1
|
Shadid A, Rich HE, DeVaughn H, Domozhirov A, Doursout MF, Weng-Mills T, Eckel-Mahan KL, Karmouty-Quintana H, Restrepo MI, Shivshankar P. Persistent microbial infections and idiopathic pulmonary fibrosis - an insight into non-typeable Haemophilus influenza pathogenesis. Front Cell Infect Microbiol 2024; 14:1479801. [PMID: 39760094 PMCID: PMC11695292 DOI: 10.3389/fcimb.2024.1479801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases. However, while epidemiological studies have highlighted pollutants, gastric aspirate, and microbial infections as major causes for the progression and exacerbation of IPF, the role of persistent microbial infections in the pathogenesis of IPF remains unclear. In this review, we have focused on the role of persistent microbial infections, including viral, bacterial, and fungal infections, and their mechanisms of action in the pathogenesis of IPF. In particular, the mechanisms and pathogenesis of the Gram-negative bacteria Non-typeable Haemophilus influenzae (NTHi) in ILDs are discussed, along with growing evidence of its role in IPF, given its unique ability to establish persistent intracellular infections by leveraging its non-capsulated nature to evade host defenses. While antibiotic treatments are presumably beneficial to target the extracellular, interstitial, and systemic burden of pathogens, their effects are significantly reduced in combating pathogens that reside in the intracellular compartments. The review also includes recent clinical trials, which center on combinatorial treatments involving antimicrobials and immunosuppressants, along with antifibrotic drugs that help mitigate disease progression in IPF patients. Finally, future directions focus on mRNA-based therapeutics, given their demonstrated effectiveness across a wide range of clinical applications and feasibility in targeting intracellular pathogens.
Collapse
Affiliation(s)
- Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Aleksey Domozhirov
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marie- Françoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Tingting Weng-Mills
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marcos I. Restrepo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, South Texas Veterans Health Care System and the University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| |
Collapse
|
2
|
Guo B, Liu W, Ji X, Xi B, Meng X, Xie W, Sun Y, Zhang M, Liu P, Zhang W, Yan X, Chen B. CSF3 aggravates acute exacerbation of pulmonary fibrosis by disrupting alveolar epithelial barrier integrity. Int Immunopharmacol 2024; 135:112322. [PMID: 38788452 DOI: 10.1016/j.intimp.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.
Collapse
Affiliation(s)
- Bingnan Guo
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenwen Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xuan Ji
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Respiratory Medicine, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, China
| | - Bin Xi
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiao Meng
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wanwan Xie
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yitian Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Maowei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Pingli Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenhui Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Emergency Medicine, Suining People's Hospital, Xuzhou 221225, Jiangsu, China.
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
3
|
Zhang M, Qiu J, Wang R. Mendelian randomization study on the causal effect of herpes simplex virus infection on idiopathic pulmonary fibrosis. Expert Rev Respir Med 2024; 18:341-347. [PMID: 38878268 DOI: 10.1080/17476348.2024.2369253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Previous observational studies have shown that past infection of herpes simplex virus (HSV) is associated with idiopathic pulmonary fibrosis (IPF). The present study aims to identify the causal link between HSV infection (exposure factor) and IPF (outcome factor). RESEARCH DESIGN AND METHODS To date, the largest publicly available genome-wide association study (GWAS) for HSV infection (1,595 cases and 211,856 controls from Finnish ancestry) and for IPF (1,028 cases and 196,986 controls from Finnish ancestry) were used to perform this two-sample Mendelian randomization (MR) study. RESULTS We found no significant pleiotropy or heterogeneity of all selected nine HSV infection-associated genetic instrumental variants (IVs) in IPF GWAS dataset. Interestingly, we found that as HSV infection genetically increased, IPF risk increased based on an inverse-variance weighted (IVW) analysis (odds ratio [OR] = 1.280, 95% confidence interval [CI]: 1.048-1.563; p = 0.015) and weighted median (OR = 1.321, 95% CI: 1.032-1.692; p = 0.027). CONCLUSIONS Our analysis suggests a causal effect of genetically increased HSV infection on IPF risk. Thus, HSV infection may be a potential risk factor for IPF.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Vittal R, Walker NM, McLinden AP, Braeuer RR, Ke F, Fattahi F, Combs MP, Misumi K, Aoki Y, Wheeler DS, Wilke CA, Huang SK, Moore BB, Cao P, Lama VN. Genetic deficiency of the transcription factor NFAT1 confers protection against fibrogenic responses independent of immune influx. Am J Physiol Lung Cell Mol Physiol 2024; 326:L39-L51. [PMID: 37933452 PMCID: PMC11279780 DOI: 10.1152/ajplung.00045.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by unremitting matrix deposition and architectural distortion. Multiple profibrotic pathways contribute to the persistent activation of mesenchymal cells (MCs) in fibrosis, highlighting the need to identify and target common signaling pathways. The transcription factor nuclear factor of activated T cells 1 (NFAT1) lies downstream of second messenger calcium signaling and has been recently shown to regulate key profibrotic mediator autotaxin (ATX) in lung MCs. Herein, we investigate the role of NFAT1 in regulating fibroproliferative responses during the development of lung fibrosis. Nfat1-/--deficient mice subjected to bleomycin injury demonstrated improved survival and protection from lung fibrosis and collagen deposition as compared with bleomycin-injured wild-type (WT) mice. Chimera mice, generated by reconstituting bone marrow cells from WT or Nfat1-/- mice into irradiated WT mice (WT→WT and Nfat1-/-→WT), demonstrated no difference in bleomycin-induced fibrosis, suggesting immune influx-independent fibroprotection in Nfat1-/- mice. Examination of lung tissue and flow sorted lineageneg/platelet-derived growth factor receptor alpha (PDGFRα)pos MCs demonstrated decreased MC numbers, proliferation [↓ cyclin D1 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation], myofibroblast differentiation [↓ α-smooth muscle actin (α-SMA)], and survival (↓ Birc5) in Nfat1-/- mice. Nfat1 deficiency abrogated ATX expression in response to bleomycin in vivo and MCs derived from Nfat1-/- mice demonstrated decreased ATX expression and migration in vitro. Human IPF MCs demonstrated constitutive NFAT1 activation, and regulation of ATX in these cells by NFAT1 was confirmed using pharmacological and genetic inhibition. Our findings identify NFAT1 as a critical mediator of profibrotic processes, contributing to dysregulated lung remodeling and suggest its targeting in MCs as a potential therapeutic strategy in IPF.NEW & NOTEWORTHY Idiopathic pulmonary fibrosis (IPF) is a fatal disease with hallmarks of fibroblastic foci and exuberant matrix deposition, unknown etiology, and ineffective therapies. Several profibrotic/proinflammatory pathways are implicated in accelerating tissue remodeling toward a honeycombed end-stage disease. NFAT1 is a transcriptional factor activated in IPF tissues. Nfat1-deficient mice subjected to chronic injury are protected against fibrosis independent of immune influxes, with suppression of profibrotic mesenchymal phenotypes including proliferation, differentiation, resistance to apoptosis, and autotaxin-related migration.
