasize the importance of the host response.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
4
|
T'Jonck W, Bain CC. The role of monocyte-derived macrophages in the lung: it's all about context. Int J Biochem Cell Biol 2023; 159:106421. [PMID: 37127181 DOI: 10.1016/j.biocel.2023.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Macrophages are present in every tissue of the body where they play crucial roles in maintaining tissue homeostasis and providing front line defence against pathogens. Arguably, this is most important at mucosal barrier tissues, such as the lung and gut, which are major ports of entry for pathogens. However, a common feature of inflammation, infection or injury is the loss of tissue resident macrophages and accumulation of monocytes from the circulation, which differentiate, to different extents, into macrophages. The exact fate and function of these elicited, monocyte-derived macrophages in infection, injury and inflammation remains contentious. While some studies have documented the indispensable nature of monocytes and their macrophage derivatives in combatting infection and restoration of lung homeostasis following insult, observations from clinical studies and preclinical models of lung infection/injury shows that monocytes and their progeny can become dysregulated in severe pathology, often perpetuating rather than resolving the insult. In this Mini Review, we aim to bring together these somewhat contradictory reports by discussing how the plasticity of monocytes allow them to assume distinct functions in different contexts in the lung, from health to infection, and effective tissue repair to fibrotic disease.
Collapse
Affiliation(s)
- Wouter T'Jonck
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, EH16 4TJ, U.K; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter
| | - Calum C Bain
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, EH16 4TJ, U.K; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter
| |
Collapse
|
5
|
Liang Z, Wang Y, Lai Y, Zhang J, Yin L, Yu X, Zhou Y, Li X, Song Y. Host defense against the infection of Klebsiella pneumoniae: New strategy to kill the bacterium in the era of antibiotics? Front Cell Infect Microbiol 2022; 12:1050396. [PMID: 36506034 PMCID: PMC9730340 DOI: 10.3389/fcimb.2022.1050396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a typical gram-negative iatrogenic bacterium that often causes bacteremia, pneumonia and urinary tract infection particularly among those with low immunity. Although antibiotics is the cornerstone of anti-infections, the clinical efficacy of β-lactamase and carbapenems drugs has been weakened due to the emergence of drug-resistant K. pneumoniae. Recent studies have demonstrated that host defense plays a critical role in killing K. pneumoniae. Here, we summarize our current understanding of host immunity mechanisms against K. pneumoniae, including mechanical barrier, innate immune cells, cellular immunity and humoral immunity, providing a theoretical basis and the new strategy for the clinical treatment of K. pneumoniae through improving host immunity.
Collapse
Affiliation(s)
- Zihan Liang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yiyao Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yixiang Lai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Jingyi Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Lanlan Yin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiang Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yongqin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xinzhi Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China,Affiliated Renhe Hospital of China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| |
Collapse
|
6
|
Host Immune Response to Clinical Hypervirulent Klebsiella pneumoniae Pulmonary Infections via Transcriptome Analysis. J Immunol Res 2022; 2022:5336931. [PMID: 36249423 PMCID: PMC9553456 DOI: 10.1155/2022/5336931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae), especially those with hypervirulence, is becoming a global concern and posing great threat to human health. Studies on individual immune cells or cytokines have partially revealed the function of the host immune defense against K. pneumoniae pulmonary infection. However, systematic immune response against K. pneumoniae has not been fully elucidated. Herein, we report a transcriptome analysis of the lungs from a mouse pneumonia model infected with a newly isolated K. pneumoniae clinical strain YBQ. Total RNA was isolated from the lungs of mice 48 hours post infection to assess transcriptional alteration of genes. Transcriptome data were analyzed with KEGG, GO, and ICEPOP. Results indicated that upregulated transcription level of numerous cytokines and chemokines was coordinated with remarkably activated ribosome and several critical immune signaling pathways, including IL-17 and TNF signaling pathways. Notably, transcription of cysteine cathepsin inhibitor (stfa1, stfa2, and stfa3) and potential cysteine-type endopeptidase inhibitor (cstdc4, cstdc5, and cstdc6) were upregulated. Results of ICEPOP showed neutrophils functions as the most essential cell type against K. pneumoniae infection. Critical gene alterations were further validated by rt-PCR. Our findings provided a global transcriptional perspective on the mechanisms of host defense against K. pneumoniae infection and revealed some unique responding genes.
