1
|
Inhibition of IP 3R3 attenuates endothelial to mesenchymal transition induced by TGF-β1 through restoring mitochondrial function. Biochem Biophys Res Commun 2022; 619:144-150. [PMID: 35760011 DOI: 10.1016/j.bbrc.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary artery pressure and right ventricular hypertrophy. Inositol 1,4,5-trisphosphate receptors (IP3Rs) release calcium ions from the endoplasmic reticulum to regulate permeability and migration of endothelial, thereby affecting PAH. In this study, We determined the expression level of IP3R3 and its position in lung tissue from PAH rat models, and stud the effect of IP3R3 on endothelial to mesenchymal transition (EndMT) and mitochondrial function of endothelial cells treated with TGF-β1. We observed that IP3R3 was significantly overexpressed in the lung tissues from PAH rat models. Inhibition of IP3R3 reduced EndMT markers, cell migration, ROS production, Ca2+ levels, increased mitochondrial membrane potential and mitochondrial respiratory chain complex I, III, and V activities. These results suggest that the inhibition of IP3R3 attenuated EndMT and migration induced by TGF-β1 via restoring of mitochondrial functions, thereby suggesting a novel therapeutic opportunity for PAH.
Collapse
|
2
|
Kittl M, Winklmayr M, Preishuber-Pflügl J, Strobl V, Gaisberger M, Ritter M, Jakab M. Low pH Attenuates Apoptosis by Suppressing the Volume-Sensitive Outwardly Rectifying (VSOR) Chloride Current in Chondrocytes. Front Cell Dev Biol 2022; 9:804105. [PMID: 35186954 PMCID: PMC8847443 DOI: 10.3389/fcell.2021.804105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
In a variety of physiological and pathophysiological conditions, cells are exposed to acidic environments. Severe synovial fluid acidification also occurs in a progressive state of osteoarthritis (OA) affecting articular chondrocytes. In prior studies extracellular acidification has been shown to protect cells from apoptosis but the underlying mechanisms remain elusive. In the present study, we demonstrate that the inhibition of Cl− currents plays a significant role in the antiapoptotic effect of acidification in human articular chondrocytes. Drug-induced apoptosis was analyzed after exposure to staurosporine by caspase 3/7 activity and by annexin-V/7-actinomycin D (7-AAD) staining, followed by flow cytometry. Cell viability was assessed by resazurin, CellTiter-Glo and CellTiter-Fluor assays. Cl− currents and the mean cell volume were determined using the whole cell patch clamp technique and the Coulter method, respectively. The results reveal that in C28/I2 cells extracellular acidification decreases caspase 3/7 activity, enhances cell viability following staurosporine treatment and gradually deactivates the volume-sensitive outwardly rectifying (VSOR) Cl− current. Furthermore, the regulatory volume decrease (RVD) as well as the apoptotic volume decrease (ADV), which represents an early event during apoptosis, were absent under acidic conditions after hypotonicity-induced cell swelling and staurosporine-induced apoptosis, respectively. Like acidosis, the VSOR Cl− current inhibitor DIDS rescued chondrocytes from apoptotic cell death and suppressed AVD after induction of apoptosis with staurosporine. Similar to acidosis and DIDS, the VSOR channel blockers NPPB, niflumic acid (NFA) and DCPIB attenuated the staurosporine-induced AVD. NPPB and NFA also suppressed staurosporine-induced caspase 3/7 activation, while DCPIB and Tamoxifen showed cytotoxic effects per se. From these data, we conclude that the deactivation of VSOR Cl− currents impairs cell volume regulation under acidic conditions, which is likely to play an important role in the survivability of human articular chondrocytes.
Collapse
Affiliation(s)
- Michael Kittl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- *Correspondence: Michael Kittl,
| | - Martina Winklmayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Victoria Strobl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology, Pathophysiology and Biophysics—Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Jakab
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| |
Collapse
|
3
|
Dandash F, Leger DY, Diab-Assaf M, Sol V, Liagre B. Porphyrin/Chlorin Derivatives as Promising Molecules for Therapy of Colorectal Cancer. Molecules 2021; 26:7268. [PMID: 34885849 PMCID: PMC8659284 DOI: 10.3390/molecules26237268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. The demand for new therapeutic approaches has increased attention paid toward therapies with high targeting efficiency, improved selectivity and few side effects. Porphyrins are powerful molecules with exceptional properties and multifunctional uses, and their special affinity to cancer cells makes them the ligands par excellence for anticancer drugs. Porphyrin derivatives are used as the most important photosensitizers (PSs) for photodynamic therapy (PDT), which is a promising approach for anticancer treatment. Nevertheless, the lack of solubility and selectivity of the large majority of these macrocycles led to the development of different photosensitizer complexes. In addition, targeting agents or nanoparticles were used to increase the efficiency of these macrocycles for PDT applications. On the other hand, gold tetrapyrrolic macrocycles alone showed very interesting chemotherapeutic activity without PDT. In this review, we discuss the most important porphyrin derivatives, alone or associated with other drugs, which have been found effective against CRC, as we describe their modifications and developments through substitutions and delivery systems.
Collapse
Affiliation(s)
- Fatima Dandash
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon; (F.D.); (M.D.-A.)
| | - David Y. Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France; (D.Y.L.); (V.S.)
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon; (F.D.); (M.D.-A.)
| | - Vincent Sol
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France; (D.Y.L.); (V.S.)
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France; (D.Y.L.); (V.S.)
| |
Collapse
|
4
|
Li S, Jiang X, Luo Y, Zhou B, Shi M, Liu F, Sha A. Sodium/calcium overload and Sirt1/Nrf2/OH-1 pathway are critical events in mercuric chloride-induced nephrotoxicity. CHEMOSPHERE 2019; 234:579-588. [PMID: 31229719 DOI: 10.1016/j.chemosphere.2019.06.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg), a significant toxic metal for nephrotoxicity, can be found in food (vegetable and seafood) and drinking water by contamination. Oxidative stress is involved in inorganic Hg-induced nephrotoxicity, but the Sirtuin1 (Sirt1)/Nrf2/OH-1 pathway and sodium (Na)/calcium (Ca) ions actions in mercuric chloride (HgCl2)-induced nephrotoxicity remains unclear to date. In this study, Kunming mice were treated HgCl2 (5 mg/kg) for 24 h to evaluate potential mechanism. Here, along with Sirt1 activation, pale kidney, hisologic conditions, typical apoptotic changes and TUNEL positive nuclei were observed under acute HgCl2 exposure. Specifically, although HgCl2 increased the expression of Nrf2, Keap1, OH-1 and NQO1, the mRNA levels of GSS, GCLC and GCLM showed no significant alterations in mice kidney. Moreover, mice exposed to HgCl2 decreased the concentrations of Mg, K, P, Mn, Fe, Zn, and elevated Na, Ca, Cu and Se in kidney. It was also observed that HgCl2 suppressed the ATPases (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities and decreased the mRNA levels of Atp1a1, Atp1a2 in the kidney. Further study showed that HgCl2 elevated Na+ concentrations by markedly increased the mRNA levels of Na+ transporter. The present study revealed that HgCl2 induced Sirt1/Nrf2/OH-1 pathway activation while did not inhibit apoptosis in kidney of mice. Additionally, HgCl2 regulates Na+ concentrations, which might create secondary disorders in absorption and excretion of other ions. Altogether we assume that Sirt1/Nrf2/Na+/Ca2+ pathway might be a potential therapeutic target for treating acute HgCl2 induced nephrotoxicity.
