1
|
Qi S, Ma A, Lin H, Peng L, Deng E. The effect of inflammatory cytokines on the risk of hypertrophic scar: a mendelian randomization study. Arch Dermatol Res 2024; 316:551. [PMID: 39167160 DOI: 10.1007/s00403-024-03303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Hypertrophic scar (HS) results from burns or trauma, causing aesthetic and functional issues. However, observational studies have linked inflammatory cytokines to HS, but the causal pathways involved are unclear. We aimed to determine how circulating inflammatory cytokines contribute to HS formation. Two-sample Mendelian randomization (MR) was used to identify genetic variants associated with hypertrophic scar in a comprehensive, publicly available genome-wide association study (GWAS) involving 766 patients and 207,482 controls of European descent. Additionally, data on 91 plasma proteins were drawn from a GWAS summary involving 14,824 healthy participants. Causal relationships between exposures and outcomes were investigated primarily using the inverse variance weighted (IVW) method. Furthermore, a suite of sensitivity analyses, including MR‒Egger and weighted median approaches, were concurrently employed to fortify the robustness of the conclusive findings. Finally, reverse MR analysis was conducted to evaluate the plausibility of reverse causation between hypertrophic scar and the cytokines identified in our study. In inflammatory cytokines, there was evidence of inverse associations of osteoprotegerin(OPG) levels(OR = 0.59, 95% CI = 0.41 ∼ 0.85, p = 0.01), and leukemia inhibitory factor(LIF) levels(OR = 0.51, 95% CI = 0.32 ∼ 0.82, p = 0.01) are a nominally negative association with hypertrophic scar risk, while CUB domain-domain-containing protein 1(CDCP1) level(OR = 0.59, 95% CI = 0.41 ∼ 0.85, p = 0.01) glial cell line-derived neurotrophic factor(GDNF) levels(OR = 1.42, 95% CI = 1.03 ∼ 1.96, p = 0.01) and programmed cell death 1 ligand 1(PD-L1) levels(OR = 1.47, 95% CI = 1.92 ∼ 2.11, p = 0.04) showed a positive association with hypertrophic scar risk. These associations were similar in the sensitivity analyses. According to our MR findings, OPG and LIF have a protective effect on hypertrophic scar, while CDCP1, GDNF, and PD-L1 have a risk-increasing effect on Hypertrophic scar. Our study adds to the current knowledge on the role of specific inflammatory biomarker pathways in hypertrophic scar. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for hypertrophic scar prevention and treatment.
Collapse
Affiliation(s)
- Seven Qi
- Shantou University, Guangdong Province, 515000, China
| | - Ashia Ma
- Shantou University, Guangdong Province, 515000, China
| | - Hai Lin
- Shantou University, Guangdong Province, 515000, China
| | - Liangyuan Peng
- Liupanshui Maternity and Child Health Care Hospital, Guizhou Province, 553000, China
| | - Eminlam Deng
- Shantou University, Guangdong Province, 515000, China.
| |
Collapse
|
2
|
Do JS, Arribas-Layton D, Juan J, Garcia I, Saraswathy S, Qi M, Montero E, Reijonen H. The CD318/CD6 axis limits type 1 diabetes islet autoantigen-specific human T cell activation. J Autoimmun 2024; 146:103228. [PMID: 38642507 DOI: 10.1016/j.jaut.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
CD6 is a glycoprotein expressed on CD4 and CD8 T cells involved in immunoregulation. CD318 has been identified as a CD6 ligand. The role of CD318 in T cell immunity is restricted as it has only been investigated in a few mice autoimmune models but not in human diseases. CD318 expression was thought to be limited to mesenchymal-epithelial cells and, therefore, contribute to CD6-mediated T cell activation in the CD318-expressing tissue rather than through interaction with antigen-presenting cells. Here, we report CD318 expression in a subpopulation of CD318+ myeloid dendritic (mDC), whereas the other peripheral blood populations were CD318 negative. However, CD318 can be induced by activation: a subset of monocytes treated with LPS and IFNγ and in vitro monocyte derived DCs were CD318+. We also showed that recombinant CD318 inhibited T cell function. Strikingly, CD318+ DCs suppressed the proliferation of autoreactive T cells specific for GAD65, a well-known targeted self-antigen in Type 1 Diabetes (T1D). Our study provides new insight into the role of the CD318/CD6 axis in the immunopathogenesis of inflammation, suggesting a novel immunoregulatory role of CD318 in T cell-mediated autoimmune diseases and identifying a potential novel immune checkpoint inhibitor as a target for intervention in T1D which is an unmet therapeutic need.