Collapse
|
7
|
Multi-omics personalized network analyses highlight progressive disruption of central metabolism associated with COVID-19 severity. Cell Syst 2022; 13:665-681.e4. [PMID: 35933992 PMCID: PMC9263811 DOI: 10.1016/j.cels.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 01/26/2023]
Abstract
The clinical outcome and disease severity in coronavirus disease 2019 (COVID-19) are heterogeneous, and the progression or fatality of the disease cannot be explained by a single factor like age or comorbidities. In this study, we used system-wide network-based system biology analysis using whole blood RNA sequencing, immunophenotyping by flow cytometry, plasma metabolomics, and single-cell-type metabolomics of monocytes to identify the potential determinants of COVID-19 severity at personalized and group levels. Digital cell quantification and immunophenotyping of the mononuclear phagocytes indicated a substantial role in coordinating the immune cells that mediate COVID-19 severity. Stratum-specific and personalized genome-scale metabolic modeling indicated monocarboxylate transporter family genes (e.g., SLC16A6), nucleoside transporter genes (e.g., SLC29A1), and metabolites such as α-ketoglutarate, succinate, malate, and butyrate could play a crucial role in COVID-19 severity. Metabolic perturbations targeting the central metabolic pathway (TCA cycle) can be an alternate treatment strategy in severe COVID-19.
Collapse
|
8
|
Holmes CL, Smith SN, Gurczynski SJ, Severin GB, Unverdorben LV, Vornhagen J, Mobley HLT, Bachman MA. The ADP-Heptose Biosynthesis Enzyme GmhB is a Conserved Gram-Negative Bacteremia Fitness Factor. Infect Immun 2022; 90:e0022422. [PMID: 35762751 PMCID: PMC9302095 DOI: 10.1128/iai.00224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.
Collapse
Affiliation(s)
- Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Geoffrey B. Severin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia V. Unverdorben
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Michels K, Solomon AL, Scindia Y, Sordo Vieira L, Goddard Y, Whitten S, Vaulont S, Burdick MD, Atkinson C, Laubenbacher R, Mehrad B. Aspergillus Utilizes Extracellular Heme as an Iron Source During Invasive Pneumonia, Driving Infection Severity. J Infect Dis 2022; 225:1811-1821. [PMID: 35267014 PMCID: PMC9113461 DOI: 10.1093/infdis/jiac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Depriving microbes of iron is critical to host defense. Hemeproteins, the largest source of iron within vertebrates, are abundant in infected tissues in aspergillosis due to hemorrhage, but Aspergillus species have been thought to lack heme import mechanisms. We hypothesized that heme provides iron to Aspergillus during invasive pneumonia, thereby worsening the outcomes of the infection. METHODS We assessed the effect of heme on fungal phenotype in various in vitro conditions and in a neutropenic mouse model of invasive pulmonary aspergillosis. RESULTS In mice with neutropenic invasive aspergillosis, we found a progressive and compartmentalized increase in lung heme iron. Fungal cells cultured under low iron conditions took up heme, resulting in increased fungal iron content, resolution of iron starvation, increased conidiation, and enhanced resistance to oxidative stress. Intrapulmonary administration of heme to mice with neutropenic invasive aspergillosis resulted in markedly increased lung fungal burden, lung injury, and mortality, whereas administration of heme analogs or heme with killed Aspergillus did not. Finally, infection caused by fungal germlings cultured in the presence of heme resulted in a more severe infection. CONCLUSIONS Invasive aspergillosis induces local hemolysis in infected tissues, thereby supplying heme iron to the fungus, leading to lethal infection.
Collapse
Affiliation(s)
- Kathryn Michels
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Angelica L Solomon
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Luis Sordo Vieira
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yana Goddard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Spencer Whitten
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, Paris, France
| | - Marie D Burdick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Reinhard Laubenbacher
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Li Q, Xiang G, Peng S, Ji W. Temporal and Spatial Characterization of Mononuclear Phagocytes in Circulating, Pulmonary Alveolar, and Interstitial Compartments in LPS-Induced Acute Lung Injury. Front Surg 2022; 9:837177. [PMID: 35310428 PMCID: PMC8924283 DOI: 10.3389/fsurg.2022.837177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral circulating monocytes and resident macrophages are heterogeneous effector cells that play a critical role in the maintenance and restoration of pulmonary integrity. However, their detailed dynamic changes in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remain unclear. Here, we investigated the impact of mononuclear phagocyte cells in the development of LPS-induced ALI/Acute respiratory distress syndrome (ARDS) and described the relations between the dynamic phenotypic changes and pulmonary pathological evolution. In this study, mice were divided into two groups and intraperitoneally injected with normal saline (NS) or LPS, respectively. A series of flow cytometry assay was performed for the quantification of peripheral circulating monocyte subpopulations, detection of the polarization state of bronchoalveolar lavage fluid (BALF)-isolated alveolar macrophages (AMϕ) and pulmonary interstitial macrophages (IMϕ) separated from lung tissues. Circulating Ly6Clo monocytes expanded rapidly after the LPS challenge on day 1 and then decreased to day 7, while Ly6Chi monocytes gradually increased and returned to normal level on the 7th day. Furthermore, the expansion of M2-like AMϕ (CD64+CD206+) was peaked on day 1 and remained high on the third day, while the polarization state of IMϕ (CD64+ CD11b+) was not influenced by the LPS challenge at all the time points. Taken together, our findings show that Ly6Clo monocytes and M2-like AMϕ form the major peripheral circulation and pulmonary immune cell populations, respectively. The dynamic changes of mononuclear phagocyte in three compartments after the LPS challenge may provide novel protective strategies for mononuclear phagocytes.