Collapse
Affiliation(s)
- Siwen Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China.
| | - Xia Jiang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Yonghong Luo
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Bingru Zhou
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Mei Shi
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Fangyuan Liu
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Ailong Sha
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| |
Collapse
|
5
|
Orlowska K, Swigonska S, Sadowska A, Ruszkowska M, Nynca A, Molcan T, Zmijewska A, Ciereszko RE. Proteomic changes of aryl hydrocarbon receptor (AhR)-silenced porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). PLoS One 2019; 14:e0223420. [PMID: 31584984 PMCID: PMC6777791 DOI: 10.1371/journal.pone.0223420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment and affecting human/animal health and reproduction. Intracellular TCDD action usually involves the activation of aryl hydrocarbon receptor (AhR). The aim of the current study was to examine TCDD-induced changes in the proteome of AhR-silenced porcine granulosa cells. The AhR-silenced cells were treated with TCDD (100 nM) for 3, 12 or 24 h. Total protein was isolated, labeled with cyanines and next, the samples were separated by isoelectric focusing and SDS-PAGE. Proteins of interest were identified by MALDI-TOF/TOF mass spectrometry (MS) analysis and confirmed by western blotting and fluorescence immunocytochemistry. The AhR-targeted siRNA transfection reduced the granulosal expression level of AhR by 60–70%. In AhR-silenced porcine granulosa cells, TCDD influenced the abundance of only three proteins: annexin V, protein disulfide isomerase and ATP synthase subunit beta. The obtained results revealed the ability of TCDD to alter protein abundance in an AhR-independent manner. This study offers a new insight into the mechanism of TCDD action and provide directions for future functional studies focused on molecular effects exerted by TCDD.
Collapse
Affiliation(s)
- Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland
- * E-mail:
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego, Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland
| | - Renata E. Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego, Olsztyn, Poland
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego, Olsztyn, Poland
| |
Collapse
|
6
|
Hudalla H, Michael Z, Christodoulou N, Willis GR, Fernandez-Gonzalez A, Filatava EJ, Dieffenbach P, Fredenburgh LE, Stearman RS, Geraci MW, Kourembanas S, Christou H. Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 2019; 61:512-524. [PMID: 30951642 PMCID: PMC6775956 DOI: 10.1165/rcmb.2018-0232oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/07/2023] Open
Abstract
Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are causally linked to pulmonary arterial hypertension (PAH) pathogenesis. Carbonic anhydrase inhibition induces mild metabolic acidosis and exerts protective effects in hypoxic pulmonary hypertension. Carbonic anhydrases and metabolic acidosis are further known to modulate immune cell activation. To evaluate if carbonic anhydrase inhibition modulates macrophage activation, inflammation, and VSMC phenotypic switching in severe experimental pulmonary hypertension, pulmonary hypertension was assessed in Sugen 5416/hypoxia (SU/Hx) rats after treatment with acetazolamide or ammonium chloride (NH4Cl). We evaluated pulmonary and systemic inflammation and characterized the effect of carbonic anhydrase inhibition and metabolic acidosis in alveolar macrophages and bone marrow-derived macrophages (BMDMs). We further evaluated the treatment effects on VSMC phenotypic switching in pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs) and corroborated some of our findings in lungs and pulmonary arteries of patients with PAH. Both patients with idiopathic PAH and SU/Hx rats had increased expression of lung inflammatory markers and signs of PASMC dedifferentiation in pulmonary arteries. Acetazolamide and NH4Cl ameliorated SU/Hx-induced pulmonary hypertension and blunted pulmonary and systemic inflammation. Expression of carbonic anhydrase isoform 2 was increased in alveolar macrophages from SU/Hx animals, classically (M1) and alternatively (M2) activated BMDMs, and lungs of patients with PAH. Carbonic anhydrase inhibition and acidosis had distinct effects on M1 and M2 markers in BMDMs. Inflammatory cytokines drove PASMC dedifferentiation, and this was inhibited by acetazolamide and acidosis. The protective antiinflammatory effect of acetazolamide in pulmonary hypertension is mediated by a dual mechanism of macrophage carbonic anhydrase inhibition and systemic metabolic acidosis.