Collapse
Affiliation(s)
- Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Natalie M Walker
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - A Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Russell R Braeuer
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fang Ke
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fatemeh Fattahi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Michael P Combs
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Keizo Misumi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Yoshiro Aoki
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - David S Wheeler
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Carol A Wilke
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven K Huang
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Bethany B Moore
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Pengxiu Cao
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Vibha N Lama
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Ye X, Zhang M, Gu H, Liu M, Zhao Y, Shi Y, Wu S, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. Animal models of acute exacerbation of pulmonary fibrosis. Respir Res 2023; 24:296. [PMID: 38007420 PMCID: PMC10675932 DOI: 10.1186/s12931-023-02595-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.
Collapse
Affiliation(s)
- Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| |
Collapse
|
6
|
Yegen CH, Haine L, Da Costa Ferreira K, Marchant D, Bernaudin JF, Planès C, Voituron N, Boncoeur E. A New Model of Acute Exacerbation of Experimental Pulmonary Fibrosis in Mice. Cells 2022; 11:3379. [PMID: 36359778 PMCID: PMC9654438 DOI: 10.3390/cells11213379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2023] Open
Abstract
RATIONALE idiopathic pulmonary fibrosis (IPF) is the most severe form of fibrosing interstitial lung disease, characterized by progressive respiratory failure leading to death. IPF's natural history is heterogeneous, and its progression unpredictable. Most patients develop a progressive decline of respiratory function over years; some remain stable, but others present a fast-respiratory deterioration without identifiable cause, classified as acute exacerbation (AE). OBJECTIVES to develop and characterize an experimental mice model of lung fibrosis AE, mimicking IPF-AE at the functional, histopathological, cellular and molecular levels. METHODS we established in C57BL/6 male mice a chronic pulmonary fibrosis using a repetitive low-dose bleomycin (BLM) intratracheal (IT) instillation regimen (four instillations of BLM every 2 weeks), followed by two IT instillations of a simple or double-dose BLM challenge to induce AE. Clinical follow-up and histological and molecular analyses were done for fibrotic and inflammatory lung remodeling analysis. MEASUREMENTS AND MAIN RESULTS as compared with a low-dose BLM regimen, this AE model induced a late burst of animal mortality, worsened lung fibrosis and remodeling, and superadded histopathological features as observed in humans IPF-AE. This was associated with stronger inflammation, increased macrophage infiltration of lung tissue and increased levels of pro-inflammatory cytokines in lung homogenates. Finally, it induced in the remodeled lung a diffuse expression of hypoxia-inducible factor 1α, a hallmark of tissular hypoxia response and a major player in the progression of IPF. CONCLUSION this new model is a promising model of AE in chronic pulmonary fibrosis that could be relevant to mimic IPF-AE in preclinical trials.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Liasmine Haine
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Kevin Da Costa Ferreira
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Dominique Marchant
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Jean-Francois Bernaudin
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Faculté de Médecine, Sorbonne Université, 75006 Paris, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Département STAPS, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| |
Collapse
|
7
|
Warheit-Niemi HI, Edwards SJ, SenGupta S, Parent CA, Zhou X, O'Dwyer DN, Moore BB. Fibrotic lung disease inhibits innate immune responses to Staphylococcal pneumonia via impaired neutrophil and macrophage function. JCI Insight 2022; 7:152690. [PMID: 34990413 PMCID: PMC8876506 DOI: 10.1172/jci.insight.152690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by collagen deposition within the lung interstitium. Bacterial infection is associated with increased morbidity and more rapid mortality in IPF patient populations, and pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) are commonly isolated from the lungs of hospitalized patients with IPF. Despite this, the effects of fibrotic lung injury on critical immune responses to infection remain unknown. In the present study, we show that, like humans with IPF, fibrotic mice infected with MRSA exhibit increased morbidity and mortality compared with uninfected fibrotic mice. We determine that fibrosis conferred a defect in MRSA clearance compared with nonfibrotic mice, resulting from blunted innate immune responses. We show that fibrosis inhibited neutrophil intracellular killing of MRSA through impaired neutrophil elastase release and oxidative radical production. Additionally, we demonstrate that lung macrophages from fibrotic mice have impaired phagocytosis of MRSA. Our study describes potentially novel impairments of antimicrobial responses upon pulmonary fibrosis development, and our findings suggest a possible mechanism for why patients with IPF are at greater risk of morbidity and mortality related to infection.
Collapse
Affiliation(s)
- Helen I Warheit-Niemi
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Summer J Edwards
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Shuvasree SenGupta
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Carole A Parent
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - David N O'Dwyer
- The University of Michigan Medical School, Ann Arbor, United States of America
| | - Bethany B Moore
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| |
Collapse
|
8
|
Duckworth A, Longhurst HJ, Paxton JK, Scotton CJ. The Role of Herpes Viruses in Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:704222. [PMID: 34368196 PMCID: PMC8339799 DOI: 10.3389/fmed.2021.704222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis (PF) is a serious lung disease which can result from known genetic or environmental exposures but is more commonly idiopathic (IPF). In familial PF (FPF), the majority of identified causal genes play key roles in the maintenance of telomeres, the protective end structures of chromosomes. Recent evidence suggests that short telomeres may also be implicated causally in a significant proportion of idiopathic cases. The possible involvement of herpes viruses in PF disease incidence and progression has been examined for many years, with some studies showing strong, statistically significant associations and others reporting no involvement. Evidence is thus polarized and remains inconclusive. Here we review the reported involvement of herpes viruses in PF in both animals and humans and present a summary of the evidence to date. We also present several possible mechanisms of action of the different herpes viruses in PF pathogenesis, including potential contributions to telomere attrition and cellular senescence. Evidence for antiviral treatment in PF is very limited but suggests a potential benefit. Further work is required to definitely answer the question of whether herpes viruses impact PF disease onset and progression and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.