Collapse
MESH Headings
- Humans
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Autoantigens/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Glutamate Decarboxylase
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| | - David Arribas-Layton
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Jemily Juan
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Isaac Garcia
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Sindhu Saraswathy
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Enrique Montero
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Helena Reijonen
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
3
|
Baranova A, Luo J, Fu L, Yao G, Zhang F. Evaluating the effects of circulating inflammatory proteins as drivers and therapeutic targets for severe COVID-19. Front Immunol 2024; 15:1352583. [PMID: 38455043 PMCID: PMC10917991 DOI: 10.3389/fimmu.2024.1352583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Objective The relationships between circulating inflammatory proteins and COVID-19 have been observed in previous cohorts. However, it is not unclear which circulating inflammatory proteins may boost the risk of or protect against COVID-19. Methods We performed Mendelian randomization (MR) analysis using GWAS summary result of 91 circulating inflammation-related proteins (N = 14,824) to assess their causal impact on severe COVID-19. The COVID-19 phenotypes encompassed both hospitalized (N = 2,095,324) and critical COVID-19 (N = 1,086,211). Moreover, sensitivity analyses were conducted to evaluate the robustness and reliability. Results We found that seven circulating inflammatory proteins confer positive causal effects on severe COVID-19. Among them, serum levels of IL-10RB, FGF-19, and CCL-2 positively contributed to both hospitalized and critical COVID-19 conditions (OR: 1.10~1.16), while the other 4 proteins conferred risk on critical COVID-19 only (OR: 1.07~1.16), including EIF4EBP1, IL-7, NTF3, and LIF. Meanwhile, five proteins exert protective effects against hospitalization and progression to critical COVID-19 (OR: 0.85~0.95), including CXCL11, CDCP1, CCL4/MIP, IFNG, and LIFR. Sensitivity analyses did not support the presence of heterogeneity in the majority of MR analyses. Conclusions Our study revealed risk and protective inflammatory proteins for severe COVID-19, which may have vital implications for the treatment of the disease.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Jing Luo
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanqun Yao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Liu D, Wang M, Murthy V, McNamara DM, Nguyen TTL, Philips TJ, Vyas H, Gao H, Sahni J, Starling RC, Cooper LT, Skime MK, Batzler A, Jenkins GD, Barlera S, Pileggi S, Mestroni L, Merlo M, Sinagra G, Pinet F, Krejčí J, Chaloupka A, Miller JD, de Groote P, Tschumperlin DJ, Weinshilboum RM, Pereira NL. Myocardial Recovery in Recent Onset Dilated Cardiomyopathy: Role of CDCP1 and Cardiac Fibrosis. Circ Res 2023; 133:810-825. [PMID: 37800334 PMCID: PMC10746262 DOI: 10.1161/circresaha.123.323200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.
Collapse
Affiliation(s)
- Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Min Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vishakantha Murthy
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine. Mayo Clinic, Rochester, MN, USA
| | | | | | - Thanh Thanh L. Nguyen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Trudy J. Philips
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hridyanshu Vyas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jyotan Sahni
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Michelle K. Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Simona Barlera
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Silvana Pileggi
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167, Lille, France
| | - Jan Krejčí
- St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
| | - Anna Chaloupka
- St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
| | - Jordan D. Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Pascal de Groote
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167, Lille, France
- CHU Lille, Service de Cardiologie, Lille, France
| | | | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L. Pereira
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Zeybel M, Arif M, Li X, Altay O, Yang H, Shi M, Akyildiz M, Saglam B, Gonenli MG, Yigit B, Ulukan B, Ural D, Shoaie S, Turkez H, Nielsen J, Zhang C, Uhlén M, Borén J, Mardinoglu A. Multiomics Analysis Reveals the Impact of Microbiota on Host Metabolism in Hepatic Steatosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104373. [PMID: 35128832 PMCID: PMC9008426 DOI: 10.1002/advs.202104373] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Indexed: 05/03/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disease involving alterations in multiple biological processes regulated by the interactions between obesity, genetic background, and environmental factors including the microbiome. To decipher hepatic steatosis (HS) pathogenesis by excluding critical confounding factors including genetic variants and diabetes, 56 heterogenous MAFLD patients are characterized by generating multiomics data including oral and gut metagenomics as well as plasma metabolomics and inflammatory proteomics data. The dysbiosis in the oral and gut microbiome is explored and the host-microbiome interactions based on global metabolic and inflammatory processes are revealed. These multiomics data are integrated using the biological network and HS's key features are identified using multiomics data. HS is finally predicted using these key features and findings are validated in a follow-up cohort, where 22 subjects with varying degree of HS are characterized.