Collapse
MESH Headings
- Acetazolamide/therapeutic use
- Acidosis/chemically induced
- Acidosis/complications
- Acidosis/immunology
- Ammonium Chloride/therapeutic use
- Animals
- Carbonic Anhydrase Inhibitors/therapeutic use
- Carbonic Anhydrases/physiology
- Cell Differentiation/drug effects
- Contractile Proteins/biosynthesis
- Contractile Proteins/genetics
- Drug Evaluation, Preclinical
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypoxia/complications
- Inflammation
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Male
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Isoforms/antagonists & inhibitors
- Pulmonary Artery/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Hannes Hudalla
- Department of Pediatric Newborn Medicine and
- Department of Neonatology, Heidelberg University Children’s Hospital, Heidelberg, Germany
- Harvard Medical School, Boston, Massachusetts
| | - Zoe Michael
- Department of Pediatric Newborn Medicine and
- Harvard Medical School, Boston, Massachusetts
| | | | - Gareth R. Willis
- Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Angeles Fernandez-Gonzalez
- Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | | | - Paul Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Robert S. Stearman
- Division of Pulmonary, Critical Care Medicine, Sleep, and Occupational Medicine, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Mark W. Geraci
- Division of Pulmonary, Critical Care Medicine, Sleep, and Occupational Medicine, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Stella Kourembanas
- Department of Pediatric Newborn Medicine and
- Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Helen Christou
- Department of Pediatric Newborn Medicine and
- Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| |
Collapse
|
7
|
Dantas E, Erra Díaz F, Pereyra Gerber P, Merlotti A, Varese A, Ostrowski M, Sabatté J, Geffner J. Low pH impairs complement-dependent cytotoxicity against IgG-coated target cells. Oncotarget 2018; 7:74203-74216. [PMID: 27716623 PMCID: PMC5342046 DOI: 10.18632/oncotarget.12412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Local acidosis is a common feature of allergic, vascular, autoimmune, and cancer diseases. However, few studies have addressed the effect of extracellular pH on the immune response. Here, we analyzed whether low pH could modulate complement-dependent cytotoxicity (CDC) against IgG-coated cells. Using human serum as a complement source, we found that extracellular pH values of 5.5 and 6.0 strongly inhibit CDC against either B lymphoblast cell lines coated with the chimeric anti-CD20 mAb rituximab or PBMCs coated with the humanized anti-CD52 mAb alemtuzumab. Suppression of CDC by low pH was observed either in cells suspended in culture medium or in whole blood assays. Interestingly, not only CDC against IgG-coated cells, but also the activation of the complement system induced by the alternative and lectin pathways was prevented by low pH. Tumor-targeting mAbs represent one of the most successful tools for cancer therapy, however, the use of mAb monotherapy has only modest effects on solid tumors. Our present results suggest that severe acidosis, a hallmark of solid tumors, might impair complement-mediated tumor destruction directed by mAb.
Collapse
Affiliation(s)
- Ezequiel Dantas
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pehuén Pereyra Gerber
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Antonela Merlotti
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
8
|
Intracellular pH Regulates TRAIL-Induced Apoptosis and Necroptosis in Endothelial Cells. J Immunol Res 2017; 2017:1503960. [PMID: 28884134 PMCID: PMC5572609 DOI: 10.1155/2017/1503960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
During ischemia or inflammation of organs, intracellular pH can decrease if acid production exceeds buffering capacity. Thus, the microenvironment can expose parenchymal cells to a reduced extracellular pH which can alter pH-dependent intracellular functions. We have previously shown that while silencing caspase-8 in an in vivo ischemia reperfusion injury (IRI) model results in improved organ function and survival, removal of caspase-8 function in a donor organ can paradoxically result in enhanced receptor-interacting protein kinase 1/3- (RIPK1/3-) regulated necroptosis and accelerated graft loss following transplantation. In our current study, TRAIL- (TNF-related apoptosis-inducing ligand-) induced cell death in vitro at neutral pH and caspase-8 inhibition-enhanced RIPK1-dependent necroptotic death were confirmed. In contrast, both caspase-8 inhibition and RIPK1 inhibition attenuated cell death at a cell pH of 6.7. Cell death was attenuated with mixed lineage kinase domain-like (MLKL) silencing, indicating that MLKL membrane rupture, a distinctive feature of necroptosis, occurs regardless of pH. In summary, there is a distinct regulatory control of apoptosis and necroptosis in endothelial cells at different intracellular pH. These results highlight the complexity of modulating cell death and therapeutic strategies that may need to consider different consequences on cell death dependent on the model.
Collapse
|
9
|
Sergeeva TF, Shirmanova MV, Zlobovskaya OA, Gavrina AI, Dudenkova VV, Lukina MM, Lukyanov KA, Zagaynova EV. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:604-611. [PMID: 28063999 DOI: 10.1016/j.bbamcr.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022]
Abstract
A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis.
Collapse
Affiliation(s)
- Tatiana F Sergeeva
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| | - Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| | - Olga A Zlobovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| | - Alena I Gavrina
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia.
| | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia.
| | - Maria M Lukina
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia.
| | - Konstantin A Lukyanov
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
10
|
Díaz FE, Dantas E, Cabrera M, Benítez CA, Delpino MV, Duette G, Rubione J, Sanjuan N, Trevani AS, Geffner J. Fever-range hyperthermia improves the anti-apoptotic effect induced by low pH on human neutrophils promoting a proangiogenic profile. Cell Death Dis 2016; 7:e2437. [PMID: 27787523 PMCID: PMC5133997 DOI: 10.1038/cddis.2016.337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/03/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
Abstract
Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis, limiting their deleterious potential. However, this tightly regulated cell death program can be modulated by pathogen-associated molecular patterns (PAMPs), danger-associated molecular pattern (DAMPs), and inflammatory cytokines. We have previously reported that low pH, a hallmark of inflammatory processes and solid tumors, moderately delays neutrophil apoptosis. Here we show that fever-range hyperthermia accelerates the rate of neutrophil apoptosis at neutral pH but markedly increases neutrophil survival induced by low pH. Interestingly, an opposite effect was observed in lymphocytes; hyperthermia plus low pH prevents lymphocyte activation and promotes the death of lymphocytes and lymphoid cell lines. Analysis of the mechanisms through which hyperthermia plus low pH increased neutrophil survival revealed that hyperthermia further decreases cytosolic pH induced by extracellular acidosis. The fact that two Na+/H+ exchanger inhibitors, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and amiloride, reproduced the effects induced by hyperthermia suggested that it prolongs neutrophil survival by inhibiting the Na+/H+ antiporter. The neutrophil anti-apoptotic effect induced by PAMPs, DAMPs, and inflammatory cytokines usually leads to the preservation of the major neutrophil effector functions such as phagocytosis and reactive oxygen species (ROS) production. In contrast, our data revealed that the anti-apoptotic effect induced by low pH and hyperthermia induced a functional profile characterized by a low phagocytic activity, an impairment in ROS production and a high ability to suppress T-cell activation and to produce the angiogenic factors VEGF, IL-8, and the matrix metallopeptidase 9 (MMP-9). These results suggest that acting together fever and local acidosis might drive the differentiation of neutrophils into a profile able to promote both cancer progression and tissue repair during the late phase of inflammation, two processes that are strongly dependent on the local production of angiogenic factors by infiltrating immune cells.