Collapse
Affiliation(s)
- Anna Duckworth
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Hilary J. Longhurst
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Jane K. Paxton
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Chris J. Scotton
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Gong W, Guo P, Liu L, Guan Q, Yuan Z. Integrative Analysis of Transcriptome-Wide Association Study and mRNA Expression Profiles Identifies Candidate Genes Associated With Idiopathic Pulmonary Fibrosis. Front Genet 2020; 11:604324. [PMID: 33362862 PMCID: PMC7758323 DOI: 10.3389/fgene.2020.604324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of scarring lung disease characterized by a chronic, progressive, and irreversible decline in lung function. The genetic basis of IPF remains elusive. A transcriptome-wide association study (TWAS) of IPF was performed by FUSION using gene expression weights of three tissues combined with a large-scale genome-wide association study (GWAS) dataset, totally involving 2,668 IPF cases and 8,591 controls. Significant genes identified by TWAS were then subjected to gene ontology (GO) and pathway enrichment analysis. The overlapped GO terms and pathways between enrichment analysis of TWAS significant genes and differentially expressed genes (DEGs) from the genome-wide mRNA expression profiling of IPF were also identified. For TWAS significant genes, protein–protein interaction (PPI) network and clustering modules analyses were further conducted using STRING and Cytoscape. Overall, TWAS identified a group of candidate genes for IPF under the Bonferroni corrected P value threshold (0.05/14929 = 3.35 × 10–6), such as DSP (PTWAS = 1.35 × 10–29 for lung tissue), MUC5B (PTWAS = 1.09 × 10–28 for lung tissue), and TOLLIP (PTWAS = 1.41 × 10–15 for whole blood). Pathway enrichment analysis identified multiple candidate pathways, such as herpes simplex infection (P value = 7.93 × 10–5) and antigen processing and presentation (P value = 6.55 × 10–5). 38 common GO terms and 8 KEGG pathways shared by enrichment analysis of TWAS significant genes and DEGs were identified. In the PPI network, 14 genes (DYNLL1, DYNC1LI1, DYNLL2, HLA-DRB5, HLA-DPB1, HLA-DQB2, HLA-DQA2, HLA-DQB1, HLA-DRB1, POLR2L, CENPP, CENPK, NUP133, and NUP107) were simultaneously detected by hub gene and module analysis. In conclusion, through integrative analysis of TWAS and mRNA expression profiles, we identified multiple novel candidate genes, GO terms and pathways for IPF, which contributes to the understanding of the genetic mechanism of IPF.
Collapse
Affiliation(s)
- Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Cho SJ, Moon JS, Nikahira K, Yun HS, Harris R, Hong KS, Huang H, Choi AMK, Stout-Delgado H. GLUT1-dependent glycolysis regulates exacerbation of fibrosis via AIM2 inflammasome activation. Thorax 2020; 75:227-236. [PMID: 31822523 PMCID: PMC7063401 DOI: 10.1136/thoraxjnl-2019-213571] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive, fatal lung disease that affects older adults. One of the detrimental natural histories of IPF is acute exacerbation of IPF (AE-IPF), of which bacterial infection is reported to play an important role. However, the mechanism by which bacterial infection modulates the fibrotic response remains unclear. OBJECTIVES Altered glucose metabolism has been implicated in the pathogenesis of fibrotic lung diseases. We have previously demonstrated that glucose transporter 1 (GLUT1)-dependent glycolysis regulates fibrogenesis in a murine fibrosis model. To expand on these findings, we hypothesised that GLUT1-dependent glycolysis regulates acute exacerbation of lung fibrogenesis during bacterial infection via AIM2 inflammasome activation. RESULTS In our current study, using a murine model of Streptococcus pneumoniae (S. pneumoniae) infection, we investigated the potential role of GLUT1 on mediating fibrotic responses to an acute exacerbation during bleomycin-induced fibrosis. The results of our current study illustrate that GLUT1 deficiency ameliorates S. pneumoniae-mediated exacerbation of lung fibrosis (wild type (WT)/phosphate buffered saline (PBS), n=3; WT/S. pneumoniae, n=3; WT/Bleomycin, n=5 ; WT/Bleomycin+S. pneumoniae, n=7; LysM-Cre-Glut1fl/f /PBS, n=3; LysM-Cre-Glut1fl/fl /S. pneumoniae, n=3; LysM-Cre-Glut1fl/fl /Bleomycin, n=6; LysM-Cre-Glut1fl/fl /Bleomycin+S. pneumoniae, n=9, p=0.041). Further, the AIM2 inflammasome, a multiprotein complex essential for sensing cytosolic bacterial DNA as a danger signal, is an important regulator of this GLUT1-mediated fibrosis and genetic deficiency of AIM2 reduced bleomycin-induced fibrosis after S. pneumoniae infection (WT/PBS, n=6; WT/Bleomycin+S. pneumoniae, n=15; Aim2-/-/PBS, n=6, Aim2-/-/Bleomycin+S. pneumoniae, n=11, p=0.034). GLUT1 deficiency reduced expression and function of the AIM2 inflammasome, and AIM2-deficient mice showed substantial reduction of lung fibrosis after S. pneumoniae infection. CONCLUSION Our results demonstrate that GLUT1-dependent glycolysis promotes exacerbation of lung fibrogenesis during S. pneumoniae infection via AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Soo Jung Cho
- Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Asan, Chungcheongnam-do, Korea
| | - Kiichi Nikahira
- Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Ha Seon Yun
- Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Rebecca Harris
- Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Kyung Sook Hong
- Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Huarong Huang
- Medicine, Weill Cornell Medical College, New York City, New York, USA
| | | | | |
Collapse
|
11
|
Warheit-Niemi HI, Hult EM, Moore BB. A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunology 2019; 8:e1065. [PMID: 31293783 PMCID: PMC6593479 DOI: 10.1002/cti2.1065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lung fibrosis is characterised by the accumulation of extracellular matrix within the lung and is secondary to both known and unknown aetiologies. This accumulation of scar tissue limits gas exchange causing respiratory insufficiency. The pathogenesis of lung fibrosis is poorly understood, but immunologic‐based treatments have been largely ineffective. Despite this, accumulating evidence suggests that innate immune cells and receptors play important modulatory roles in the initiation and propagation of the disease. Paradoxically, while innate immune signalling may be important for the pathogenesis of fibrosis, there is also evidence to suggest that innate immune function against pathogens may be impaired, leading to dysregulated and/or impaired host defence. This review summarises the evidence for this pathologic two‐way street, highlights new concepts of pathogenesis and recommends future directions for research emphasis.