Collapse
Affiliation(s)
- Qi Li
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guoan Xiang
- Department of Respiratory, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shouchun Peng
- Department of Respiratory, Affiliated Hospital of Armed Police Logistic College, Tianjin, China
| | - Wenjie Ji
- Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Tianjin, China
- *Correspondence: Wenjie Ji
| |
Collapse
|
11
|
Lin CM, Alrbiaan A, Odackal J, Zhang Z, Scindia Y, Sung SSJ, Burdick MD, Mehrad B. Circulating fibrocytes traffic to the lung in murine acute lung injury and predict outcomes in human acute respiratory distress syndrome: a pilot study. Mol Med 2020; 26:52. [PMID: 32460694 PMCID: PMC7251319 DOI: 10.1186/s10020-020-00176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fibrosis is an integral component of the pathogenesis of acute lung injury and is associated with poor outcomes in patients with acute respiratory distress syndrome (ARDS). Fibrocytes are bone marrow-derived cells that traffic to injured tissues and contribute to fibrosis; hence their concentration in the peripheral blood has the potential to serve as a biomarker of lung fibrogenesis. We therefore sought to test the hypothesis that the concentration and phenotype of circulating fibrocytes in patients with ARDS predicts clinical outcomes. Methods For the animal studies, C57Bl/6 mice were infected with experimental Klebsiella pneumoniae in a model of acute lung injury; one-way ANOVA was used to compare multiple groups and two-way ANOVA was used to compare two groups over time. For the human study, 42 subjects with ARDS and 12 subjects with pneumonia (without ARDS) were compared to healthy controls. Chi-squared or Fisher’s exact test were used to compare binary outcomes. Survival data was expressed using a Kaplan-Meier curve and compared by log-rank test. Univariable and multivariable logistic regression were used to predict death. Results In mice with acute lung injury caused by Klebsiella pneumonia, there was a time-dependent increase in lung soluble collagen that correlated with sequential expansion of fibrocytes in the bone marrow, blood, and then lung compartments. Correspondingly, when compared via cross-sectional analysis, the initial concentration of blood fibrocytes was elevated in human subjects with ARDS or pneumonia as compared to healthy controls. In addition, fibrocytes from subjects with ARDS displayed an activated phenotype and on serial measurements, exhibited intermittent episodes of markedly elevated concentration over a median of 1 week. A peak concentration of circulating fibrocytes above a threshold of > 4.8 × 106 cells/mL cells correlated with mortality that was independent of age, ratio of arterial oxygen concentration to the fraction of inspired oxygen, and vasopressor requirement. Conclusions Circulating fibrocytes increase in a murine model of acute lung injury and elevation in the number of these cells above a certain threshold is correlated with mortality in human ARDS. Therefore, these cells may provide a useful and easily measured biomarker to predict outcomes in these patients.
Collapse
Affiliation(s)
- Christine M Lin
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, 1600 SW Archer Road, Box 100225, Gainesville, FL, 32610-0225, USA
| | - Abdullah Alrbiaan
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - John Odackal
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Zhimin Zhang
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, 1600 SW Archer Road, Box 100225, Gainesville, FL, 32610-0225, USA
| | - Sun-Sang J Sung
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marie D Burdick
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, 1600 SW Archer Road, Box 100225, Gainesville, FL, 32610-0225, USA.
| |
Collapse
|
12
|
Transposon Mutagenesis Screen of Klebsiella pneumoniae Identifies Multiple Genes Important for Resisting Antimicrobial Activities of Neutrophils in Mice. Infect Immun 2020; 88:IAI.00034-20. [PMID: 31988174 DOI: 10.1128/iai.00034-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/25/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterial pathogen that causes a range of infections, including pneumonias, urinary tract infections, and septicemia, in otherwise healthy and immunocompromised patients. K. pneumoniae has become an increasing concern due to the rise and spread of antibiotic-resistant and hypervirulent strains. However, its virulence determinants remain understudied. To identify novel K. pneumoniae virulence factors needed to cause pneumonia, a high-throughput screen was performed with an arrayed library of over 13,000 K. pneumoniae transposon insertion mutants in the lungs of wild-type (WT) and neutropenic mice using transposon sequencing (Tn-seq). Insertions in 166 genes resulted in K. pneumoniae mutants that were significantly less fit in the lungs of WT mice than in those of neutropenic mice. Of these, mutants with insertions in 51 genes still had significant defects in neutropenic mice, while mutants with insertions in 52 genes recovered significantly. In vitro screens using a minilibrary of K. pneumoniae transposon mutants identified putative functions for a subset of these genes, including in capsule content and resistance to reactive oxygen and nitrogen species. Lung infections in mice confirmed roles in K. pneumoniae virulence for the ΔdedA, ΔdsbC, ΔgntR, Δwzm-wzt, ΔyaaA, and ΔycgE mutants, all of which were defective in either capsule content or growth in reactive oxygen or nitrogen species. The fitness of the ΔdedA, ΔdsbC, ΔgntR, ΔyaaA, and ΔycgE mutants was higher in neutropenic mouse lungs, indicating that these genes encode proteins that protect K. pneumoniae against neutrophil-related effector functions.