Collapse
Affiliation(s)
- Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Dantas
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maia Cabrera
- Instituto de Investigaciones Farmacológicas (ININFA), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Constanza A Benítez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel Duette
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rubione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norberto Sanjuan
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía S Trevani
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Jancic CC, Cabrini M, Gabelloni ML, Rodríguez Rodrigues C, Salamone G, Trevani AS, Geffner J. Low extracellular pH stimulates the production of IL-1β by human monocytes. Cytokine 2011; 57:258-68. [PMID: 22154780 DOI: 10.1016/j.cyto.2011.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 10/06/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
The development of acidic environments is a hallmark of inflammatory processes of different etiology. We have previously shown that transient exposure to acidic conditions, similar to those encountered in vivo, induces the activation of neutrophils and the phenotypic maturation of dendritic cells. We here report that extracellular acidosis (pH 6.5) selectively stimulates the production and the secretion of IL-1β by human monocytes without affecting the production of TNF-α, IL-6 and the expression of CD40, CD80, CD86, and HLA-DR. Stimulation of IL-1β production by pH 6.5-treated monocytes was shown to be dependent on caspase-1 activity, and it was also observed using peripheral blood mononuclear cells instead of isolated monocytes. Contrasting with the results in monocytes, we found that pH 6.5 did not stimulate any production of IL-1β by macrophages. Changes in intracellular pH seem to be involved in the stimulation of IL-1β production. In fact, monocytes cultured at pH 6.5 undergo a fall in the values of intracellular pH while the inhibitor of the Na+/H+ exchanger, 5-(N-ethyl-N-isopropyl)amiloride induced both, a decrease in the values of intracellular pH and the stimulation of IL-1β production. Real time quantitative PCR assays indicated that monocytes cultured either at pH 6.5 or in the presence of 5-(N-ethyl-N-isopropyl)amiloride expressed higher levels of pro-IL-1β mRNA suggesting that low values of intracellular pH enhance the production of IL-1β, at least in part, by stimulating the synthesis of its precursor.
Collapse
Affiliation(s)
- Carolina Cristina Jancic
- Instituto de Investigaciones Hematológicas (IIHEMA), Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
12
|
In vitro and ex vivo evaluation of smart infra-red fluorescent caspase-3 probes for molecular imaging of cardiovascular apoptosis. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:413290. [PMID: 21629849 PMCID: PMC3099191 DOI: 10.1155/2011/413290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Purpose. The aim of this paper is to develop new optical bioprobes for the imaging of apoptosis.
Procedure. We developed quenched near-infrared probes which become fluorescent upon cleavage by caspase-3, the key regulatory enzyme of apoptosis. Results. Probes were shown to be selectively cleaved by recombinant caspase-3. Apoptosis of cultured endothelial cells was associated with an increased fluorescent signal for the cleaved probes, which colocalized with caspase-3 and was reduced by the addition of a caspase-3 inhibitor. Flow cytometry demonstrated a similar profile between the cleaved probes and annexin V. Ex vivo experiments showed that sections of hearts obtained from mice treated with the proapoptotic drug doxorubicin displayed an increase in the fluorescent signal for the cleaved probes, which was reduced by a caspase-3 inhibitor. Conclusion. We demonstrated the capacity of these novel probes to detect apoptosis by optical imaging in vitro and ex vivo.
Collapse
|
13
|
Brenninkmeijer L, Kuehl C, Geldart AM, Arons E, Christou H. Heme oxygenase-1 does not mediate the effects of extracellular acidosis on vascular smooth muscle cell proliferation, migration, and susceptibility to apoptosis. J Vasc Res 2011; 48:285-96. [PMID: 21273783 DOI: 10.1159/000321555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Unbalanced vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis contribute to vascular disorders such as atherosclerosis, restenosis, and pulmonary hypertension. The effect of extracellular acidosis (EA) on VSMC homeostasis is incompletely understood but we previously reported that EA increases heme oxygenase-1 (HO-1) expression in VSMCs. Since HO-1 regulates VSMC proliferation and apoptosis we sought to define the role of HO-1 in VSMC responses to EA. METHODS Mouse aortic smooth muscle cells (MASMCs) were isolated from wild-type and HO-1-null mice. Cell proliferation and migration assays were done in a physiologic pH (7.4) or EA (pH 6.8). VSMC apoptosis in response to hydrogen peroxide was assessed by JC-1 staining, caspase-3 cleavage, annexin V, and Hoechst staining. RESULTS Wild-type MASMCs showed decreased proliferation and migration at pH 6.8 compared to pH 7.4. This observation was also true in HO-1-null MASMCs. Although wild-type and HO-1-null cells showed differences in the mode and kinetics of cell death, both genotypes exhibited increased susceptibility to hydrogen peroxide-induced apoptosis at pH 6.8 compared to 7.4. CONCLUSIONS EA inhibits VSMC proliferation and migration and increases susceptibility to oxidant-induced apoptosis. These effects of acidosis on VSMC homeostasis are independent of HO-1.
Collapse
Affiliation(s)
- Lineke Brenninkmeijer
- Division of Newborn Medicine, Brigham and Women's and Children's Hospitals and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
14
|
Gan Z, Audi SH, Bongard RD, Gauthier KM, Merker MP. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes. Am J Physiol Lung Cell Mol Physiol 2011; 300:L762-72. [PMID: 21239539 DOI: 10.1152/ajplung.00334.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our goal was to quantify mitochondrial and plasma potential (Δψ(m) and Δψ(p)) based on the disposition of rhodamine 123 (R123) or tetramethylrhodamine ethyl ester (TMRE) in the medium surrounding pulmonary endothelial cells. Dyes were added to the medium, and their concentrations in extracellular medium ([R(e)]) were measured over time. R123 [R(e)] fell from 10 nM to 6.6 ± 0.1 (SE) nM over 120 min. TMRE [R(e)] fell from 20 nM to a steady state of 4.9 ± 0.4 nM after ∼30 min. Protonophore or high K(+) concentration ([K(+)]), used to manipulate contributions of membrane potentials, attenuated decreases in [R(e)], and P-glycoprotein (Pgp) inhibition had the opposite effect, demonstrating the qualitative impact of these processes on [R(e)]. A kinetic model incorporating a modified Goldman-Hodgkin-Katz model was fit to [R(e)] vs. time data for R123 and TMRE, respectively, under various conditions to obtain (means ± 95% confidence intervals) Δψ(m) (-130 ± 7 and -133 ± 4 mV), Δψ(p) (-36 ± 4 and -49 ± 4 mV), and a Pgp activity parameter (K(Pgp), 25 ± 5 and 51 ± 11 μl/min). The higher membrane permeability of TMRE also allowed application of steady-state analysis to obtain Δψ(m) (-124 ± 6 mV). The consistency of kinetic parameter values obtained from R123 and TMRE data demonstrates the utility of this experimental and theoretical approach for quantifying intact cell Δψ(m) and Δψ(p.) Finally, steady-state analysis revealed that although room air- and hyperoxia-exposed (95% O(2) for 48 h) cells have equivalent resting Δψ(m), hyperoxic cell Δψ(m) was more sensitive to depolarization with protonophore, consistent with previous observations of pulmonary endothelial hyperoxia-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuohui Gan