Collapse
Affiliation(s)
| | - Elissa M Hult
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Bethany B Moore
- Department of Microbiology and Immunology University of Michigan Ann Arbor MI USA.,Department of Internal Medicine Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor MI USA
| |
Collapse
|
12
|
O’Dwyer DN, Zhou X, Wilke CA, Xia M, Falkowski NR, Norman KC, Arnold KB, Huffnagle GB, Murray S, Erb-Downward JR, Yanik GA, Moore BB, Dickson RP. Lung Dysbiosis, Inflammation, and Injury in Hematopoietic Cell Transplantation. Am J Respir Crit Care Med 2018; 198:1312-1321. [PMID: 29878854 PMCID: PMC6290939 DOI: 10.1164/rccm.201712-2456oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Hematopoietic cell transplant (HCT) is a common treatment for hematological neoplasms and autoimmune disorders. Among HCT recipients, pulmonary complications are common, morbid, and/or lethal, and they have recently been associated with gut dysbiosis. The role of lung microbiota in post-HCT pulmonary complications is unknown. OBJECTIVES To investigate the role of lung microbiota in post-HCT pulmonary complications using animal modeling and human BAL fluid. METHODS For animal modeling, we used an established murine model of HCT with and without postengraftment herpes virus infection. For human studies, we characterized lung microbiota in BAL fluid from 43 HCT recipients. Lung bacteria were characterized using 16S ribosomal RNA gene sequencing and were compared with lung histology (murine) and with alveolar inflammation and pulmonary function testing (human). MEASUREMENTS AND MAIN RESULTS Both HCT and viral infection independently altered the composition of murine lung microbiota, but they had no effect on lung microbial diversity. By contrast, combined HCT and viral infection profoundly altered lung microbiota, decreasing community diversity with an associated pneumonitis. Among human HCT recipients, increased relative abundance of the Proteobacteria phylum was associated with impaired pulmonary function, and lung microbiota were significantly associated with alveolar concentrations of inflammatory cytokines. CONCLUSIONS In animal models and human subjects, lung dysbiosis is a prominent feature of HCT. Lung dysbiosis is correlated with histologic, immunologic, and physiologic features of post-HCT pulmonary complications. Our findings suggest the lung microbiome may be an unappreciated target for the prevention and treatment of post-HCT pulmonary complications.
Collapse
Affiliation(s)
- David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Carol A. Wilke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Meng Xia
- Department of Biostatistics, School of Public Health, and
| | - Nicole R. Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Katy C. Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
- Department of Microbiology and Immunology, and
| | - Susan Murray
- Department of Biostatistics, School of Public Health, and
| | - John R. Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Gregory A. Yanik
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
- Department of Microbiology and Immunology, and
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, Michigan
| |
Collapse
|
13
|
Chen T, Qiu H, Zhao MM, Chen SS, Wu Q, Zhou NY, Lu LQ, Song JC, Tang DL, Weng D, Li HP. IL-17A contributes to HSV1 infection-induced acute lung injury in a mouse model of pulmonary fibrosis. J Cell Mol Med 2018; 23:908-919. [PMID: 30378252 PMCID: PMC6349191 DOI: 10.1111/jcmm.13992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 09/09/2018] [Accepted: 10/07/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Patients with idiopathic pulmonary fibrosis (IPF) often experience acute exacerbation (AE) after an episode of common cold. AIMS To establish a mouse model of virus infection-induced AE-IPF and investigate the mechanism underlying the AE-IPF. METHODS Herpes simplex virus 1 (HSV1) was inoculated intranasally to wild-type (WT) and IL-17A gene knockout (IL-17A-/- ) mice 21 days after intratracheal administration of bleomycin (BLM). RESULTS HSV1 infection caused acute exacerbation in mice with BLM-induced fibrosis. Compared with the BLM+Saline mice, the mice with BLM+HSV1 showed significantly higher acute lung injury (ALI) score (P < 0.0001), lower survival rate (100% vs 21.4%, P < 0.0001), poorer lung function and higher inflammatory response representing by increased total inflammatory cells in bronchoalveolar lavage fluid (BALF) (P = 0.0323), increased proportion of Th17 cells in peripheral blood (P = 0.0004) and higher inflammatory factors in BALF. In addition, HSV1 infection increased the expression of endoplasmic reticulum stress (ERS)-related proteins in mice with BLM-induced fibrosis. The inhibition of ERS by tauroursodeoxycholic acid (TUDCA, an ERS inhibitor) significantly reduced the IL-17A levels in BALF (P = 0.0140) and TH17 cells in the peripheral blood (P = 0.0084) of mice with BLM+HSV1, suggesting that suppression of ERS may reduce TH17 response in mice with AE-IPF. Compared with WT mice with BLM+HSV1, IL-17A-/- mice with BLM+HSV1 had lower ALI score (P = 0.0119), higher survival rate (78.6% vs 21.4%, P = 0.004), improved lung function, and milder inflammatory response. CONCLUSIONS HSV1 infection in addition to BLM-induced IPF can successfully establish AE-IPF in mice. IL-17A and ERS promote lung inflammation in AE-IPF development.