Collapse
|
13
|
Shenoy MK, Fadrosh DW, Lin DL, Worodria W, Byanyima P, Musisi E, Kaswabuli S, Zawedde J, Sanyu I, Chang E, Fong S, McCauley K, Davis JL, Huang L, Lynch SV. Gut microbiota in HIV-pneumonia patients is related to peripheral CD4 counts, lung microbiota, and in vitro macrophage dysfunction. MICROBIOME 2019; 7:37. [PMID: 30857553 PMCID: PMC6413461 DOI: 10.1186/s40168-019-0651-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/22/2019] [Indexed: 05/23/2023]
Abstract
Pneumonia is common and frequently fatal in HIV-infected patients, due to rampant, systemic inflammation and failure to control microbial infection. While airway microbiota composition is related to local inflammatory response, gut microbiota has been shown to correlate with the degree of peripheral immune activation (IL6 and IP10 expression) in HIV-infected patients. We thus hypothesized that both airway and gut microbiota are perturbed in HIV-infected pneumonia patients, that the gut microbiota is related to peripheral CD4+ cell counts, and that its associated products differentially program immune cell populations necessary for controlling microbial infection in CD4-high and CD4-low patients. To assess these relationships, paired bronchoalveolar lavage and stool microbiota (bacterial and fungal) from a large cohort of Ugandan, HIV-infected patients with pneumonia were examined, and in vitro tests of the effect of gut microbiome products on macrophage effector phenotypes performed. While lower airway microbiota stratified into three compositionally distinct microbiota as previously described, these were not related to peripheral CD4 cell count. In contrast, variation in gut microbiota composition significantly related to CD4 cell count, lung microbiota composition, and patient mortality. Compared with patients with high CD4+ cell counts, those with low counts possessed more compositionally similar airway and gut microbiota, evidence of microbial translocation, and their associated gut microbiome products reduced macrophage activation and IL-10 expression and increased IL-1β expression in vitro. These findings suggest that the gut microbiome is related to CD4 status and plays a key role in modulating macrophage function, critical to microbial control in HIV-infected patients with pneumonia.
Collapse
Affiliation(s)
- Meera K Shenoy
- Division of Gastroenterology, Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Biomedical Sciences Graduate Program, UCSF, San Francisco, CA, USA
- Current address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Douglas W Fadrosh
- Division of Gastroenterology, Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Din L Lin
- Division of Gastroenterology, Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - William Worodria
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Patrick Byanyima
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Emmanuel Musisi
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Sylvia Kaswabuli
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Josephine Zawedde
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Ingvar Sanyu
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Emily Chang
- HIV, Infectious Diseases and Global Medicine Division, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, CA, USA
| | - Serena Fong
- HIV, Infectious Diseases and Global Medicine Division, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, CA, USA
| | - Kathryn McCauley
- Division of Gastroenterology, Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - J Lucian Davis
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laurence Huang
- HIV, Infectious Diseases and Global Medicine Division, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, CA, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, CA, USA.
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA.
| |
Collapse
|
14
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
15
|
Traber KE, Symer EM, Allen E, Kim Y, Hilliard KL, Wasserman GA, Stewart CL, Jones MR, Mizgerd JP, Quinton LJ. Myeloid-epithelial cross talk coordinates synthesis of the tissue-protective cytokine leukemia inhibitory factor during pneumonia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L548-L558. [PMID: 28522567 PMCID: PMC5625259 DOI: 10.1152/ajplung.00482.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
In bacterial pneumonia, lung damage resulting from epithelial cell injury is a major contributor to the severity of disease and, in some cases, can lead to long-term sequelae, especially in the setting of severe lung injury or acute respiratory distress syndrome. Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, is a critical determinant of lung tissue protection during pneumonia, but the cellular sources of LIF and the signaling pathways leading to its production in the infected lung are not known. Here, we demonstrate that lung epithelium, specifically alveolar type II cells, is the predominant site of LIF transcript induction in pneumonic mouse lungs. Epithelial cell cultures were induced to express LIF by bacteria and by sterile bronchoalveolar lavage fluid from pneumonic mice. Reciprocal bone marrow chimera studies demonstrated that LIF deficiency in the nonhematopoietic compartment, but not LIF deficiency in hematopoietic cells, eliminated LIF induction during pneumonia. Although NF-κB RelA (p65) is essential for the expression of many cytokines during pneumonia, its targeted mutation in the lung epithelium was inconsequential for pneumonia-driven LIF induction. However, maximal expression of this epithelial-derived cytokine was dependent on NF-κB RelA in myeloid cells. Overall, our data suggest a signaling axis whereby activation of NF-κB RelA in myeloid cells promotes epithelial LIF induction during lung infections, representing a means through which these two cell types collaborate to improve tissue resilience during pneumonia.