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
15
|
Zhao J, Bolton EM, Bradley JA, Lever AML. Lentiviral-mediated overexpression of Bcl-xL protects primary endothelial cells from ischemia/reperfusion injury-induced apoptosis. J Heart Lung Transplant 2010; 28:936-43. [PMID: 19716047 DOI: 10.1016/j.healun.2009.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/14/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Endothelial cells (EC) respond to mild injurious stimuli by upregulating anti-apoptotic gene expression to maintain endothelial integrity. EC dysfunction and apoptosis resulting from ischemia/reperfusion injury may contribute to chronic allograft rejection. We optimized conditions for lentiviral vector (LVV) transduction of rat aortic endothelial cells (RAEC) and investigated whether LVV delivery of the anti-apoptotic gene, Bcl-xL, protects RAEC from apoptotic death using in vitro models of hypoxia and ischemia/reperfusion injury. METHODS LVV containing Bcl-xL were generated from a human immunodeficiency virus (HIV)-1 construct. EC were prepared from rat aorta. Hypoxia/reperfusion (H/R) or ischemia/reperfusion (I/R) injury was induced in vitro and apoptosis was assessed using caspase-3 activity, Annexin V/PI and TUNEL staining. RESULTS After in vitro induction of H/R or I/R injury, RAEC showed duration-dependent apoptosis. We confirmed the damaging effect of the reperfusion phase. Endogenous Bax expression increased with I/R injury, whereas endogenous Bcl-xL remained constant. RAEC transduced with LVV expressing Bcl-xL were protected from early apoptosis caused by I/R injury, correlating with reduced cytochrome c release into the cytosol. CONCLUSIONS Overexpressing Bcl-xL protects RAEC from I/R injury. This protective effect may be attributed to altering the balance of pro- and anti-apoptotic proteins, resulting in sequestration of the harmful Bax protein, and may open up new strategies for controlling chronic allograft rejection.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Kumar S, Kostin S, Flacke JP, Reusch HP, Ladilov Y. Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 2009; 284:14760-8. [PMID: 19336406 DOI: 10.1074/jbc.m900925200] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cAMP signaling pathway plays an essential role in modulating the apoptotic response to various stress stimuli. Until now, it was attributed exclusively to the activity of the G-protein-responsive transmembrane adenylyl cyclase. In addition to transmembrane AC, mammalian cells possess a second source of cAMP, the ubiquitously expressed soluble adenylyl cyclase (sAC). However, the role of this cyclase in apoptosis was unknown. A mitochondrial localization of this cyclase has recently been demonstrated, which led us to the hypothesis that sAC may play a role in apoptosis through modulation of mitochondria-dependent apoptosis. To prove this hypothesis, apoptosis was induced by simulated in vitro ischemia or by acidosis, which is an important component of ischemia. Suppression of sAC activity with the selective inhibitor KH7 or sAC knockdown by small interfering RNA transfection abolished endothelial apoptosis. Furthermore, pharmacological inhibition or knockdown of protein kinase A, an important cAMP target, demonstrated a significant anti-apoptotic effect. Analysis of the underlying mechanisms revealed (i) the translocation of sAC to mitochondria under acidic stress and (ii) activation of the mitochondrial pathway of apoptosis, i.e. cytochrome c release and caspase-9 cleavage. sAC inhibition or knockdown abolished the activation of the mitochondrial pathway of apoptosis. Analysis of mitochondrial co-localization of Bcl-2 family proteins demonstrated sAC- and protein kinase A-dependent translocation of Bax to mitochondria. Taken together, these results suggest the important role of sAC in modulating the mitochondria-dependent pathway of apoptosis in endothelial cells.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | | | | | | | | |
Collapse
|
17
|
Chen T, Wang J, Xing D, Chen WR. Spatio-Temporal Dynamic Analysis of Bid Activation and Apoptosis Induced by Alkaline Condition in Human Lung Adenocarcinoma Cell. Cell Physiol Biochem 2008; 20:569-78. [PMID: 17762183 DOI: 10.1159/000107540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2007] [Indexed: 11/19/2022] Open
Abstract
Activation of initiator and effector caspases and Bid cleavage are apoptotic characteristic features. They are associated with cell alkalization or acidification in some models of apoptosis. The alteration of culture conditions such as extracellular pH value and the overexpression of Bid plasmids may induce cell apoptosis. In present report, we used fluorescence confocal imaging and fluorescence resonance energy transfer (FRET) techniques based on green fluorescent proteins (GFPs) to monitor the spatio-temporal dynamics of Bid translocation and caspase-3 activation in real time in living human lung adenocarcinoma (ASTC-a-1) cells under neutral (pH 7.4) and alkaline (pH 8.0) conditions. The cells transfected with Bid-CFP plasmid did not show apoptotic characteristics for 96 hours under an atmosphere of 95% air, 5% CO(2) at pH 7.4 and 37 degrees C, implying that the overexpression of Bid-CFP plasmid does not induce cell apoptosis. However, all the cells underwent apoptosis after being placed in the alkaline culture (pH 8.0). The dynamic results in single living cell showed that the alkaline condition at pH of 8.0 induced Bid cleavage and tBid translocation to mitochondria at about 1.5 hour, and then induced the caspase-3 activation and cell apoptosis. These results show that the alkaline sondition (pH=8.0) induces cell apoptosis by activating caspase-8, which cleaves Bid to tBid, tBid translocation to mitochondria, and then activating the caspase-3 in the ASTC-a-1 cells.