Collapse
Affiliation(s)
- Tao Chen
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hui Qiu
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Meng-Meng Zhao
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shan-Shan Chen
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Soochow University, Suzhou, China
| | - Qin Wu
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Nian-Yu Zhou
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Li-Qin Lu
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jia-Cui Song
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Soochow University, Suzhou, China
| | - Dan-Li Tang
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Dong Weng
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hui-Ping Li
- Department of Respiratory Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Thomas BJ, Kan-O K, Loveland KL, Elias JA, Bardin PG. In the Shadow of Fibrosis: Innate Immune Suppression Mediated by Transforming Growth Factor-β. Am J Respir Cell Mol Biol 2017; 55:759-766. [PMID: 27603223 DOI: 10.1165/rcmb.2016-0248ps] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGFB) regulates cell proliferation, differentiation, apoptosis, and matrix homeostasis and is intimately involved in fibrosis. TGFB expression is increased in fibrotic lung diseases, such as idiopathic pulmonary fibrosis, and in chronic inflammatory conditions, such as chronic obstructive pulmonary disease and asthma. In addition to exhibiting profibrotic activities, the protein exhibits profound immune-suppressive actions involving both innate and adaptive responses, but often this aspect of TGFB biology is overlooked. Recent investigations have demonstrated that TGFB causes wide-ranging immune suppression, including blunting of pivotal early innate IFN responses. These activities permit severe virus infections, often followed by secondary bacterial infections, which may last longer, with augmented inflammation, scarring, fibrosis, and loss of lung function. Strategies to oppose TGFB actions or to enhance IFN responses may help ameliorate the detrimental consequences of infection in patients with diseases characterized by TGFB overexpression, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Belinda J Thomas
- 1 Monash Lung and Sleep, Monash Medical Centre, Melbourne, Victoria, Australia.,2 Centre for Innate Immunity and Infectious Diseases and.,3 Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia; and
| | - Keiko Kan-O
- 1 Monash Lung and Sleep, Monash Medical Centre, Melbourne, Victoria, Australia.,2 Centre for Innate Immunity and Infectious Diseases and.,3 Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia; and
| | - Kate L Loveland
- 4 Centre of Reproductive Health, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,3 Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia; and
| | - Jack A Elias
- 5 Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - Philip G Bardin
- 1 Monash Lung and Sleep, Monash Medical Centre, Melbourne, Victoria, Australia.,2 Centre for Innate Immunity and Infectious Diseases and.,3 Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia; and
| |
Collapse
|
15
|
Chioma OS, Drake WP. Role of Microbial Agents in Pulmonary Fibrosis
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:219-227. [PMID: 28656009 PMCID: PMC5482299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pulmonary fibrosis is a form of lung disease that develops due to aberrant wound-healing following repeated alveoli injury in genetically susceptible individuals, resulting in chronic inflammation, excess deposition of the extracellular matrix components, mainly collagen, and scarring of lung tissue. In addition to irradiation, environmental agents such occupational inhalants, and chemotherapeutic agents, microbial agents also play a role in the etiology of the disease. While viruses have received the most attention, emerging evidence suggest that bacteria and fungi also play a part in the etiology of pulmonary fibrosis. Furthermore, successful use of antibiotics, antiviral and antifungal drugs in several studies to attenuate fibrosis progression is also an indication of microbial involvement in the pathogenesis of the disease and could be a promising therapeutic modality for treating pulmonary fibrosis initiated or exacerbated by infectious agents.
Collapse
Affiliation(s)
- Ozioma S. Chioma
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN,To whom all correspondence should be addressed: Ozioma S. Chioma, PhD, Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical School, 1161 21st Avenue South, Medical Center North, Room A-3314, Nashville, TN 37232-2363, USA, Tel: (615) 322-1397, Fax: (615) 343-6160, .
| | - Wonder P. Drake
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
16
|
Wang L, Cheng W, Zhang Z. Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model. Mol Med Rep 2017; 16:310-316. [DOI: 10.3892/mmr.2017.6558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/16/2017] [Indexed: 11/06/2022] Open
|
17
|
Development and application of a quantitative PCR assay to study equine herpesvirus 5 invasion and replication in equine tissues in vitro and in vivo. J Virol Methods 2017; 248:44-53. [PMID: 28455133 DOI: 10.1016/j.jviromet.2017.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022]
Abstract
Equine herpesvirus 5 (EHV-5) infection is associated with pulmonary fibrosis in horses, but further studies on EHV-5 persistence in equine cells are needed to fully understand viral and host contributions to disease pathogenesis. Our aim was to develop a quantitative PCR (qPCR) assay to measure EHV-5 viral copy number in equine cell cultures, blood lymphocytes, and nasal swabs of horses. Furthermore, we used a recently developed equine primary respiratory cell culture system to study EHV-5 pathogenesis at the respiratory tract. PCR primers and a probe were designed to target gene E11 of the EHV-5 genome. Sensitivity and repeatability were established, and specificity was verified by testing multiple isolates of EHV-5, as well as DNA from other equine herpesviruses. Four-week old fully differentiated (mature), newly seeded (immature) primary equine respiratory epithelial cell (ERECs), and equine dermal cell cultures were inoculated with EHV-5 and the cells and supernatants collected daily for 14days. Blood lymphocytes and nasal swabs were collected from horses experimentally infected with equine herpesvirus 1 (EHV-1). The qPCR assay detected EHV-5 at stable concentrations throughout 14days in inoculated mature EREC and equine dermal cell cultures (peaking at 202 and 5861 viral genomes per 106 cellular β actin, respectively). EHV-5 copies detected in the immature EREC cultures increased over 14days and reached levels greater than 10,000 viral genomes per 106 cellular β actin. Moreover, EHV-5 was detected in the lymphocytes of 76% of horses and in the nasal swabs of 84% of horses experimentally infected with EHV-1 pre-inoculation with EHV-1. Post-inoculation with EHV-1, EHV-5 was detected in lymphocytes of 52% of horses while EHV-5 levels in nasal swabs were not significantly different from pre-inoculation levels. In conclusion, qPCR was a reliable technique to investigate viral load in in vivo and in vitro samples, and EHV-5 replication in equine epithelial cells may be influenced by cellular stages of differentiation.