Collapse
Affiliation(s)
- Mujdat Zeybel
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust & University of NottinghamNottinghamNG5 1PBUK
- Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamNG7 2UHUK
| | - Muhammad Arif
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Present address:
Laboratory of Cardiovascular Physiology and Tissue Injury and Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMD20852USA
| | - Xiangyu Li
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Ozlem Altay
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Hong Yang
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Mengnan Shi
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Murat Akyildiz
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Burcin Saglam
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Mehmet Gokhan Gonenli
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Buket Yigit
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Burge Ulukan
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Dilek Ural
- School of MedicineKoç UniversityIstanbul34010Turkey
| | - Saeed Shoaie
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 9RTUK
| | - Hasan Turkez
- Department of Medical BiologyFaculty of MedicineAtatürk UniversityErzurum25240Turkey
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSE‐41296Sweden
| | - Cheng Zhang
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenan Province450001China
| | - Mathias Uhlén
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Jan Borén
- Department of Molecular and Clinical MedicineUniversity of Gothenburg and Sahlgrenska University Hospital GothenburgGothenburgSE‐41345Sweden
| | - Adil Mardinoglu
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 9RTUK
| |
Collapse
|
6
|
Blanco JR, Cobos-Ceballos MJ, Navarro F, Sanjoaquin I, Armiñanzas C, Bernal E, Buzon-Martin L, Viribay M, Pérez-Martínez L, Espejo-Pérez S, Valencia B, Guzman-Aguilar J, Ruiz-Cubillan JJ, Alcalde C, Gutierrez-Herrero FG, Olalla J, Andres-Esteban EM, Jurado-Gamez B, Ugedo J. Elevated levels of serum CDCP1 in individuals recovering from severe COVID-19 disease. Aging (Albany NY) 2022; 14:1597-1610. [PMID: 35172279 PMCID: PMC8908919 DOI: 10.18632/aging.203898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Background: COVID-19 survivors report residual lung abnormalities after discharge from the hospital. The aim of this study was to identify biomarkers in serum and induced sputum samples from patients after hospitalization for COVID-19. Methods: Patients admitted to hospitals in Spain with laboratory-confirmed COVID-19 were recruited for this study. SARS-CoV-2-infected patients were divided into groups with mild/moderate and severe disease according to the severity of their symptoms during hospitalization. Levels of 92 biomarkers were measured in serum and induced sputum samples. Results: A total of 108 patients (46.2% severe cases) were included in this study. The median number of days after the onset of symptoms was 104. A significant difference was observed in diffusing capacity for carbon monoxide (DLCO), an indicator of lung function, whereby DLCO <80% was significantly lower in severe cases (p <0.001). Differences in inflammatory biomarkers were observed between patients with mild/moderate and severe disease. For some biomarkers, correlations in serum and induced sputum levels were detected. Independent predictors of severe disease were DLCO <80% and the serum CDCP1 value. Conclusions: Higher levels of CDCP1 remain after hospital discharge and are associated with the severity of COVID-19. The possible prognostic implications warrant further investigation.