Collapse
Affiliation(s)
- Tongsheng Chen
- MOE Key Liboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
| | | | | | | |
Collapse
|
18
|
Singh S, Khar A. Differential gene expression during apoptosis induced by a serum factor: role of mitochondrial F0-F1 ATP synthase complex. Apoptosis 2008; 10:1469-82. [PMID: 16215688 DOI: 10.1007/s10495-005-1394-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The number of genes that are up regulated or down regulated during apoptosis is large and still increasing. In an attempt to characterize differential gene expression during serum factor induced apoptosis in AK-5 cells (a rat histiocytoma), we found subunit 6 and subunit 8 of the transmembrane proton channel and subunit alpha of the catalytic core of the mitochondrial F(0)-F(1) ATP synthase complex to be up regulated during apoptosis. The increase in the expression levels of these subunits was concomitant with a transient increase in the intracellular ATP levels, suggesting that the increase in cellular ATP content is a result of the increase in the expression of ATP synthase subunits' gene and de novo protein synthesis. Depleting the cellular ATP levels with oligomycin inhibited apoptosis significantly, pointing to the requirement of ATP during apoptosis. Caspase 1 and caspase 3 activity and the loss of mitochondrial membrane potential were also inhibited by oligomycin during apoptosis in these cells, suggesting that the oligomycin induced inhibition of apoptosis could be due to inhibition of caspase activity and inhibition of mitochondrial depolarization. However, cytochrome C release during apoptosis was found to be completely independent of intracellular ATP content. Besides the ATP synthase complex genes, other mitochondrial genes like cytochrome C oxidase subunit II and III also showed elevated levels of expression during apoptosis. This kind of a mitochondrial gene expression profile suggests that in AK-5 cells, these genes are upregulated in a time-linked manner to ensure sufficient intracellular ATP levels and an efficient functioning of the mitochondrial respiratory chain for successful completion of the apoptotic pathway.
Collapse
Affiliation(s)
- S Singh
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
19
|
Kumar S, Reusch HP, Ladilov Y. Acidic pre-conditioning suppresses apoptosis and increases expression of Bcl-xL in coronary endothelial cells under simulated ischaemia. J Cell Mol Med 2007; 12:1584-92. [PMID: 18053090 PMCID: PMC3918074 DOI: 10.1111/j.1582-4934.2007.00172.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischaemic pre-conditioning has a powerful protective potential against ischaemia-induced cell death, and acidosis is an important featur of ischaemia and can lead to apoptosis. Here we tested whether pre-conditioning with acidosis, that is, acidic pre-conditioning (APC), may protect coronary endothelial cells (EC) against apoptosis induced by simulated ischaemia. For pre-conditioning, EC were exposed fo 40 min. to acidosis (pH 6.4) followed by a 14-hrs recovery period (pH 7.4) and finally treated for 2 hrs with simulated ischaemia (glucose-free anoxia at pH 6.4). Cells undergoing apoptosis were visualized by chromatin staining or by determination of caspase-3 activit Simulated ischaemia in untreated EC increased caspase-3 activity and the number of apoptotic cell (31.3 ± 1.3%versus 3.9 ± 0.6% in control). APC significantly reduced the rate of apoptosis (14.2 ± 1.3%) and caspase-3 activity. Western blot analysis exploring the under lying mechanism leading to this protection revealed suppression of the endoplasmic reticulum- (reduced cleavage of caspase-12) and mitochondria-mediated (reduced cytochrome C release) pathways of apoptosis. These effects were associated with an over-expression of the anti-apoptotic protein Bcl-xL 14 hrs after APC, whereas no effect on the expression of Bcl-2, Bax, Bak, procaspase-12, reticulum-localized chaperones (GRP78, calreticulin), HSP70, HSP32 and HSP27 could be detected. Knock-down of Bcl-xL by siRNA-treatment prevented the protective effect of APC. In conclusion, short acidic pre-treatment can protect EC against ischaemic apoptosis. The mechanism of this protection consists of suppression of the endoplasmic reticulum- and mitochondria-mediated pathways. Over-expression of the anti apoptotic protein Bcl-xL is responsible for the increased resistance to apoptosis during ischaemic insult.
Collapse
Affiliation(s)
- S Kumar
- Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
20
|
Kumar S, Kasseckert S, Kostin S, Abdallah Y, Piper HM, Steinhoff G, Reusch HP, Ladilov Y. Importance of bicarbonate transport for ischaemia-induced apoptosis of coronary endothelial cells. J Cell Mol Med 2007; 11:798-809. [PMID: 17760841 PMCID: PMC3823258 DOI: 10.1111/j.1582-4934.2007.00053.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate transport (BT) has been previously shown to participate in apoptosis induced by various stress factors. However, the precise role of BT in ischaemia-induced apoptosis is still unknown. To investigate this subject, rat coronary endothelial cells (EC) were exposed to simulated ischaemia (glucose free anoxia at Ph 6.4) for 2 hrs and cells undergoing apoptosis were visualized by nuclear staining or by determination of cas-pase- 3 activity. To inhibit BT, EC were either treated with the inhibitor of BT 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 300 mumol/l) or exposed to ischaemia in bicarbonate free, 4-(2-hydroxyethyl)-I-piperazi-neethanesulphonic acid (HEPES)-buffered medium. Simulated ischaemia in bicarbonate-buffered medium (Bic) increased caspase-3 activity and the number of apoptotic cell (23.7 + 1.4%versus 5.1 + 1.2% in control). Omission of bicarbonate during ischaemia further significantly increased caspase-3 activity and the number of apoptotic cells (36.7 1.7%). Similar proapoptotic effect was produced by DIDS treatment during ischaemia in Bic, whereas DIDS had no effect when applied in bicarbonate-free, HEPES-buffered medium (Hep). Inhibition of BT was without influence on cytosolic acidification during ischaemia and slightly reduced cytosolic Ca(2+) accumulation. Initial characterization of the underlying mechanism leading to apoptosis induced by BT inhibition revealed activation of the mitochondrial pathway of apoptosis, i.e., increase of cytochrome C release, depolarization of mitochondria and translocation of Bax protein to mitochondria. In contrast, no activation of death receptor-dependent pathway (caspase-8 cleavage) and endoplasmic reticulum- dependent pathway (caspase-12 cleavage) was detected. In conclusion, BT plays an important role in ischaemia-induced apoptosis of coronary EC by suppression of mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, Germany
- *Correspondence to: Yury LADILOV Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany. Tel.: +49(0)0234/32-27639 Fax: +49(0)234/32-14904. E-mail:
| | | | - Sawa Kostin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | | | - H Peter Reusch
- Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, Germany
| | - Yury Ladilov
- Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, Germany
- *Correspondence to: Yury LADILOV Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany. Tel.: +49(0)0234/32-27639 Fax: +49(0)234/32-14904. E-mail:
| |
Collapse
|
21
|
Zamaraeva MV, Sabirov RZ, Manabe KI, Okada Y. Ca(2+)-dependent glycolysis activation mediates apoptotic ATP elevation in HeLa cells. Biochem Biophys Res Commun 2007; 363:687-93. [PMID: 17897621 DOI: 10.1016/j.bbrc.2007.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/21/2022]
Abstract
It was previously shown that cells die with increased cytosolic ATP after stimulation with apoptotic inducers including staurosporine (STS). To identify the source of apoptotic ATP elevation, we monitored, in real time, the cytosolic ATP level in luciferase-expressing HeLa cells. A mitochondrial uncoupler or a respiration chain inhibitor was found to decrease cytosolic ATP by about 50%. However, even when mitochondrial ATP synthesis was suppressed, STS induced a profound elevation of intracellular ATP. In contrast, the STS-induced ATP increase was prevented by any of three inhibitors of the glycolytic pathway: 2-deoxyglucose, iodoacetamide, and NaF. The STS effect strongly depended on intracellular calcium and was mimicked by a calcium ionophore. We conclude that Ca(2+)-dependent activation of anaerobic glycolysis, but not aerobic mitochondrial oxidative phosphorylation, is responsible for the STS-induced elevation of ATP in apoptotic HeLa cells.