Collapse
|
18
|
Poh TY, Mac Aogáin M, Chan AKW, Yii ACA, Yong VFL, Tiew PY, Koh MS, Chotirmall SH. Understanding COPD-overlap syndromes. Expert Rev Respir Med 2017; 11:285-298. [PMID: 28282995 DOI: 10.1080/17476348.2017.1305895] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease accounts for a large burden of lung disease. It can 'overlap' with other respiratory diseases including bronchiectasis, fibrosis and obstructive sleep apnea (OSA). While COPD alone confers morbidity and mortality, common features with contrasting clinical outcomes can occur in COPD 'overlap syndromes'. Areas covered: Given the large degree of heterogeneity in COPD, individual variation to treatment is adopted based on its observed phenotype, which in turn overlaps with features of other respiratory disease states such as asthma. This is coined asthma-COPD overlap syndrome ('ACOS'). Other examples of such overlapping clinical states include bronchiectasis-COPD ('BCOS'), fibrosis-COPD ('FCOS') and OSA-COPD ('OCOS'). The objective of this review is to highlight similarities and differences between the COPD-overlap syndromes in terms of risk factors, pathophysiology, diagnosis and potential treatment differences. Expert commentary: As a consequence of COPD overlap syndromes, a transition from the traditional 'one size fits all' treatment approach is necessary. Greater treatment stratification according to clinical phenotype using a precision medicine approach is now required. In this light, it is important to recognize and differentiate COPD overlap syndromes as distinct disease states compared to individual diseases such as asthma, COPD, fibrosis or bronchiectasis.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- a Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory , Nanyang Technological University , Singapore , Singapore
| | - Micheál Mac Aogáin
- a Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory , Nanyang Technological University , Singapore , Singapore
| | - Adrian Kwok Wai Chan
- b Department of Respiratory & Critical Care Medicine , Singapore General Hospital , Singapore , Singapore
| | - Anthony Chau Ang Yii
- b Department of Respiratory & Critical Care Medicine , Singapore General Hospital , Singapore , Singapore
| | - Valerie Fei Lee Yong
- a Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory , Nanyang Technological University , Singapore , Singapore
| | - Pei Yee Tiew
- b Department of Respiratory & Critical Care Medicine , Singapore General Hospital , Singapore , Singapore
| | - Mariko Siyue Koh
- b Department of Respiratory & Critical Care Medicine , Singapore General Hospital , Singapore , Singapore
| | - Sanjay Haresh Chotirmall
- a Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory , Nanyang Technological University , Singapore , Singapore
| |
Collapse
|
19
|
Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol 2017; 10:341-351. [PMID: 27435108 PMCID: PMC5250615 DOI: 10.1038/mi.2016.61] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023]
Abstract
Fibrocytes are circulating mesenchymal precursors (CD45+, col 1+) recruited to fibrotic areas. Fibrocytes secrete profibrotic mediators including periostin; a matricellular protein that regulates cellular interactions with extracellular matrix (ECM) components. In bleomycin-induced fibrosis, periostin deficiency in structural or hematopoietic cells limits development of pulmonary fibrosis. To determine if hematopoietic-derived fibrocytes might secrete soluble factors to activate structural myofibroblast differentiation, wild-type (WT) fibroblasts were treated with conditioned medium from fibrocytes isolated from bleomycin-treated WT or periostin-/- mice. After 24 h we saw less α-smooth muscle actin expression in cells treated with conditioned medium from periostin-/- fibrocytes. Adoptive transfer of WT fibrocytes augmented lung fibrosis to a greater extent than transfer of fibrocytes from periostin-/- mice. In vitro analysis of fibrocytes and fibroblasts isolated from WT and periostin-/- mice treated with TGFβ1 or periostin demonstrated co-regulation of mesenchymal activation and beta 1 integrin as a potential receptor for periostin on fibrocytes. Additionally, connective tissue growth factor (CTGF) mRNA expression was increased in fibrocytes treated with periostin whereas CTGF and lysl oxidase (LOX) mRNA expression was low in bleomycin-treated periostin-/- fibrocytes. These data suggest fibrocytes may augment bleomycin-induced fibrosis via secretion of periostin and other soluble factors that promote myofibroblast differentiation.
Collapse
|
20
|
Viruses in Idiopathic Pulmonary Fibrosis. Etiology and Exacerbation. Ann Am Thorac Soc 2016; 12 Suppl 2:S186-92. [PMID: 26595738 DOI: 10.1513/annalsats.201502-088aw] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral infections are important contributors to exacerbation of asthma and chronic obstructive pulmonary disease; however, the role of viruses in the pathogenesis of idiopathic pulmonary fibrosis (IPF) is less clear. This likely reflects that fact that IPF acute exacerbations are defined clinically as "noninfectious," and little attention has been paid to the outcomes of patients with IPF with diagnosed infections. However, accumulating evidence suggests that infections (both bacterial and viral) may influence disease outcomes either as exacerbating agents or initiators of disease. Support for a viral role in disease initiation comes from studies demonstrating the presence of herpesviral DNA and epithelial cell stress in the lungs of asymptomatic relatives at risk for developing familial IPF. In addition, the number of studies that can associate viral (especially herpesviral) signatures in the lung with the development of IPF is steadily growing, and activated leukocyte signatures in patients with IPF provide further support for infectious processes driving IPF progression. Animal modeling has been used to better understand how a gamma herpesvirus infection can modulate the pathogenesis of lung fibrosis and has demonstrated that preceding infections appear to reprogram lung epithelial cells during latency to produce profibrotic factors, making the lung more susceptible to subsequent fibrotic insult, whereas exacerbations of existing fibrosis, or infections in susceptible hosts, involve active viral replication and are influenced by antiviral therapy. In addition, there is new evidence that bacterial burden in the lungs of patients with IPF may predict a poor prognosis.