Collapse
Affiliation(s)
- Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Elise M Symer
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Eri Allen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Yuri Kim
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kristie L Hilliard
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Gregory A Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts;
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
16
|
López-Hernández Y, Patiño-Rodríguez O, García-Orta ST, Pinos-Rodríguez JM. Mass spectrometry applied to the identification of Mycobacterium tuberculosis and biomarker discovery. J Appl Microbiol 2017; 121:1485-1497. [PMID: 27718305 DOI: 10.1111/jam.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
An adequate and effective tuberculosis (TB) diagnosis system has been identified by the World Health Organization as a priority in the fight against this disease. Over the years, several methods have been developed to identify the bacillus, but bacterial culture remains one of the most affordable methods for most countries. For rapid and accurate identification, however, it is more feasible to implement molecular techniques, taking advantage of the availability of public databases containing protein sequences. Mass spectrometry (MS) has become an interesting technique for the identification of TB. Here, we review some of the most widely employed methods for identifying Mycobacterium tuberculosis and present an update on MS applied for the identification of mycobacterial species.
Collapse
Affiliation(s)
| | - O Patiño-Rodríguez
- CONACyT, Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional, Morelos, México
| | - S T García-Orta
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
17
|
Singh TP, Zhang HH, Borek I, Wolf P, Hedrick MN, Singh SP, Kelsall BL, Clausen BE, Farber JM. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun 2016; 7:13581. [PMID: 27982014 PMCID: PMC5171657 DOI: 10.1038/ncomms13581] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.
Imiquimod exacerbates IL-23-induced skin inflammation and models psoriasis in mice. Here the authors show that this pathology is not dependent on resident dendritic cells, but on CCR6-induced immigration of monocyte-derived cells.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Howard H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, A-8036 Graz, Austria
| | - Michael N Hedrick
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Satya P Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bjorn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Joshua M Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Francis M, Groves AM, Sun R, Cervelli JA, Choi H, Laskin JD, Laskin DL. Editor's Highlight: CCR2 Regulates Inflammatory Cell Accumulation in the Lung and Tissue Injury following Ozone Exposure. Toxicol Sci 2016; 155:474-484. [PMID: 27837169 DOI: 10.1093/toxsci/kfw226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ozone-induced lung injury is associated with an accumulation of activated macrophages in the lung. Chemokine receptor CCR2 mediates the migration of inflammatory monocytes/macrophages to sites of tissue injury. It is also required for monocyte egress from the bone marrow. In the present studies, we analyzed the role of CCR2 in inflammatory cell trafficking to the lung in response to ozone. Treatment of mice with ozone (0.8 ppm, 3 h) resulted in increases in proinflammatory CCR2+ macrophages in the lung at 24 h, as well as proinflammatory CD11b + Ly6CHi and iNOS+ macrophages at 24 and 48 h. Mannose receptor+ anti-inflammatory macrophages were also observed in the lung 24 and 48 h post-ozone. Loss of CCR2 was associated with reduced numbers of proinflammatory macrophages in the lung and decreased expression of the proinflammatory cytokines, IL-1β and TNFα. Decreases in anti-inflammatory CD11b + Ly6CLo macrophages were also observed in lungs of CCR2-/- mice treated with ozone, whereas mannose receptor+ macrophage accumulation was delayed; conversely, CX3CL1 and CX3CR1 were upregulated. Changes in lung macrophage subpopulations and inflammatory gene expression in CCR2-/- mice were correlated with reduced ozone toxicity and oxidative stress, as measured by decreases in bronchoalveolar lavage protein content and reduced lung expression of heme-oxygenase-1, 4-hydroxynonenal and cytochrome b5. These data demonstrate that CCR2 plays a role in both pro- and anti-inflammatory macrophage accumulation in the lung following ozone exposure. The fact that ozone-induced lung injury and oxidative stress are reduced in CCR2-/- mice suggests more prominent effects on proinflammatory macrophages.