Collapse
Affiliation(s)
- Maria V Zamaraeva
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
22
|
Wolf MB, Baynes JW. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 2006; 20:73-81. [PMID: 16752219 DOI: 10.1007/s10534-006-9016-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/18/2006] [Indexed: 11/25/2022]
Abstract
We investigated the ability of cadmium and mercury ions to cause endothelial dysfunction in bovine pulmonary artery endothelial cell monolayers. Exposure of monolayers for 48 h to metal concentrations greater than 3-5 microM produced profound cytotoxicity (increased lactate dehydrogenase leakage), a permeability barrier failure, depletion of glutathione and ATP and almost complete inhibition of the activity of key thiol enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, metal concentrations less than 1-2 microM induced increases in glutathione and thiol-enzyme activities with minimal changes in LDH leakage, barrier function and ATP content. At shorter incubation times (24 h or less), high concentrations of cadmium caused glutathione induction rather than depletion. Thus, oxidative stress and cytotoxicity induced by lower concentrations of the metal ions stimulate compensatory responses, including increased synthesis of glutathione, which presumably preserved the activity of key thiol enzymes, however these responses were not sustainable at higher metal ion concentrations. We conclude, while high concentrations of heavy metals are cytotoxic, lower concentration induce a compensatory protective response, which may explain threshold effects in metal-ion toxicity.
Collapse
Affiliation(s)
- Matthew B Wolf
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
23
|
Otani H, Matsuhisa S, Akita Y, Kyoi S, Enoki C, Tatsumi K, Fujiwara H, Hattori R, Imamura H, Iwasaka T. Role of Mechanical Stress in the Form of Cardiomyocyte Death During the Early Phase of Reperfusion. Circ J 2006; 70:1344-55. [PMID: 16998271 DOI: 10.1253/circj.70.1344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The hypothesis that mechanical stress during reperfusion produces myocyte oncosis and inhibits apoptosis was tested in the present study. METHODS AND RESULTS Isolated and perfused rat hearts were subjected to 30 min ischemia followed by 150 min reperfusion. In the control-reperfusion heart, the form of myocyte death was a mixture of apoptosis only, oncosis only, and both apoptosis and oncosis. Apoptotic myocytes contained mitochondria that maintained membrane potential (Deltapsim), whereas oncotic myocytes contained only Deltapsim-collapsed mitochondria. Treatment with the contractile blocker 2,3-butanedione monoxime (BDM) during reperfusion increased caspase-3 activity and produced predominantly apoptosis. However, withdrawal of BDM provoked oncosis in terminal deoxynucleotide nick-end labeling (TUNEL)-positive myocytes. Myocardial stretch by inflating an intraventricular balloon at the time of reperfusion with BDM increased only oncotic myocytes, whereas the same mechanical stress 120 min after reperfusion increased oncotic myocytes positive for TUNEL. Increased mechanical stress at the time of reperfusion by treatment with isoproterenol or hyposmotic buffer inhibited caspase-3 activity and increased only oncotic myocytes. Co-treatment with the caspase-3 inhibitor, Ac-DEVD-CHO, and BDM during reperfusion inhibited myocyte apoptosis and oncosis but did not inhibit oncosis after withdrawal of BDM. CONCLUSIONS These results suggest that mechanical stress is a critical determinant of the form of myocyte death during the early phase of reperfusion.
Collapse
Affiliation(s)
- Hajime Otani
- Cardiovascular Center, Kansai Medical University, Moriguchi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wolf MB, Baynes JW. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction. Biochim Biophys Acta Gen Subj 2005; 1760:267-71. [PMID: 16337743 DOI: 10.1016/j.bbagen.2005.10.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/14/2005] [Accepted: 10/28/2005] [Indexed: 11/18/2022]
Abstract
The anticancer drug doxorubicin (DOX) is toxic to target cells, but also causes endothelial dysfunction and edema, secondary to oxidative stress in the vascular wall. Thus, the mechanism of action of this drug may involve chemotoxicity to both cancer cells and to the endothelium. Indeed, we found that the permeability of monolayers of bovine pulmonary artery endothelial cells (BPAEC) to albumin was increased by approximately 10-fold above control, following 24-h exposure to clinically relevant concentrations of DOX (up to 1 microM). DOX also caused >4-fold increases in lactate dehydrogenase leakage and large decreases in ATP and reduced glutathione (GSH) in BPAECs, which paralleled the increases in endothelial permeability. A large part of the ATP loss could be attributed to DOX-induced hydrogen peroxide production which inhibited key thiol-enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH). Depletion of reduced nicotinamide adenine dinucleotide phosphate (NADPH) appeared to be a major factor leading to DOX-induced GSH depletion. At low concentrations, the sulfhydryl reagent, iodoacetate (IA), inhibited GAPDH, caused a decrease in ATP and increased permeability, without inhibiting G6PDH or decreasing GSH. These results, coupled with those of previous work on a related quinone, menadione, suggest that depletion of either GSH or ATP may lead independently to endothelial dysfunction during chemotherapy, contributing to the cardiotoxicity and other systemic side-effects of the drug.
Collapse
Affiliation(s)
- Matthew B Wolf
- Department of Pharmacology, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
25
|
Cutaia M, Black AD, Cohen I, Cassai ND, Sidhu GS. Alkaline stress-induced apoptosis in human pulmonary artery endothelial cells. Apoptosis 2005; 10:1457-67. [PMID: 16215687 DOI: 10.1007/s10495-005-1402-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effect of alkaline stress, or an increase in extracellular pH (pHext), on cell viability is poorly defined. Human pulmonary artery endothelial cells (HPAEC) were subjected to alkaline stress using different methods of increasing pHext. Viability and mode of cell death following alkaline stress were determined by assessing nuclear morphology, ultrastructural features, and caspase-3 activity. Incubation of monolayers in media set to different pHext values (7.4-8.4) for 24-h induced morphological changes suggesting apoptosis (35-45% apoptotic cells) following severe alkaline stress. The magnitude of apoptosis was related to the severity of alkaline stress. These findings were confirmed with an assessment of ultrastructural changes and caspase-3 activation. While there was no difference in the intracellular calcium level ([Ca(2+)](i)) in monolayers set to pHext 7.4 versus 8.4 following the first hour of alkaline stress, blockade of calcium uptake with the chelator, EGTA, potentiated the magnitude of apoptosis under these conditions. Potentiation of apoptosis was reduced by calcium supplementation of the media. Finally, alkaline stress was associated with an increase in intracellular pH. This is the first report of apoptosis following alkaline stress in endothelial cells in the absence of other cell death stimuli.