Collapse
|
21
|
Ashley SL, Sisson TH, Wheaton AK, Kim KK, Wilke CA, Ajayi IO, Subbotina N, Wang S, Duckett CS, Moore BB, Horowitz JC. Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis. Am J Respir Cell Mol Biol 2016; 54:482-92. [PMID: 26378893 DOI: 10.1165/rcmb.2015-0148oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Accumulation of apoptosis-resistant fibroblasts is a hallmark of pulmonary fibrosis. We hypothesized that disruption of inhibitor of apoptosis protein (IAP) family proteins would limit lung fibrosis. We first show that transforming growth factor-β1 and bleomycin increase X-linked IAP (XIAP) and cellular IAP (cIAP)-1 and -2 in murine lungs and mesenchymal cells. Functional blockade of XIAP and the cIAPs with AT-406, an orally bioavailable second mitochondria-derived activator of caspases (Smac) mimetic, abrogated bleomycin-induced lung fibrosis when given both prophylactically and therapeutically. To determine whether the reduction in fibrosis was predominantly due to AT-406-mediated inhibition of XIAP, we compared the fibrotic response of XIAP-deficient mice (XIAP(-/y)) with littermate controls and found no difference. We found no alterations in total inflammatory cells of either wild-type mice treated with AT-406 or XIAP(-/y) mice. AT-406 treatment limited CCL12 and IFN-γ production, whereas XIAP(-/y) mice exhibited increased IL-1β expression. Surprisingly, XIAP(-/y) mesenchymal cells had increased resistance to Fas-mediated apoptosis. Functional blockade of cIAPs with AT-406 restored sensitivity to Fas-mediated apoptosis in XIAP(-/y) mesenchymal cells in vitro and increased apoptosis of mesenchymal cells in vivo, indicating that the increased apoptosis resistance in XIAP(-/y) mesenchymal cells was the result of increased cIAP expression. Collectively, these results indicate that: (1) IAPs have a role in the pathogenesis of lung fibrosis; (2) a congenital deficiency of XIAP may be overcome by compensatory mechanisms of other IAPs; and (3) broad functional inhibition of IAPs may be an effective strategy for the treatment of lung fibrosis by promoting mesenchymal cell apoptosis.
Collapse
Affiliation(s)
- Shanna L Ashley
- 1 Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Thomas H Sisson
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Amanda K Wheaton
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Kevin K Kim
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Carol A Wilke
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Iyabode O Ajayi
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Natalya Subbotina
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| | - Shaomeng Wang
- 3 Internal Medicine, Division of Hematology-Oncology
| | | | - Bethany B Moore
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care.,6 Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey C Horowitz
- Departments of 2 Internal Medicine, Division of Pulmonary and Critical Care
| |
Collapse
|
22
|
O'Dwyer DN, Ashley SL, Moore BB. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 311:L590-601. [PMID: 27474089 DOI: 10.1152/ajplung.00221.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/23/2016] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by accumulation of extracellular matrix (ECM) and impaired gas exchange. The pathobiological mechanisms that account for disease progression are poorly understood but likely involve alterations in innate inflammatory cells, epithelial cells, and fibroblasts. Thus we seek to review the most recent literature highlighting the complex roles of neutrophils and macrophages as both promoters of fibrosis and defenders against infection. With respect to epithelial cells and fibroblasts, we review the data suggesting that defective autophagy promotes the fibrogenic potential of both cell types and discuss new evidence related to matrix metalloproteinases, growth factors, and cellular metabolism in the form of lactic acid generation that may have consequences for promoting fibrogenesis. We discuss potential cross talk between innate and structural cell types and also highlight literature that may help explain the limitations of current IPF therapies.
Collapse
Affiliation(s)
- David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shanna L Ashley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Gurczynski SJ, Procario MC, O'Dwyer DN, Wilke CA, Moore BB. Loss of CCR2 signaling alters leukocyte recruitment and exacerbates γ-herpesvirus-induced pneumonitis and fibrosis following bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 2016; 311:L611-27. [PMID: 27448666 DOI: 10.1152/ajplung.00193.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
CCR2-expressing leukocytes are required for the progression of fibrosis in models of induced lung injury as well as models of bone marrow transplant (BMT)-related idiopathic pneumonia syndrome. Infection with murid γ-herpesvirus-68 (γHV-68) results in severe pneumonitis and pulmonary fibrosis following syngeneic BMT; however, the roles that various proinflammatory leukocyte populations play in this process remain unclear. Deletion of CCR2 in both non-BMT and BMT mice increased early lytic viral replication and resulted in a reduction in the numbers of lung-infiltrating GR1+,F4/80+ and CXCR1+ cells, while maintaining robust neutrophil infiltration. Similarly, in γHV-68-infected CCR2(-/-) BMT mice, recruitment of monocytes and lymphocytes were reduced whereas neutrophil recruitment was increased compared with wild-type (WT) BMT mice. Interestingly, levels of profibrotic IL-17 were increased in infected CCR2 BMT mice compared with WT BMT. Furthermore, an increase in lung-associated collagen was detected even though there was an overall decrease in the number of profibrotic CCR2+ fibrocytes detected in the lungs of CCR2(-/-) BMT mice. These data indicate that, contrary to most models of fibrosis, deletion of CCR2 offers no protection from γ-herpesvirus-induced pneumonitis and fibrosis, and, indeed, CCR2+ cells play a suppressive role during the development of pulmonary fibrosis following γ-herpesvirus infection post-BMT by limiting IL-7 and collagen production.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan;
| | - Megan C Procario
- Graduate Program in Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - David N O'Dwyer
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan
| | - Carol A Wilke
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Collins SL, Chan-Li Y, Oh M, Vigeland CL, Limjunyawong N, Mitzner W, Powell JD, Horton MR. Vaccinia vaccine-based immunotherapy arrests and reverses established pulmonary fibrosis. JCI Insight 2016; 1:e83116. [PMID: 27158671 DOI: 10.1172/jci.insight.83116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology - as measured by decreased lung collagen, fibrocytes, and histologic injury - and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - MinHee Oh
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L Vigeland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Program in Respiratory Biology and Lung Diseases, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Program in Respiratory Biology and Lung Diseases, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Abstract
The 2nd Cross Company Respiratory Symposium (CCRS), held in Horsham, U.K. in 2012, brought together representatives from across the pharmaceutical industry with expert academics, in the common interest of improving the design and translational predictiveness of in vivo models of respiratory disease. Organized by the respiratory representatives of the European Federation of Pharmaceutical Industries and Federations (EFPIA) group of companies involved in the EU-funded project (U-BIOPRED), the aim of the symposium was to identify state-of-the-art improvements in the utility and design of models of respiratory disease, with a view to improving their translational potential and reducing wasteful animal usage. The respiratory research and development community is responding to the challenge of improving translation in several ways: greater collaboration and open sharing of data, careful selection of the species, complexity and chronicity of the models, improved practices in preclinical research, continued refinement in models of respiratory diseases and their sub-types, greater understanding of the biology underlying human respiratory diseases and their sub-types, and finally greater use of human (and especially disease-relevant) cells, tissues and explants. The present review highlights these initiatives, combining lessons from the symposium and papers published in Clinical Science arising from the symposium, with critiques of the models currently used in the settings of asthma, idiopathic pulmonary fibrosis and COPD. The ultimate hope is that this will contribute to a more rational, efficient and sustainable development of a range of new treatments for respiratory diseases that continue to cause substantial morbidity and mortality across the world.