Collapse
Affiliation(s)
- Mary Francis
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Angela M Groves
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Richard Sun
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Hyejeong Choi
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854;
| |
Collapse
|
19
|
Tashiro H, Takahashi K, Hayashi S, Kato G, Kurata K, Kimura S, Sueoka-Aragane N. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model. PLoS One 2016; 11:e0157571. [PMID: 27310495 PMCID: PMC4910993 DOI: 10.1371/journal.pone.0157571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022] Open
Abstract
Background Interleukin-33 (IL-33) activates group 2 innate lymphoid cells (ILC2), resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation. Methods BALB/c mice were sensitized and challenged with a house dust mite (HDM) preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL) fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes. Results The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung. Conclusion IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
- * E-mail:
| | - Shinichiro Hayashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Go Kato
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keigo Kurata
- Institute of Tokyo Environmental Allergy, Tokyo, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
20
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
21
|
Bettina A, Zhang Z, Michels K, Cagnina RE, Vincent IS, Burdick MD, Kadl A, Mehrad B. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes. THE JOURNAL OF IMMUNOLOGY 2016; 196:5047-55. [PMID: 27183631 DOI: 10.4049/jimmunol.1600306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/04/2016] [Indexed: 11/19/2022]
Abstract
Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver.
Collapse
Affiliation(s)
- Alexandra Bettina
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Zhimin Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Kathryn Michels
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - R Elaine Cagnina
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Isaah S Vincent
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Marie D Burdick
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908; and
| | - Borna Mehrad
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
22
|
Oremland M, Michels KR, Bettina AM, Lawrence C, Mehrad B, Laubenbacher R. A computational model of invasive aspergillosis in the lung and the role of iron. BMC SYSTEMS BIOLOGY 2016; 10:34. [PMID: 27098278 PMCID: PMC4839115 DOI: 10.1186/s12918-016-0275-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
Background Invasive aspergillosis is a severe infection of immunocompromised hosts, caused by the inhalation of the spores of the ubiquitous environmental molds of the Aspergillus genus. The innate immune response in this infection entails a series of complex and inter-related interactions between multiple recruited and resident cell populations with each other and with the fungal cell; in particular, iron is critical for fungal growth. Results A computational model of invasive aspergillosis is presented here; the model can be used as a rational hypothesis-generating tool to investigate host responses to this infection. Using a combination of laboratory data and published literature, an in silico model of a section of lung tissue was generated that includes an alveolar duct, adjacent capillaries, and surrounding lung parenchyma. The three-dimensional agent-based model integrates temporal events in fungal cells, epithelial cells, monocytes, and neutrophils after inhalation of spores with cellular dynamics at the tissue level, comprising part of the innate immune response. Iron levels in the blood and tissue play a key role in the fungus’ ability to grow, and the model includes iron recruitment and consumption by the different types of cells included. Parameter sensitivity analysis suggests the model is robust with respect to unvalidated parameters, and thus is a viable tool for an in silico investigation of invasive aspergillosis. Conclusions Using laboratory data from a mouse model of invasive aspergillosis in the context of transient neutropenia as validation, the model predicted qualitatively similar time course changes in fungal burden, monocyte and neutrophil populations, and tissue iron levels. This model lays the groundwork for a multi-scale dynamic mathematical model of the immune response to Aspergillus species. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0275-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Oremland
- Mathematical Biosciences Institute, Ohio State University, 1735 Neil Ave, Columbus OH, USA.
| | - Kathryn R Michels
- University of Virginia, Pulmonary and Critical Care Medicine, Charlottesville VA, USA
| | - Alexandra M Bettina
- University of Virginia, Pulmonary and Critical Care Medicine, Charlottesville VA, USA
| | - Chris Lawrence
- Virginia Bioinformatics Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg VA, USA
| | - Borna Mehrad
- University of Virginia, Pulmonary and Critical Care Medicine, Charlottesville VA, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, University of Connecticut Health Center, 236 Farmington Ave, Farmington CT, USA.,Jackson Laboratory for Genomic Medicine, 236 Farmington Ave, Farmington CT, USA
| |
Collapse
|
23
|
Expression of adenosine receptors in monocytes from patients with bronchial asthma. Biochem Biophys Res Commun 2015; 464:1314-1320. [PMID: 26232643 DOI: 10.1016/j.bbrc.2015.07.141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
Adenosine is generated from adenosine triphosphate, which is released by stressed and damaged cells. Adenosine levels are significantly increased in patients with bronchial asthma (BA) and mediate mast cell degranulation and bronchoconstriction. Over the last decade, increasing evidence has shown that adenosine can modulate the innate immune response during monocytes differentiation towards mature myeloid cells. These adenosine-differentiated myeloid cells, characterized by co-expression of monocytes/macrophages and dendritic cell markers such as CD14 and CD209, produce high levels of pro-inflammatory cytokines, thus contributing to the pathogenesis of BA and chronic obstructive pulmonary disease. We found that expression of ADORA2A and ADORA2B are increased in monocytes obtained from patients with BA, and are associated with the generation of CD14(pos)CD209(pos) pro-inflammatory cells. A positive correlation between expression of ADORA2B and IL-6 was identified in human monocytes and may explain the increased expression of IL-6 mRNA in asthmatics. Taken together, our results suggest that monocyte-specific expression of A2 adenosine receptors plays an important role in pro-inflammatory activation of human monocytes, thus contributing to the progression of asthma.