Collapse
Affiliation(s)
- M Cutaia
- Pulmonary Disease Section, Department of Medicine, Veterans Administration Medical Center, Brooklyn Campus, SUNY/Downstate Health Sciences Center, Brooklyn, NY 11209-7104, USA.
| | | | | | | | | |
Collapse
|
26
|
Sharma M, Sahu K, Dube A, Gupta PK. Extracellular pH influences the mode of cell death in human colon adenocarcinoma cells subjected to photodynamic treatment with chlorin p6. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:107-13. [PMID: 16154755 DOI: 10.1016/j.jphotobiol.2005.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Effect of varying extracellular pH on mode of cell death induced by photodynamic action of chlorin p6 was investigated in human colon carcinoma (Colo-205) cells. At an extracellular pH of 7.4, compared to cells treated with chlorin p6 in dark, the photodynamically treated cells showed reduction in mitochondrial membrane potential, an increase in ADP/ATP ratio (1:2) and a large percentage of cells with chromatin condensation. In contrast, when photodynamic treatment and post irradiation incubation was carried out in acidic medium (pH 6.5), total loss of mitochondrial membrane potential, a marked increase in ADP/ATP ratio (1:33) and increased damage to plasma membrane were observed. Further, cells subjected to photodynamic treatment in a medium of pH 7.4 showed twofold increase in caspase-3 activity as compared to photodynamic treatment at pH 6.5. These results suggest that chlorin p6 mediated photodynamic action induces apoptotic cell death when extracellular pH is 7.4 whereas necrosis is more predominant under condition when extracellular pH is 6.5.
Collapse
Affiliation(s)
- Mrinalini Sharma
- Biomedical Applications Section, Laser Fusion Laboratory, Centre for Advanced Technology, Indore 452013, India.
| | | | | | | |
Collapse
|
27
|
Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 2003; 99:45-53. [PMID: 12804698 DOI: 10.1016/s0163-7258(03)00052-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amphetamine-like psychostimulants are associated with long-term decreases in markers for monoaminergic neurons, suggesting neuronal loss and/or damage within the brain. This long-term "toxicity" results from formation of free radicals, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS), although the mechanism(s) of ROS and RNS formation are unclear. Mitochondria are a major source of ROS and mitochondrial dysfunction has been linked to some neurodegenerative disorders. Amphetamines also inhibit mitochondrial function, although the mechanism involved in the inhibition is uncertain. This review coordinates findings on the multiple pathways for ROS and RNS and describes a hypothesis involving mitochondrial inhibition in the initiation of amphetamine-induced cellular necrosis.
Collapse
Affiliation(s)
- Jeffrey M Brown
- Department of Pharmacology and Experimental Therapeutics, L-613, School of Medicine, Boston University, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
28
|
Comelli M, Di Pancrazio F, Mavelli I. Apoptosis is induced by decline of mitochondrial ATP synthesis in erythroleukemia cells. Free Radic Biol Med 2003; 34:1190-9. [PMID: 12706499 DOI: 10.1016/s0891-5849(03)00107-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptosis is shown to occur in erythroleukemia cells after incubation with oligomycin, which specifically inactivates mitochondrial ATPsynthase. Energy charge and ATP content decline very early during the treatment. Mitochondrial respiration is dramatically decreased while lactate production results not modified. DNA fragmentation progressively increases starting one hour following oligomycin removal, while loss of plasma membrane integrity occurs with a much slower time-course. Similar effects are also shown in differentiation-induced erythroleukemia cells exposed to H(2)O(2). In this case, evidence is provided for the involvement of (*)OH generated by iron-catalyzed reactions in the mechanism by which H(2)O(2) impairs energy charge and induces apoptosis. We hypothesize a possible role played by interference with mitochondrial bioenergy through inactivation of mitochondrial ATPsynthase in the apoptosis triggered by oxidative stress under conditions in which cells undergo an iron overload-like status, as occurs in differentiation-induced erythroleukemia cells. These results point to the impairment of mitochondrial ATP synthesis and of energy charge as common early events critical for the execution of apoptosis, independently by the stimuli used for its induction: the specific inhibitor of mitochondrial ATPsynthase or H(2)O(2) exposure combined with the iron-enhancing differentiating treatment.
Collapse
Affiliation(s)
- Marina Comelli
- Department of Biomedical Sciences and Technologies, University of Udine, Italy.
| | | | | |
Collapse
|
29
|
Brenner C, Le Bras M, Kroemer G. Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol 2003; 23:73-80. [PMID: 12757259 DOI: 10.1023/a:1022541009662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mitochondria are potent integrators/coordinators of apoptosis signaling pathways. Indeed, under physiological conditions, the initiation of apoptosis leads to the accumulation of second messengers that converge on mitochondria. In response, these organelles undergo a membrane permeabilization, presumably due to the opening of protein channels, culminating in the release of proapoptotic proteins into the cytosol. Under pathological conditions, a failure of mitochondrial membrane permeabilization (MMP) can result in an inhibition of apoptosis and enhanced resistance to chemotherapy. Several non-mutually exclusive mechanisms may account for a defect in the execution or regulation of MMP. These include (i) alterations in gene transcription, (ii) gene mutations resulting in protein inactivation, and (iii) defects of intracellular localization. This may concern structural proteins of the permeability transition pore complex, as well as MMP regulatory proteins, such as Bax/Bcl-2 family members, p53, and cyclophilin D. Analysis of these mechanisms should improve our understanding of the basic function of mitochondria in apoptosis and help elaborate new strategies to correct MMP failure from a therapeutic perspective.
Collapse
Affiliation(s)
- Catherine Brenner
- CNRS UPRESA 8087, Université de Versailles/St Quentin, LGBC Buffon, 45 Avenue des Etats-Unis, 78035 Versailles, France.
| | | | | |
Collapse
|