Collapse
|
26
|
Smoktunowicz N, Alexander RE, Franklin L, Williams AE, Holman B, Mercer PF, Jarai G, Scotton CJ, Chambers RC. The anti-fibrotic effect of inhibition of TGFβ-ALK5 signalling in experimental pulmonary fibrosis in mice is attenuated in the presence of concurrent γ-herpesvirus infection. Dis Model Mech 2015; 8:1129-39. [PMID: 26138704 PMCID: PMC4582104 DOI: 10.1242/dmm.019984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
TGFβ-ALK5 pro-fibrotic signalling and herpesvirus infections have been implicated in the pathogenesis and exacerbation of pulmonary fibrosis. In this study we addressed the role of TGFβ-ALK5 signalling during the progression of fibrosis in a two-hit mouse model of murine γ-herpesvirus 68 (MHV-68) infection on the background of pre-existing bleomycin-induced pulmonary fibrosis. Assessment of total lung collagen levels in combination with ex vivo micro-computed tomography (µCT) analysis of whole lungs demonstrated that MHV-68 infection did not enhance lung collagen deposition in this two-hit model but led to a persistent and exacerbated inflammatory response. Moreover, µCT reconstruction and analysis of the two-hit model revealed distinguishing features of diffuse ground-glass opacities and consolidation superimposed on pre-existing fibrosis that were reminiscent of those observed in acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). Virally-infected murine fibrotic lungs further displayed evidence of extensive inflammatory cell infiltration and increased levels of CCL2, TNFα, IL-1β and IL-10. Blockade of TGFβ-ALK5 signalling attenuated lung collagen accumulation in bleomycin-alone injured mice, but this anti-fibrotic effect was reduced in the presence of concomitant viral infection. In contrast, inhibition of TGFβ-ALK5 signalling in virally-infected fibrotic lungs was associated with reduced inflammatory cell aggregates and increased levels of the antiviral cytokine IFNγ. These data reveal newly identified intricacies for the TGFβ-ALK5 signalling axis in experimental lung fibrosis, with different outcomes in response to ALK5 inhibition depending on the presence of viral infection. These findings raise important considerations for the targeting of TGFβ signalling responses in the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Natalia Smoktunowicz
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| | - Robert E Alexander
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| | - Linda Franklin
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| | - Andrew E Williams
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| | - Beverley Holman
- Institute of Nuclear Medicine, University College London, NW1 2BU, UK
| | - Paul F Mercer
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| | - Gabor Jarai
- Novartis Institutes of Biomedical Research, Horsham, RH12 5AB, UK
| | - Chris J Scotton
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| | - Rachel C Chambers
- Centre for Inflammation & Tissue Repair, University College London, London, WC1E 6JF, UK
| |
Collapse
|
27
|
Knippenberg S, Ueberberg B, Maus R, Bohling J, Ding N, Tort Tarres M, Hoymann HG, Jonigk D, Izykowski N, Paton JC, Ogunniyi AD, Lindig S, Bauer M, Welte T, Seeger W, Guenther A, Sisson TH, Gauldie J, Kolb M, Maus UA. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax 2015; 70:636-46. [PMID: 25964315 DOI: 10.1136/thoraxjnl-2014-206420] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
Abstract
RATIONALE Respiratory tract infections are common in patients suffering from pulmonary fibrosis. The interplay between bacterial infection and fibrosis is characterised poorly. OBJECTIVES To assess the effect of Gram-positive bacterial infection on fibrosis exacerbation in mice. METHODS Fibrosis progression in response to Streptococcus pneumoniae was examined in two different mouse models of pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS We demonstrate that wild-type mice exposed to adenoviral vector delivery of active transforming growth factor-β1 (TGFß1) or diphteria toxin (DT) treatment of transgenic mice expressing the DT receptor (DTR) under control of the surfactant protein C (SPC) promoter (SPC-DTR) to induce pulmonary fibrosis developed progressive fibrosis following infection with Spn, without exhibiting impaired lung protective immunity against Spn. Antibiotic treatment abolished infection-induced fibrosis progression. The cytotoxin pneumolysin (Ply) of Spn caused this phenomenon in a TLR4-independent manner, as Spn lacking Ply (SpnΔply) failed to trigger progressive fibrogenesis, whereas purified recombinant Ply did. Progressive fibrogenesis was also observed in AdTGFβ1-exposed Ply-challenged TLR4 KO mice. Increased apoptotic cell death of alveolar epithelial cells along with an attenuated intrapulmonary release of antifibrogenic prostaglandin E2 was found to underlie progressive fibrogenesis in Ply-challenged AdTGFβ1-exposed mice. Importantly, vaccination of mice with the non-cytotoxic Ply derivative B (PdB) substantially attenuated Ply-induced progression of lung fibrosis in AdTGFβ1-exposed mice. CONCLUSIONS Our data unravel a novel mechanism by which infection with Spn through Ply release induces progression of established lung fibrosis, which can be attenuated by protein-based vaccination of mice.
Collapse
Affiliation(s)
- Sarah Knippenberg
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Bianca Ueberberg
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Bohling
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Nadine Ding
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Heinz-Gerd Hoymann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Nicole Izykowski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - James C Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Abiodun D Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Sandro Lindig
- Center for Sepsis Control and Care, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany German Centre for Lung Research, partner site BREATH and UGMLC
| | - Werner Seeger
- German Centre for Lung Research, partner site BREATH and UGMLC Faculty of Medicine, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Andreas Guenther
- German Centre for Lung Research, partner site BREATH and UGMLC Faculty of Medicine, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Hospital, Michigan, USA
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany German Centre for Lung Research, partner site BREATH and UGMLC
| |
Collapse
|