Collapse
|
24
|
Chousterman BG, Boissonnas A, Poupel L, Baudesson de Chanville C, Adam J, Tabibzadeh N, Licata F, Lukaszewicz AC, Lombès A, Deterre P, Payen D, Combadière C. Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism. J Am Soc Nephrol 2015; 27:792-803. [PMID: 26160897 DOI: 10.1681/asn.2015010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Monocytes have a crucial role in both proinflammatory and anti-inflammatory phenomena occurring during sepsis. Monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2 and their cognate ligands. However, little is known about the roles of these cells and chemokines during the acute phase of inflammation in sepsis. Using intravital microscopy in a murine model of polymicrobial sepsis, we showed that inflammatory Ly6C(high) monocytes infiltrated kidneys, exhibited altered motility, and adhered strongly to the renal vascular wall in a chemokine receptor CX3CR1-dependent manner. Adoptive transfer of Cx3cr1-proficient monocyte-enriched bone marrow cells into septic Cx3cr1-depleted mice prevented kidney damage and promoted mouse survival. Modulation of CX3CR1 activation in septic mice controlled monocyte adhesion, regulated proinflammatory and anti-inflammatory cytokine expression, and was associated with the extent of kidney lesions such that the number of lesions decreased when CX3CR1 activity increased. Consistent with these results, the pro-adhesive I249 CX3CR1 allele in humans was associated with a lower incidence of AKI in patients with sepsis. These data show that inflammatory monocytes have a protective effect during sepsis via a CX3CR1-dependent adhesion mechanism. This receptor might be a new therapeutic target for kidney injury during sepsis.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| | - Lucie Poupel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julien Adam
- Institut Gustave-Roussy, Université Paris-Sud Villejuif, France
| | - Nahid Tabibzadeh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Service des Explorations Fonctionnelles and Institut National de la Santé et de la Recherche Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Paris, France; and
| | - Fabrice Licata
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Anne-Claire Lukaszewicz
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Amélie Lombès
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Deterre
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Didier Payen
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| |
Collapse
|
25
|
Distinct Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae Strains. Infect Immun 2015; 83:3418-27. [PMID: 26056382 DOI: 10.1128/iai.00678-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae is a common respiratory pathogen, with some strains having developed broad resistance to clinically available antibiotics. Humans can become infected with many different K. pneumoniae strains that vary in genetic background, antibiotic susceptibility, capsule composition, and mucoid phenotype. Genome comparisons have revealed differences between K. pneumoniae strains, but the impact of genomic variability on immune-mediated clearance of pneumonia remains unclear. Experimental studies of pneumonia in mice have used the rodent-adapted 43816 strain of K. pneumoniae and demonstrated that neutrophils are essential for optimal host defense. It remains unclear, however, whether CCR2(+) monocytes contribute to K. pneumoniae clearance from the lung. We selectively depleted neutrophils, CCR2(+) monocytes, or both from immunocompetent mice and determined susceptibility to infection by the 43816 strain and 4 newly isolated clinical K. pneumoniae strains. The clinical K. pneumoniae strains, including one carbapenem-resistant ST258 strain, are less virulent than 43816. Optimal clearance of each of the 5 strains required either neutrophils or CCR2(+) monocytes. Selective neutrophil depletion markedly worsened infection with K. pneumoniae strain 43816 and three clinical isolates but did not increase susceptibility of mice to infection with the carbapenem-resistant K. pneumoniae ST258 strain. Depletion of CCR2(+) monocytes delayed recovery from infection with each of the 5 K. pneumoniae strains, revealing a contribution of these cells to bacterial clearance from the lung. Our findings demonstrate strain-dependent variation in the contributions of neutrophils and CCR2(+) monocytes to clearance of K. pneumoniae pulmonary infection.