Collapse
Affiliation(s)
- Jose-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, La Rioja, Spain.,Centro de Investigación Biomédica de La Rioja, Logroño, La Rioja, Spain
| | - María-Jesús Cobos-Ceballos
- Instituto Maimónides de Investigación Biomédica de Córdoba, Universidad de Córdoba, Córdoba, Spain.,Servicio de Neumología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco Navarro
- Servicio de Medicina Interna, Hospital Costal de Sol, Marbella, Málaga, Spain
| | - Isabel Sanjoaquin
- Servicio de Enfermedades Infecciosas, HCU Lozano Blesa, Zaragoza, Spain
| | - Carlos Armiñanzas
- Servicio de Enfermedades Infecciosas, H Universitario Marqués de Valdecilla, Santander, Spain
| | - Enrique Bernal
- Unidad de Enfermedades Infecciosas, Hospital General Universitario Reina Sofía de Murcia, Murcia, Spain
| | - Luis Buzon-Martin
- Servicio de Medicina Interna, Hospital Universitario de Burgos, Burgos, Spain
| | | | | | - Simona Espejo-Pérez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Universidad de Córdoba, Córdoba, Spain.,Servicio de Radiología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Borja Valencia
- Servicio de Neumología, Hospital Costal de Sol, Marbella, Málaga, Spain
| | | | | | - Consuelo Alcalde
- Servicio de Neumología, Hospital General Universitario Reina Sofía de Murcia, Murcia, Spain
| | | | - Julian Olalla
- Servicio de Medicina Interna, Hospital Costal de Sol, Marbella, Málaga, Spain
| | - Eva-Maria Andres-Esteban
- Grupo PBM, Instituto de Investigación-IdiPaz, Madrid, Madrid, Spain.,Universidad Rey Juan Carlos, Madrid, Madrid, Spain
| | - Bernabe Jurado-Gamez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Universidad de Córdoba, Córdoba, Spain.,Servicio de Neumología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Ugedo
- Servicio de Neumología, Hospital Universitario San Pedro, Logroño, La Rioja, Spain
| |
Collapse
|
7
|
Gerckens M, Schorpp K, Pelizza F, Wögrath M, Reichau K, Ma H, Dworsky AM, Sengupta A, Stoleriu MG, Heinzelmann K, Merl-Pham J, Irmler M, Alsafadi HN, Trenkenschuh E, Sarnova L, Jirouskova M, Frieß W, Hauck SM, Beckers J, Kneidinger N, Behr J, Hilgendorff A, Hadian K, Lindner M, Königshoff M, Eickelberg O, Gregor M, Plettenburg O, Yildirim AÖ, Burgstaller G. Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics. SCIENCE ADVANCES 2021; 7:eabb3673. [PMID: 34936468 PMCID: PMC8694600 DOI: 10.1126/sciadv.abb3673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.
Collapse
Affiliation(s)
- Michael Gerckens
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Francesco Pelizza
- Chemical and Process Engineering, Strathclyde University, Glasgow, Scotland, UK
| | - Melanie Wögrath
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Kora Reichau
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
| | - Huilong Ma
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
| | - Armando-Marco Dworsky
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
| | - Katharina Heinzelmann
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hani N. Alsafadi
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Wallenberg Center for Molecular Medicine (WCMM), Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Eduard Trenkenschuh
- Department of Pharmacy–Center for Drug Research, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians University of Munich, Munich, Germany
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Jirouskova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Wolfgang Frieß
- Department of Pharmacy–Center for Drug Research, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians University of Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany
| | - Nikolaus Kneidinger
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximillians University of Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximillians University of Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Lindner
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Corresponding author.
| |
Collapse
|
8
|
Ye Z, Hu Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 2021; 48:132. [PMID: 34013369 PMCID: PMC8136122 DOI: 10.3892/ijmm.2021.4965] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a worldwide disease characterized by the chronic and irreversible decline of lung function. Currently, there is no drug to successfully treat the disease except for lung transplantation. Numerous studies have been devoted to the study of the fibrotic process of IPF and findings showed that transforming growth factor‑β1 (TGF‑β1) plays a central role in the development of IPF. TGF‑β1 promotes the fibrotic process of IPF through various signaling pathways, including the Smad, MAPK, and ERK signaling pathways. There are intersections between these signaling pathways, which provide new targets for researchers to study new drugs. In addition, TGF‑β1 can affect the fibrosis process of IPF by affecting oxidative stress, epigenetics and other aspects. Most of the processes involved in TGF‑β1 promote IPF, but TGF‑β1 can also inhibit it. This review discusses the role of TGF‑β1 in IPF.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
9
|