Collapse
|
26
|
Swamydas M, Break TJ, Lionakis MS. Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands. Cell Mol Life Sci 2015; 72:2157-75. [PMID: 25715741 DOI: 10.1007/s00018-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4(+) T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
27
|
Frellstedt L, Waldschmidt I, Gosset P, Desmet C, Pirottin D, Bureau F, Farnir F, Franck T, Dupuis-Tricaud MC, Lekeux P, Art T. Training Modifies Innate Immune Responses in Blood Monocytes and in Pulmonary Alveolar Macrophages. Am J Respir Cell Mol Biol 2014; 51:135-42. [DOI: 10.1165/rcmb.2013-0341oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Zhu X, Tao L, Yao J, Sun P, Pei L, Li J, Long Z, Wang Y, Zhang F. Identification of collaboration patterns of dysfunctional pathways in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3853-3864. [PMID: 25120762 PMCID: PMC4128997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
Breast cancer (BC) is the most common malignancy among women. We aimed to illuminate the molecular dysfunctional mechanisms of BC progression. The mRNA expression profile of BC GSE15852 was downloaded from Gene Expression Omnibus database, including 43 normal samples and 43 cancer samples. Differentially expressed genes (DEGs) in BC were screened using the t-test by Benjamin and Hochberg method. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the selected DEGs were enriched using Hypergeomeric distribution model. In addition, functional similarity network among the enriched pathways was constructed to further analyze the collaboration of these pathways. We found 848 down-regulated DEGs were associated with 16 significant dysfunctional pathways, including PPAR signaling fatty acid metabolism, and 1584 up-regulated DEGs were related to 6 significant dysfunctional pathways, like cell cycle, protein export, and antigen processing and presentation in BC samples. Crosstalk network analysis of pathways indicated that pyruvate metabolism, propanoate metabolism, and glycolysis gluconeogenesis were the pathways with closest connections with other pathways in BC. In addition, other antigen processing and presentation, including 19 DEGs; PPAR signaling pathway, including 18 DEGs; and pyruvate metabolism pathway, including 13 DEGs were further analyzed. Our results suggested that dysfunctional of significant pathways can greatly affect the progression of BC. Several significant disorder pathways were enriched in our comprehensive study. They may provide guidelines to explore the dysfunctional mechanism of BC progression.
Collapse
Affiliation(s)
- Xinyong Zhu
- The Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLABeijing 100048, China
| | - Lianyuan Tao
- Department of General Surgery, Capital Medical University School of Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research CenterBeijing 100068, China
| | - Jing Yao
- The Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLABeijing 100048, China
| | - Pengjun Sun
- The Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLABeijing 100048, China
| | - Lijuan Pei
- The Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLABeijing 100048, China
| | - Jiye Li
- The Department of Gastrointestinal Surgery, The First Hospital Affiliated to General Hospital of PLABeijing 100048, China
| | - Zhihua Long
- Department of General Surgery, Capital Medical University School of Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research CenterBeijing 100068, China
| | - Ye Wang
- Department of General Surgery, Capital Medical University School of Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research CenterBeijing 100068, China
| | - Fengliang Zhang
- Department of General Surgery, Capital Medical University School of Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research CenterBeijing 100068, China
| |
Collapse
|
29
|
Schiwon M, Weisheit C, Franken L, Gutweiler S, Dixit A, Meyer-Schwesinger C, Pohl JM, Maurice NJ, Thiebes S, Lorenz K, Quast T, Fuhrmann M, Baumgarten G, Lohse MJ, Opdenakker G, Bernhagen J, Bucala R, Panzer U, Kolanus W, Gröne HJ, Garbi N, Kastenmüller W, Knolle PA, Kurts C, Engel DR. Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 2014; 156:456-68. [PMID: 24485454 DOI: 10.1016/j.cell.2014.01.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/21/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022]
Abstract
The phagocytes of the innate immune system, macrophages and neutrophils, contribute to antibacterial defense, but their functional specialization and cooperation is unclear. Here, we report that three distinct phagocyte subsets play highly coordinated roles in bacterial urinary tract infection. Ly6C(-) macrophages acted as tissue-resident sentinels that attracted circulating neutrophils and Ly6C(+) macrophages. Such Ly6C(+) macrophages played a previously undescribed helper role: once recruited to the site of infection, they produced the cytokine TNF, which caused Ly6C(-) macrophages to secrete CXCL2. This chemokine activated matrix metalloproteinase-9 in neutrophils, allowing their entry into the uroepithelium to combat the bacteria. In summary, the sentinel macrophages elicit the powerful antibacterial functions of neutrophils only after confirmation by the helper macrophages, reminiscent of the licensing role of helper T cells in antiviral adaptive immunity. These findings identify helper macrophages and TNF as critical regulators in innate immunity against bacterial infections in epithelia.
Collapse
Affiliation(s)
- Marzena Schiwon
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Christina Weisheit
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany; Clinic for Anesthesiology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Lars Franken
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Sebastian Gutweiler
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Akanksha Dixit
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | | | - Judith-Mira Pohl
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Nicholas J Maurice
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Stephanie Thiebes
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Thomas Quast
- Life and Medical Sciences Institute, Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Martin Fuhrmann
- German Center for Neurodegenerative Diseases (DZNE), 53125 Bonn, Germany
| | - Georg Baumgarten
- Clinic for Anesthesiology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, 3000 KU Leuven, Belgium
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52062 Aachen, Germany
| | - Rick Bucala
- Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ulf Panzer
- Medizinische Klinik III, University Clinic Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Hermann-Josef Gröne
- Cellular and Molecular Pathology, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Wolfgang Kastenmüller
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Percy A Knolle
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany.
| | - Daniel R Engel
- Institute of Experimental Immunology, University Clinic of Bonn, 53127 Bonn, Germany.
| |
Collapse
|