Rao LZ, Wang Y, Zhang L, Wu G, Zhang L, Wang FX, Chen LM, Sun F, Jia S, Zhang S, Yu Q, Wei JH, Lei HR, Yuan T, Li J, Huang X, Cheng B, Zhao J, Xu Y, Mo BW, Wang CY, Zhang H. IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death Differ 2021; 28:1270-1283. [PMID: 33144678 PMCID: PMC8027679 DOI: 10.1038/s41418-020-00650-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common type of idiopathic interstitial pneumonia and has one of the poorest prognosis. However, the molecular mechanisms underlying IPF progression remain largely unknown. In this study, we determined that IL-24, an IL-20 subfamily cytokine member, was increased both in the serum of IPF patients and the bronchoalveolar lavage fluid (BALF) of mice following bleomycin (BLM)-induced pulmonary fibrosis. As a result, IL-24 deficiency protected mice from BLM-induced lung injury and fibrosis. Specifically, loss of IL-24 significantly attenuated transforming growth factor β1 (TGF-β1) production and reduced M2 macrophage infiltration in the lung of BLM-induced mice. Mechanistically, IL-24 alone did not show a perceptible impact on the induction of M2 macrophages, but it synergized with IL-4 to promote M2 program in macrophages. IL-24 suppressed IL-4-induced expression of suppressor of cytokine signaling 1 (SOCS1) and SOCS3, through which it enhanced signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma (STAT6/PPARγ) signaling, thereby promoting IL-4-induced production of M2 macrophages. Collectively, our data support that IL-24 synergizes with IL-4 to promote macrophage M2 program contributing to the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Li-Zong Rao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lei Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Guorao Wu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Long-Min Chen
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Song Jia
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jiang-Hong Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, Guangxi, China
| | - Hui-Ren Lei
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, Guangxi, China
| | - Ting Yuan
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, Guangxi, China
| | - Jinxiu Li
- ICU Division, Xiangya Second Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zhao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bi-Wen Mo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, Guangxi, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Huilan Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
10
|
Moroz A, Wang YH, Sharib JM, Wei J, Zhao N, Huang Y, Chen Z, Martinko AJ, Zhuo J, Lim SA, Zhang LH, Seo Y, Carlin S, Leung KK, Collisson EA, Kirkwood KS, Wells JA, Evans MJ. Theranostic Targeting of CUB Domain Containing Protein 1 (CDCP1) in Pancreatic Cancer. Clin Cancer Res 2020; 26:3608-3615. [PMID: 32341034 DOI: 10.1158/1078-0432.ccr-20-0268] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE The recent emergence of radioligand therapies for cancer treatment has increased enthusiasm for developing new theranostic strategies coupling both imaging and cytotoxicity in the same entity. In this study, we evaluated whether CUB domain containing protein 1 (CDCP1), a single-pass transmembrane protein highly overexpressed in diverse human cancers, might be a target for cancer theranostics. EXPERIMENTAL DESIGN The ectodomain of CDCP1 was targeted using radiolabeled forms of 4A06, a potent and specific recombinant human antibody that we developed. Imaging and antitumor assessment studies were performed in animal models of pancreatic cancer, including two patient-derived xenograft models we developed for this study. For antitumor assessment studies, the endpoints were death due to tumor volume >3,000 mm3 or ≥20% loss in body weight. Specific tracer binding or antitumor effects were assessed with an unpaired, two-tailed Student t test and survival advantages were assessed with a log rank (Mantel-Cox) test. Differences at the 95% confidence level were interpreted to be significant. RESULTS 89Zr-4A06 detected a broad dynamic range of full length or cleaved CDCP1 expression on seven human pancreatic cancer tumors (n = 4/tumor). Treating mice with single or fractionated doses of 177Lu-4A06 significantly reduced pancreatic cancer tumor volume compared with mice receiving vehicle or unlabeled 4A06 (n = 8; P < 0.01). A single dose of 225Ac-4A06 also inhibited tumor growth, although the effect was less profound compared with 177Lu-4A06 (n = 8; P < 0.01). A significant survival advantage was imparted by 225Ac-4A06 (HR = 2.56; P < 0.05). CONCLUSIONS These data establish that CDCP1 can be exploited for theranostics, a finding with widespread implications given its breadth of overexpression in cancer.
Collapse
Affiliation(s)
- Anna Moroz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jeremy M Sharib
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Ning Zhao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Yangjie Huang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Zhuo Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Alexander J Martinko
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Jie Zhuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Shion A Lim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Lydia H Zhang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sean Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Eric A Collisson
- Department of Medicine, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Kimberly S Kirkwood
- Department of Surgery, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California. .,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
11
|
McGowan SE. The lipofibroblast: more than a lipid-storage depot. Am J Physiol Lung Cell Mol Physiol 2019; 316:L869-L871. [DOI: 10.1152/ajplung.00109.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stephen E. McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|